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Semiclassically, the dielectric constant of a free-electron gas in a magnetic field is highly absorptive
within the cone co =co,&vzq. But quantum mechanically, within this region there are many large "windows"
in which the absorptive component e2 (~,q) =0. In the first part of this paper we describe these large
windows in detail. We then consider propagation within them. We show that in a nonmagnetic material there
are other solutions of the dispersion relation in addition to a heliconlike mode. We next consider a ferro-
magnetic metal, and predict that in nickel a propagating magnon-helicon mode may exist up to microwave
frequencies for wave numbers up to q—10' cm ', which is 10' times the q of the Kjeldaas edge. The usual
microwave transmisson or reQection experiments are not suited to the observation of these effects, or the
related phenomenon of giant quantum oscillations in helicon attenuation which has been previously pre-
dicted. To be successful, an experiment must be able to determine both the frequency and the wave number
of the absorption process. Perhaps inelastic photon (Raman) scattering could be used for this purpose.

I. INTRODUCTION
' ""

ELICON oscillations' have been employed to
study many physical properties of metals in-

cluding the Hall coefficient and magnetoresistance. '
In the semiclassical theory of the complex dielectric
function tensor e(oi, q) of a free-electron gas in a
magnetic field' ' upon which the helicon dispersion
relation depends, there is an imaginary part which
comes from Doppler-shifted cyclotron-resonance exci-
tation. ' These excitations have a sudden onset at what
corresponds to the Kjeldaas edge, which is perhaps best-
known in connection with magnetoacoustic absorp-
tion. "Stern" pointed out that the abrupt increase in
helicon attenuation at this edge can be employed to
map out the Fermi surface.

The physical origin of this absorption is easily
understood. Suppose that a helicon of frequency co

and wave number q propagates parallel to a magnetic

* A preliminary and brief summary of this work has appeared
in Phys. Letters 20, 574 {1966).
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CO =+c~&Pg ~ (1.2)

Stern and fallen' discussed this absorption in
another context. They considered a magnetic metal
with ferromagnetically aligned spins embedded in the
conduction electron gas. The permeability of the
localized spins was obtained from the Landau-Lifshitz
equation, and the dielectric constant of the free-
electron gas was taken from the semiclassical theory. ' '
At room temperature there is a strong interaction
between the electromagnetic field and spin-wave
excitations only near q=0, where the spectra are
degenerate. " "But under the low-temperature, high-

purity conditions or,7-&1 necessary for helicon propa-
gation, there is a large interaction between electro-
magnetic and magnon modes for a very wide range of
momenta. This interaction is due to the time-varying
magnetic fields of the precessing spins which induce
large displacement currents in the high-conductivity
gas. The currents in turn set up magnetic fields which
act back on the spin system. Because the dielectric

' Edward A. Stern and Earl Callen, Phys. Rev. 131,512 (1963).
"W. S, Ament and G. T. Rado, Phys. Rev. 97, 1558 (1955).
' C. Kittel, Phys. Rev. 110, 840 (1958)."P. Pincus, Phys. Rev. 118, 658 (1960).' B. A. Auld, J. Appl. Phys. 31, 1642 (1960)."R.F. Soohoo, Phys. Rev. 120, 1978 (1960).
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field H applied to the metal. An electron on the Fermi
surface whose velocity component is ~v along the
direction of H and q then experiences an oscillatory
electromagnetic held of Doppler-shifted frequency

=G)W'vg .
If co' coincides with the cyclotron frequency co, of the
electron, energy wi11 be absorbed from the helicon. Thus
the semiclassical theory predicts absorption for fre-
quencies everywhere within the cone
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function employed by Stern and Callen contains an
imaginary part, however, coupled modes with an
appreciable electromagnetic component are predicted
to be strongly absorbed everywhere within the semi-
classical cone of Eq. (1.2).

In a quantum-mechanical treatment of the dielectric
function tensor the viewpoint and conclusions are
somewhat difierent. Quinn and Rodriguez" and
Zyryanov and Kalashnikov" have derived the trans-
verse circularly polarized component of the conduc-
tivity tensor of the free-electron gas which is appropriate
to this case. Because of the external magnetic field (or
the magnetization), the single-electron states break
into quantized Landau levels. The absorption processes
which can occur are strongly determined by Pauli
exclusion restrictions, since an electron absorbing a
helicon of energy Acr must initially occupy a state
within the Fermi sea, and must transfer to an empty
state outside. The magnetic field is taken in the s
direction, and we consider helicons propagating along
s with momentum hq. In the absorption process,
conservation of energy and momentum require that
the final- and initial-electron states differ in frequency
by co, and in s component of wave number by q. The
matrix elements of the perturbative electromagnetic
field between the Hermite polynomials of the electronic
wave functions give rise to the additional selection
rule hrz= &1 (the positive sign for left circular
polarization), where the index e labels the Landau
levels. These conservation and selection rules, and
most particularly Pauli exclusion, cause the quantum-
mechanical dielectric tensor to have a complex struc-
ture. The effect of this structure on helicon attenuation
was considered by Quinn" and by Miller. " Similar
structure effects have been investigated in connection
with magnetoacoustic absorption; Gurevich, Skobov,
and Firsov" showed how Ae =0 transitions cause "giant
quantum oscillations" in the attenuation of longi-
tudinal sound waves. In the case of transverse waves,
where the Am=~1 transitions apply, there are giant
oscillations in sound attenuation, as described by
Langenberg, Quinn, and Rodriguez" and by Gantsevich
and Gurevich. '4 These latter arise from the same
filamentary fine structure along the Kjeldaas edge
in the component e& (or,q) which causes the oscillations
in helicon attenuation '0 "

Section II of the present paper contains a detailed

' J. J. Quinn and S. Rodriguez, Phys. Rev. 128, 2487 (1962)."P. S. Zyryanov and V. P. Kalashnikov, Zh. Eksperim. i Teor.
Fiz. 41, 1119 (1961) )English transl. : Soviet Phys. —JETP 14,
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analytic and graphical description of e& (M,q). We
shall show that in addition to the filamentary structure
already discussed~" 23'4 there are large "windows, "
regions in which e& (or,q)=0, within the cone of Eq.
(1.2). These windows exist far beyond the Kjeldaas
edge, and extend over a frequency range which is 104

times wider than the filamentary fine structure near
the edge. We limit our attention to transverse waves,
hence to De=~1 transitions, and to the transverse
components of the dielectric tensor. We are neglecting
electron spin in this description. However, it is easily
shown that with a spherical Fermi surface and an
electronic g factor of 2 the absorption due to spin-Qip
processes will give rise to an identical window structure
and will not alter any of our conclusions. More generally
it can give rise to additional spin-Qip filaments with
similar qualitative features.

Windows in e& (or,q) can be observed experimentally
if well-defined propagating modes exist with dispersion
curves or(q) passing through the window region. We
shall describe such propagating modes in two systems.
In Sec. III we consider a pure nonmagnetic metal such
as sodium, in a large magnetic field. In Sec. IV we con-
sider coupled helicon-magnon Inodes in a ferromagnetic
metal such as nickel. In both cases, of course, Maxwell's
equations lead to the dispersion relation

or = C q /lze r (1 3)

with p(or, q) and e(or,q) to be taken from appropriate
model calculations. In the nonmagnetic metal we
ignore the small permeability of the free-electron gas,
set iz(or, q)=1, and employ the quantized complex,
nonlocal dielectric function. In the ferromagnetic metal
the distinction between ra(or, q) and e(or, q) is not so clear
cut, but to a good approximation we can ignore cross
terms, calculating the permeability of the spin system
from the Landau-Lifshitz equation, and the dielectric
constant of the gas from the free-electron model.

In both cases we find interesting solutions to the
dispersion relation (1.3). The existence of these solu-
tions can be inferred most easily from the structure of
es (or,q) and the Kramers-Kronig relation which relates
ez (or,q) and ei (or,q). A logarithmic singularity occurs
in ei (or,q) at each discontinuity in e, (&u,q), and these
logarithmic spikes in ei (or,q) enforce solutions of
Maxwell's equations which lie between filaments in
es (or,q). These solutions will be illustrated for non-
magnetic metals in Sec. III. Their presence modifies our
picture of giant quantum oscillations in helicon attenua-
tion. ~ "The analysis indicates that observation of these
oscillations will be impossible unless both ~ and q are
experimentally fixed. With the highly coherent photon
source available from a laser, it may be possible to
study effects of this structure on photon scattering
(Raman effect). However near the Kjeldaas edge the
filaments are so narrow that detection will be difIicult.

In the ferromagnetic metal the large permeability
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has a decisive eGect. Within very large windows at
wave numbers up to q~106 cm ', we find a propagating
mode, whose frequency ultimately coincides with that
of the uncoupled spin wave. This mode is the continua-
tion, within the semiclassical absorption cone, of the
lower branch of the spectrum discussed by Stern and
fallen. "But while those authors considered the mode
to terminate at the Kjeldaas edge, the present quantum-
mechanical calculation predicts propagation far beyond
the edge, where there is a good possibility of experi-
mental detection.

II. DIELECTRIC CONSTANT

The complex dielectric function tensor of a quantum
plasma in a uniform magnetic field has been calculated
by Zyryanov and Kalashnikov'o and by Quinn and
Rodriguez" from the equation of motion of the density
matrix in the presence of a small electromagnetic
perturbation. Ke restrict ourselves to the special case
of propagation along the magnetic field direction.
Letting

(2.1)

be the components of the complex dielectric function
tensor for circularly polarized propagation, one finds"
(in terms of symbols defined below)

[1—p(2n+1) J"+u —u —s "
XP ln

=o [1—P(2n+1)goo u, +u—+s
[1 p(2n+1) Jt' —u.+u —s "+'

X((2.2)
[1—P(2n+1) j"'+u,—ups

(m(o,)'
[(no+1) (no+2)

(47rlV/V)k'q a&'

—(ni+1) (ni+2) j. (2.3)

In (2.3), no and ni are the largest integers less than
certain values:

and p is a dimensionless ratio:

(os'= 4orSe'/m V,
(o.=eB/mc,

kg ——mv p/k,

p=sr, /k @vs.

(2.5)

u=oo/qvp ~

u, =co./(qv p),
s= q/(2k p) .

(2.6)

The summation index e, an integer labeling the Landau
levels, runs from zero to mg, where ep is the largest
integer such that

& I-'(1/P —1) I
~ (2.7)

For our assumed value of p, the quantum number of
the highest Landau level within the Fermi sphere is
eg 104.

Although Eqs. (2.2) and (2.3) are complete, addi-
tional insight into the structure of the dielectric
constant can be gained through simple considerations.
To discover propagation we must first find regions in
which oo (~,q) vanishes or is very small. These regions
will occur for those cv's and q's for which single-particle
excitations cannot occur. An electron on the eth
Landau level with initial s component of momentum
Ak; has energy

A'k,'
E„= + (n+-,')Aoo, .

2m
(2 8)

In absorption of helicon energy Ace and momentum hq,
the electron will be excited to the (n+1)st level, and
its s component of momentum will be increased by Aq.
Then by energy conservation

Here E/V is the number of electrons per unit volume.
For definitude we assume representative values co~
=1.8)&10" sec ' co =3.5X10"sec ' corresponding to
8=2X10 4G, vv = 10o cm/sec, kg ——8.6X 10' cm '. Thus
P=4.1X10; the ratio of the zero point cyclotron
energy to the Fermi energy is a very small parameter.
In Eqs. (2.2)—(2.4) it has been convenient to employ
the dimensionless quantities

1—s' —u.o (1—cv/a), )'
no= Int —1

240c-

1—s' —u o(1—co/oo, )'—1—
2P

~
k;(e) [ & [kp' —(e+-')k ']'I' (2.10)ny= Int

where we have defined a convenient "cyclotron wave
number"

k,=—(2nuo, /k) '~o. (2.11)
The components o (oo,q) given in (2.2) and (2.3) are
appropriate for metals in which electrons move in
electronlike orbits; for metals with holelike trajectories
the conjugate matrix elements describe the electron-
electromagnetic wave coupling. In these expressions ~„
is the plasma frequency, co, is the cyclotron frequency,
vp is the Fermi velocity, k& is the Fermi wave number,

In addition the Pauli principle restricts the allowed
values of q to those which result in final states outside
the Fermi sea for each k;. Since q is non-negative,
Eq. (2.9) shows that transitions initiating in the right
Fermi hemisphere (k;)0) are associated with frequen-

+W )(k'q+ q).

(2 4) However k; must lie within the Fermi surface so that
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while

(k
Aq yi (0):~

~

kg 10 k p, small n (2.19)
4(kgb

q M./~p=Pk p 10 'kp.

Now consider transitions between low-lying levels,
but with the electron emergent into the right half of
momentum space, k,+q)0. Because of Pauli exclusion
the final wave number must exceed [k~'—(n+~3)k,'j"'.
Small momentum-transfer transitions initiating from
positive k; near this final wave number produce the
upper Kjeldaas edge ~=~,+v&kz. But it is also possible
for the electron to move from negative k; all the way
through the Fermi sphere and emerge near the right
edge of the (n+1)st cylinder. Transitions from the
left edge of the eth cylinder to this final state absorb
almost 2k+ wave number, but zero frequency, while
transitions from just beneath the left edge of the
(n+1)st level to its extreme right edge absorb ~,.
These absorption bands coming from low-lying levels,
with the electron traversing almost the entire Fermi
diameter 2k J ——10' cm ' are shown on the right side
of Fig. 1.The width of the gaps between the absorption
regions can be calculated.

For co=0 we find

pk. '
Aq„,„ i+(0)~~ —k~-10 4k~, small n(2. 20)

while q 2k~. Though the gaps in this region are much
smaller than q, they are as wide as the entire region
below the Kjeldaas absorption edge up to q=&v,/~r.

Doppler-shifted absorption edge. ' For the case when
k, =akF and q((kp in Eq. (2.9),

(2.18)

Transitions with electrons excited to states in the left
half of the momentum space (k;&0~k;+q&0) are
governed by (2.15) and (2.16). Expanding to first order
in (k,/kg)' we find the range of allowed q's for absorp-
tion to be 0&q«o, /its~104 cm '. These transitions
cause the filamentary structure adjacent to the lower
Kjeldaas edge (0&ra&co,) and which underly the giant
quantum oscillations in helicon absorption~ " and
attenuation of transverse sound waves. "'4 The lower
edge of the eth absorption filament comes from transi-
tions initiating from the left intersection of the mth
Landau cylinder with the Fermi surface. Upper and
lower edges of successive filaments meet at q=0,
representing vertical transitions to the left intersection
of the (n+1)th cylinder. At nonzero q the slits between
filaments increase in width and become broader than
the absorbing regions. However, for small quantum
numbers, the filaments are densely packed. This fine
structure at q&cv, /n& is shown schematically in the
lower left portion of Fig. 1. It is easily shown that the
separation between filaments for co =0 is

At frequencies greater than co, there are overlapping
absorptions to which more than one level contributes.
Here e2 (a&,q) is proportionately greater.

~
k, (n,) ~

&k./v2.

Absorptions due to transitions initiating on sz=mp
fill the central parabola of Fig. 2. It can be seen that the
minimum frequency absorbed by such transitions,
co=-',cv„occurs at q=k, /v2. Other than this ra, ising
and shift of the highest-absorption band with a
consequent central window width exceeding k„ there
are only quantitative differences between the two
limiting situations. But in both situations the widest
windows, near q= k,~10' cm ', are 10 times wider than
the filamentary slits near q=cv. /w& ——10' cm '.

Equation (2.24) shows the variation of magnetic
field between the limiting situations to be

AH=2eH'/chk '=4&&10 'H' G (2.21)

at metallic densities. In a field of 10' 6 an inhomogeneity
of only 20 G will cause different regions to experience
the dielectric constant corresponding to the two
limiting situations. There will then be some absorption
at all frequencies, making detection of the windows
more dificult.

B. Upper Levels: (n+2)k,2~kg'

Absorption due to transitions from Landau levels
near the maximum level intersecting the Fermi surface
is sensitive to the value of the magnetic field, displaying
the variations characteristic of the 1/H oscillations of
all electronic properties as Landau levels move through
the Fermi surface. These oscillations will be appreciated
by consideration of two limits. First suppose the
uppermost Landau level to coincide with the Fermi
energy, so that there are no Pauli exclusion restrictions
on transitions to this final state, and the filled initial
states, which lie on the level m=mp —1, have wave
numbers in the range

~
k, (nF —1)

~

&k,.Transitions from
the left edge of the np —1 level to the point of tangency
of the e~ level with the Fermi sphere absorb zero
frequency and wave number q=k,~10' cm '. Vertical
transitions at k, =0 absorb cv„and transitions from
other initial states on the eg —1 level fill the central
parabolic absorption region. Transitions from (nF —2)
to (np —1) a,re divided by Pauli exclusion into two
regions. As with absorptions from inner levels, filaments
on the left meet at q=0, near where they are densely
packed just as for small m. However for q tt;, and co=0
the window widths between filaments is of the order of
k, which is comparable with q and much larger than the
slits between small e filaments.

At the other limiting value of H, when the Fermi
surface lies midway between two levels, the uppermost
occupied level e=m~ has all momentum states filled
for wave numbers
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6l+(co,q) = 1—M~ /c0(ol+olq) . (3 1)

Ignoring unity in (3.1) and substituting ~l (co,q) into
the general condition for propagation given by Max-
well's equations,

III. NONMAGNETIC METALS

We now study how the quantum structure of c2 (or,q)
modihes the propagation of electromagnetic waves
through the metal. In this section we consider non-
magnetic metals, where u(co, q) = 1.

At wave numbers far below the Kjeldaas edge,
q«ca, /zp the quantum structure of el (co,q) is not
strongly felt. The semiclassical and quantum theories
both give

Neglecting terms of order P' and z', Eq. (2.3) for e2

can be reduced to

3~i~,i' ~. -~—+~l(~)—~~(~) (1—+) (3 6)
4 i ol i q'vP G&c

with x= (c0—co,)/qvp) and

cll(co) =-', ——(1—x'—z'+2zx) mod1,
28

b2(o&) = z+—(1—x' —z2—2zx) mod1.'
2'= 'q'/L ( ,q) ( ,q)l, (3.2)

we obtain the dispersion relation for left-hand circu-
larly polarized propagation

In form (3.6) the quantum-mechanical e2 has a more
apparent relationship to the semiclassical form

~ = L~'( .—~)/~. '3q'. (3.3)

Equation (3.3) has a low-frequency solution, the well-
known helicon mode, with approximate quadratic
dispersion law

Ql&
2

(1—x') e2&0
COg'V g

=0, otherwise.

(3.7)

ra (c'(u,/co„')q'; q&(&o,/l p, co&(co, . (3.4)

3p~„i' (1
el

———1+—
i

—
~ (

—L1—(u' —z)'g' ln
4kol i 48z

1—u'+z

1+u'—z

1—I —Z—$1—(u'+z)'j' ln + 3l20z —12u"z—4z'
1+u'+z

At metallic densities and typical laboratory fields the
frequency of this mode is much less than co, even up to
the absorption edge, Eq. (2.18). As given by Eq. (3.4)
the dispersion curve intersects the edge very close to
q =(d~/vg with M~c cog/(M~ sy ) .

However, the actual dispersion relation departs
considerably from Eq. (3.4) near and beyond the
absorption edge. This departure is the result of two
physical eRects: The local dielectric constant of Eq.
(3.1) is only appropriate in the small (co,q) region; and
within the absorption cone quantum structure in e2

enforces extreme oscillations in ei.
The semiclassical nonlocal dielectric function' is

readily obtained by replacing sums by integrals in
Eqs. (2.2) and (1.29) with the result

However, Eq. (2.3) is both more accurate and more
convenient for machine calculation.

In the semiclassical approximation e~" (~,q) is non-
zero everywhere within the cone. ' Although there is no
propagation in absorptive regions, it is nonetheless
interesting to substitute (3.5) into (3.2) for comparison
with both the local result (3.3) and with the quantum-
mechanical solution soon to be studied. The conclusions
of the nonlocal semiclassical analysis are depicted in

Fig. 3. cu(q) follows the quadratic dependence of the
local theory up to about q=0.85cu,/v~. At higher wave
numbers ~ rises rapidly, joining onto a solution falling
from c0, at wave numbers slightly below co,/vz. There
is another such solution, also parallel to but in6ni-
tesimally beyond the absorption edge. It departs from
the edge only at very small frequencies. (cd 10 4ol.),
extends to q 2.9X10' cm ', and then doubles back
onto a high-frequency mode descending from co,. At
greater wave numbers there is no semiclassical solution.

The manifold distortions of the dispersion curve due
to quantum structure are best understood by considera-
tion of the Kramers-Kronig relation

(3.5a)
1 1—u'+z

+u, -L1—(u' —z)'j ln +rizL1 —(u +z)'3
2 1+u —z

1 " &2+(s&')

el+(a)) = 1+—P ko', (3.8)

where

Xln
1—I —Z

1+u'+z
—2u' ——i,3) '

u'=—u.((c0/o.)—1j.

with the P indicating a principal value integral. At a
discontinuous rise in e2 (co) as a function of frequency,
e& (cd) has a positive logarithmic singularity, and at a

(3.5b) discontinuous decrease in e2 (co) there is a negative
logarithmic spike in el (cd). Thus the absorption 61a-
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~c
VF

Fxo. 3. Filamentary fine structure in e2 (co,g) and electro-
magnetic modes within the slits in ~2 . Solutions of Maxwell's
equations transfer from the upper edge of one absorption filament
to the lower edge of the next, the transfer coming in the region of
the semiclassical extension of the helicon mode. The semiclassical
solution, shown as a dashed line, is not a single-valued function
of q. It exists only for q below some limiting value (q~2.9X104
cm ' for the field and Fermi energy of Sec. II).

ments "repel" the mode and cause solutions of the
dispersion relation (3.2) to lie between the edges of
61aments rather than crossing them. Consider the
region q(ce./us. Here es (o~) is zero at frequencies
below the absorption edge and is Gnite within each
filament shown in Fig. 1. The behavior of e2 (a&) is
illustrated in the upper portion of Fig. 4. Some general
features of es (co) not obvious in the Fig. 4, are that the
width of the filaments increases with increasing co, but
the window widths are independent of co and increase
with q as q' up to o),.

At small q, and below the absorption edge, ei (sr),
as given by Eq. (3.1), varies as

Now, at this same q, consider the behavior of ei (oi)

at much higher frequencies within the Doppler-shifted
cone. The lower right side of Fig. 4 illustrates this
behavior which is characteristic of regions in which the
semiclassical ei (a&,q) lies far above csqs/cos. As co in-

creases toward the low-frequency edge of an absorption
filament there is the logarithmic rise in ei (o~). Within
each filament as co approaches the high-frequency edge
ei (ie) falls to negative infinity, and beyond the edge

ci (o&) rises again. Away from the discontinuities in

e2 (io,q) and over much of the frequency range one
finds that ei (~e,q) is a smooth and relatively slowly

varying function which does not di6er by very much
from the semiclassical dielectric constant. Therefore,
for fixed q, the only solutions to Eq. (3.10) come very
close to the low-frequency edges of the nonabsorbing

windows.
Next consider a wave number somewhat beyond

ce,/vz. The nature of the solutions of Maxwell's equa-
tions divers in two regions of frequency, above and
below a transition frequency which is in the neighbor-

hood of the semiclassical helicon extension as indicated
in Fig. 3. In the high-frequency region the situation

q /v

6) —GO~ COC;GO . (3.9)

The dispersion relation is satisded for that value of
~ for which

el ((e) g2q2/oi2 (3.10)

The right-hand side of Eq. (3.10) and ei (te) are plotted
in the lower portion of Fig. 4. The low frequency cross-
ing of the two curves is the ordinary helicon solution.
For co and q well below the absorption edge, the quantum
and semiclassical solutions coincide. But as the mode
approaches the edge, whereas the semiclassical solution.
rose toward co, along the edge, as shown by the dashed.
line in Fig. 3, the quantum-mechanical solution falls to
zero frequency at q= re,/V&.

FIG. 4. Top: The imaginary part of the dielectric constant as a
function of frequency for q 0.9co,/22. In this case the 6rst absorp-
tion onset comes at co/co, 0.1 and the succeeding onsets are
spaced by ~co/co 0.9P. Bottom: The corresponding real part of
the dielectric constant for the same frequencies and c2q2/~2.

Intersections of the two curves indicate a collective mode. co~ is
the helicon frequency, and in the case shown co&/I'co 10 ~.
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is as in Fig. 4 with a mode near the lower edge of each
window. At frequencies below the helicon extension the
average value of ei (co,q) is less than csqs/ops and it is
the singular positive spike in ei (su, q) which enforces
solutions of Eq. (3.2) very close to the lower edges of
absorption bands. The width of the transition region,
where the modes change from the low to the high side
of a transmission window, increases with wave number
and moves to higher frequencies as g approaches

10ro,/n p.
Beyond that region the modes all lie near the high-

frequency edges of the windows. At q=10' cm ',
he= 1 transitions between only about ten of the highest
6lled Landau levels contribute to the dielectric constant.
Absorption bands, caused by transitions in which the
electron both initiates and emerges in the left half of
momentum space, are broader here. There is also a
continuous broad region of nonzero es (ro,q) extending
well below co, due to the top filled level. In Fig. 5 we
show es (ro,q) as a function of ro/to, at q = 1.1 && 10' cm '.
For co&0.7'„ the imaginary part of the dielectric
constant is large and decreases slowly until additional
levels can contribute to the absorption near ao, . Figure 5
also shows ei (co,q) as a heavy solid line and c'qs/res as a
dashed line. Crossing of these two lines in a region of
vanishing es (a&,q) indicates the solution of the dis-
persion relation (3.9) which here occurs on the lower
edges of absorption bands.

Lifetime effects due to electron-electron interactions,
electron-phonon interactions, or impurity scattering
could smooth the absorption structure we have de-
scribed and broaden or completely damp out the
collective modes. We have not carried out a detailed
analysis of these collision eGects; however, the obser-
vation of oscillations in magnetoacoustic absorption
leads one to expect that structure in electromagnetic
absorption such as we have described should also persist
and be observable.

Recently Quinn's and Miller" independently pro-
posed that there should be giant oscillations in the
attenuation of the helicon mode near the absorption
edge. In terms of the present analysis, the propagating
modes beyond the Kjeldaas edge have been found to
transfer from one to the other side of their transmission
region in the neighborhood of the semiclassical helicon
extension. Thus we are in accord with Quinn's and
Miller's conclusions provided we understand the
quantum extension of the helicon to consist of a window

mode in its region of transfer between edges. The
helicon then experiences giant oscillations in attenua-
tion as one follows the semiclassical dispersion curve
through successive filaments and windows. The present
detailed analysis also shows however, that it will be
very dificult to observe this structure. The usual
surface impedance measurements are unsuited to this
purpose. In a typical study of the helicon mode near
the absorption edge, microwave radiation of fixed

)oio

)o'-

)0-

)07
Ol 0.4

1
~

ll

0.7

FIG. 5. The dielectric constant as a function of frequency for
q=1.1X10' cm '. At this value of q only about ten of the highest
611ed Landau levels contribute to e& (co,q). The frequency regions
where these contribute are shaded in the 6gure. The real part of
e (ou, q), indicated by solid lines in the figure, exhibits logarithmic
singularities at discontinuities in eq (co,q). Propagating solutions
to Maxwell's equations occur at frequencies for which ~2 (a,q)
is zero and e& (cu, q) crosses the dashed line representing c'q'/v'.
For wave numbers in the range 2.9&104&g &k, 7.gX10' cm ',
these modes all occur near the upper edges of the transmission
windows.

Z(cc) = Bio) (specular), (3.11)
p q' —(o~s/c') e(qp))

"A. B.Pippard, Rept. Progr. Phys. 23, 176 (1960).

frequency is incident on the sample and the magnetic
field is varied until there is a sudden change in the
surface impedance. In terms of Fig. 3 notice that the
effect of changing the field is equivalent to changing
the scale since co. is proportional to H. Thus increasing
the field is equivalent to moving to a relatively lower
applied frequency eo on Fig. 3. There will be no helicon
mode at a given frequency unless the field is increased
to a point where the helicon emerges from the absorp-
tion edge. At this point one can expect the surface
impedance to change markedly. For weaker fields (or
higher frequencies), however, the surface impedance
depends on the distribution of absorption strength
over a wide range of wave numbers. The relation
between surface impedance Z(&c) and volume energy
absorption depends on the boundary conditions at the
metallic surface. Pippard" reviews the relationship in
two limiting cases. For specular reRection at the surface,
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while for a diffuse surface condition,

Z(~) =-

lnL1 —(id'/q'c') e(q,or)]dq

(diffuse) . (3.12)

In general one would expect Z(or) to depend on an
integral of the form

I(~)= f(q,~)dq

where f(q,or) is a function of q' —(cos/cs)e(q, or). A plot
of f(q,or) appropriate to the real part of Eq. (3.11)
(surface resistance) is shown in Fig. 6 for three typical
frequencies: (i) where the helicon is a definite in-
dependent mode and the 6rst few windows near the
Kjeldaas edge; (ii) near the helicon absorption edge;
and (iii) a frequency above the absorption edge. When
the helicon exists it almost completely dominates the
surface impedance. Closer to the absorption edge more
energy goes into the single particle excitations and edge
modes, but the helicon can be expected to continue to
dominate the surface impedance up to the point where
its group velocity vanishes. Beyond the cuto6, energy
goes into many close-lying modes and no single mode
dominates the absorption. As the 6eld is now varied the
absorption pattern changes continuously. Even if one
propagation mode moves across the window there will
be no marked variation in the surface impedance"since
any one of these modes contains little of the total
available "oscillator strength. "

How then can one observe this structure? In magneto-
acoustic absorption the situation divers from that in
the pure helicon case since the phonons are charac-
terized by their own dispersion. For each au, the phonons
have a definite q, and the energy exchange between
the phonon and electron systems can be said to occur at
particular points on the m, q plane. As either ~ or the
magnetic 6eld is varied the absorptions follow a
trajectory which crosses filaments and exhibits the full
variation in attenuation rather than an average
attenuation. In order to observe oscillations in helicon
absorption, it will also be necessary to fix externally any
two of the three variables ~, q, B and by varying the
remaining variable sweep either vertically or hori-
zontally through Fig. 3. Experiments which can fix
two variables in this way are possible. One potentially
useful method appears to be Raman scattering with
lasers providing the high intensity, very coherent beams
necessary to resolve such detailed effects. The angle
between the initial and detected signal determines the
momentum transfer q to the modes being excited in the
material. The energy transfer can be determined as the
beat frequency between the incident and scattered
beams. Near the Kjeldaas edge the windows and fila-
ment are very narrow and there remains the difficult
problem of resolving extremely small angles (on the
order of microradians at about 10 mrad). Further into
the absorption cone, however, the 61aments and
windows become considerably wider so that resolution
should not be as difficult.

%e now turn to consideration of ferromagnetic
metals and the possibility of propagation when the
permeability can vary over a wide range.

(a)

I I I I I I

(b)

I I I I I I I I I

IV. HELICON PROPAGATION IN
FERROMAGNETS

dM Q

=~(MXH)+ MX vsM.
dt 31,

(4.1)

In a ferromagnet the dispersion relation (1.3) can be
strongly altered by the permeability g(or, q). As in
Ref. 12, we find p(or, q) from the Landau-Lifshitz
equation, "

(c) Here M is the total magnetization, including its
precessing part Me and its saturation component M, .
The magnetic field H also consists of a precessing term
H& and a dc term H

I I I I I I I I I I I I

Hm= Hs+Hdemsg+Hanis ~ (4.2)

FIG. 6. Schematic plot of the integrand P of Eq. (3.8) for
three typical frequencies: (a) where the helicon is a definite
independent mode; (b) a higher frequency, closer to the helicon
absorption edge; and (c) a frequency above the absorption edge.
Below the cutoff the helicon almost completely dominates the
surface impedance. The lowest peaks indicated in each of these
figures are the absorption filaments which are much narrower
than the windows in the cutoff frequency region near the Kjeldaas
edge.

or„=q H„+o.q'. (43)

"L. Landau and E. Lifshitz, Physik Z. Sowjetunion 8, 153
(f935).

8 is the effective 6eld acting on the system, corrected
for demagnetization and magnetic anisotropy. The
coefficient q =ge/2mc and n is the exchange stiffness
in the spin-wave dispersion relation
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Solution of (4.1) leads to the conventional permeability is the frequency of the uncoupled helicon and

tt (co,q) = 1+[4sryM, /(oo —oo)j. (4.4)

This permeability is real because we have ignored loss
terms in the Landau-Lifshitz equation. Inclusion of
such terms, and hence of a tts-(to, q) in (4.4), would alter
both the real and imaginary parts of the product p,e.
With the permeability of Eq. (4.4) we shall again find
that in regions in which es (co,q) =0 there are propa-
gating solutions of Maxwell's equations, but now they
are coupled helicon-magnon modes and are physically
quite different and more complicated than the modes
discussed in the previous section.

In the numerical calculation of the dielectric function
by Eqs. (2.2) and (2.3) we chose oo.=3.5X10" sec '
implying a magnetic induction 8=2)&10" G. To con-
form to this value we can consider the application of an
appropriate external field in

&=&o+4sr~' (45)

Thus for nickel, in which 4m3f=6000 Oe, we take
H=14000 Oe. We shall take an anisotropy fi.eld of
H,„;,—1000 Oe, and an exchange stiffness +=0.1 cm'
sec '. These values are somewhat arbitrary. The
anisotropy field is not operative in the Lorentz field
8 of Eq. (4.5), which is the field acting on a moving
charge, but it is included in the field H of Eq. (4.2),
which is the field acting on a spin. Because of anisotropy
the zero frequency and zero wave number permeability
is not infinite even in zero external field. In the case of
nickel tto(0,0)=7. Consider the permeability of Eq.
(4.4) as a function of co/eo, . At zero frequency, it is
finite and positive, rising to ~ as ~ —+ or, reversing to
—oo at co +, and rising to unity as oo —+ +~.

The behavior of tt (to,q) has important effects on the
solution of Eq. (3.2):

tt (to V) e(to 0) =oV/to'. (4.6)

First of all, since the right-hand side of Eq. (4.6) is
positive, solutions exist only if ei (to,q) and tt (to,q) have
the same sign. Secondly, the large permeability near
or has an effect similar to that of the large ei near
absorption edges, as illustrated in Figs. 3—5. That is, as
a coupled mode approaches co it "sticks," running
parallel to and eventually merging into a pure magnon
branch at large q.

Stern and Callen" employed Eqs. (4.4) and (3.1)
in Maxwell's equations to arrive at the solutions

too=—to,/[1+ (1/E)'j

2m',
CO =

~ COIh GO

1+%'

2sryM, '
s (tos+ to )+ —Co tos (4.7)

1+K'

07=Goo~ Gom ~ E))1~ (4.11)

In the long-wavelength limit the spin-wave mode is
shifted up by 4zp3f, and the curvature of the electro-
magnetic mode reduced by tt(O, q). The shift in the spin-
wave spectrum at q=0 is not due to demagnetization
effects in the infinite medium considered here, nor even
due to high-conductivity helicon effects, but only to
displacement currents. '7 "(It should be noted that this
solution is for an infinite medium. For finite samples
the demagnetization field H&. „ofEq. (4.2) can shift
the spin-wave mode greatly, moving it all the way back
down to zero frequency for normal incidence on an
infinite plane, for example. ) However, the dispersion
relation (4.7) at nonzero wave number is peculiarly a
high-conductivity effect. The predicted electromagnetic
mode at small g of Eq. (4.10) has now been confirmed in
quantitative detail in nickel. 2'

Because Stern and fallen" employ the semiclassical
dielectric function of Eq. (3.1), their spectrum (4.7)
is applicable in the long-wavelength range of Eq. (4.10),
but is incorrect inside the Doppler-shifted absorption
cone, where they predict absorption of coupled modes.
We wish now to consider the modifications of this
spectrum caused by the nonlocal semiclassical and
quantum-mechanical dielectric functions.

First let us recall the behavior of the nonlocal
semiclassical solution of Maxwell's equations in a
nonmagnetic metal. As shown in Fig. 3 the solution is a
complicated function of q, extending to a q 2.9X10 '
cm ', where to/to, 0.5, and returning to to, at g=O.
For purposes of comparison this curve is repeated in
Fig. 7 on a logarithmic scale. The effect of the permea-
bility at low frequencies is to depress the dispersion
curve by the factor ttt, as in Eq. (4.10). As co increases
with increasing q, the permeability becomes larger and
the deviation from the nonmagnetic solution becomes
greater. This behavior is illustrated as the coupled-
magnetic mode in Fig. 7. Now the curve is single valued
because ttt(to, q) is negative for to)co, while ei (oo,q)
remains positive in that region. At large q the magnetic
solution asymptotically approaches the bare magnon,
shown as a dashed line in Fig. 7. The frequency of this
undressed mode is given by Eq. (4.3). Because of the
large permeability the coupled mode thus extends out

ss C. Kittel, Qstorttttm Theory of Solids (John Wiley 8t Sons, Inc. ,
New York, 1963), p. 47."P. Pincns, J. Appl. Phys. 33, 553 (1963).

'9 C. (.".Grimes, Bull. Am. Phys. Soc. 10, 471 (1965).

is the reduced wave number, in terms of the Pippard
wave number, or skin depth. At the long- and short-
wavelength limits, the two solutions of Eq. (4.7)
reduce to

co =ts(0,q)to„, tos/tt (O,q), E«1 (4.10)
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FIG. 8. Kindow region of the co-q plane. The solid line shows the
dispersion curve of the coupled helicon-magnon mode in a ferro-
magnetic metal. For q near k, the dashed line shows the semi-
classical dispersion curve which asymptotically approaches that
of an uncoupled spin wave. For q&1.8k, the spin-wave frequency
is smaller than cu, and the mode passes through large nonabsorbing
windows. For larger q the solutions follow the window edges
until for q 10 cm the spin wave reemerges from the electronic
absorption cone.
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to large q, ultimately reverting to a pure spin wave
[the co„ limit of Eq. (4.11)].

Now let us consider the eGect of magnetic coupling
on the quantized medium. For q(k. the results are
qualitatively similar to the nonmagnetic case and imply
propagating modes such as those indicated in Fig. 3.
Now, however, the large permeability shifts the fre-
quencies to lower values. Again modes shift from the
upper edge of one absorption filament to the lower edge
of the next, and just as in the nonmagnetic case, the
transfer occurs near the semiclassical dispersion curve
of Fig. 7.

For q& k„ the coupled magnon-helicon mode traverses
the large windows in es (co,q). The behavior is illustrated
in Fig. 8. Modes run up a window edge, across near
or, and down the next edge. Within the windows are
some regions of negative er (ce,q), and here the mode
actually shifts slightly through co to a negative
permeability region. At q&1.8k„ the spin-wave fre-
quency co rises above ~„and hence p, &0 within all
further windows. However er (~,q) is positive hereafter
only along window edges, so for q&2k, there are only
edge modes, until the pure uncoupled spin wave
emerges from the absorption region at very high
frequency and at q&2k+~10' cm '.

As in the nonferromagnetic case, there are lifetime

FIG. 7. Semiclassical dispersion curve of a ferromagnetic metal.
At large wave numbers, cv(q') asymptotically approaches the bare
spin-wave frequency, shown as a dashed line. For comparison the
semiclassical dispersion curve of a nonmagnetic metal is also
shown.

e6'ects which will damp the modes. Now a 7 must also
be introduced to describe magnetic damping, which was
neglected through use of Eq. (4.4) and the omission of
loss terms in the I.andau-Lifshitz equations. However,
if electronic eBects are the dominant loss mechanism
it should be possible to observe the coupled helicon-
magnon mode in the large window regions with q k, .

Nickel is a suitable material in which to observe
helicon-magnon interaction both because it can be
purified sufFiciently and because it is uncompensated.
Saturation of the magnetoresistance, and Hall-voltage
measurements indicate that nickel behaves as if it
had one free electron per atom. '0 On the other hand,
iron may be compensated. Spector and Casselman"
have given the local theory of the interaction of Alfven
waves and spin waves appropriate to a compensated
ferromagnet below the Kjeldaas edge when the co,r;
condition is satisfied by both electrons and holes. The
quantum theory of the dielectric tensor within the
absorption cone of a compensated metal and of Alfven-
magnon coupling have not been given.
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