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It is a simple matter to show from Eq. (5.3) that for
binary systems this simplification indeed obtains. For
the more general case of ternary systems, the solution of
Eqs. (5.3) is more complicated.

In conclusion, we might add a few words about the
general direction along which the results of the present
paper should be extended. Firstly, the formal solution
for the correlation parameters given in Eqs. (3.15)-
(3.18) should be explicitly evaluated to a higher order
in the expansion parameter (T,/T) than presently car-
ried out. Secondly, the system interactions responsi-
ble for the order-disorder phenomena are not fully

represented by the given form of the H(config). The
system Hamiltonian needs to be extended to include
the static strain energies, as well as the dynamical
lattice effects such as phonons. In the same spirit the
inclusion of higher-body potentials than the two-body
ones used presently is also indicated.
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We present a model calculation of lattice dynamics for alkali metals. The lattice potential consists of the
electrostatic energy and the screened electron-ion interaction. The screened potential is formed by linearly
screening a Heine-Abarenkov —type ion potential, and the Hartree dielectric function is modified to include
approximately exchange and correlation eGects. The model parameters are determined according to the
experimental elastic constants. Expressions for elastic constants are derived by taking the long-wave
limit of the secular equation. From our results in lattice dynamics, we find that the shear waves are domi-
nated by the electrostatic potential, but for the longitudinal waves the contributions from both potentials
are comparable and opposite in size. The agreement between the calculated and the observed dispersion
curves is good for Na and K where neutron-scattering data are available. We have also calculated the
effective ion-ion potential for the alkali metals. All of these potentials exhibit a minimum near the equi-
librium position and some long-range oscillations caused by electron-ion interaction.

I. INTRODUCTION

INCH the inelastic neutron scattering technique was

applied for direct measurement of dispersion curves,
it becomes apparent that the Born —von Karman rigid-
ion model is inadequate in treating lattice dynamics.
This is especially so for metals where the problem comes
from the conduction electrons. The electron-ion inter-
action is a many-body interaction characterized by the
long-range screening of ions by electrons. This long-
range force shows up for alkali metals. In a Born—von
Karman analysis of the observed dispersion curves,
force constants up to the fifth neighbors for Na ' and
K' have to be included.

Clearly a proper lattice-dynamic calculation for
metals must take into account the eRective electron-ion
interaction. Toya' first attempted such a calculation for
monovalent metals by extending the Hartree-Fock
calculation for the electron-phonon interactions. For

* Work supported by the U. S. Atomic Energy Commission.
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Stewart, and R. Bowers, Phys. Rev. 128, 1112 (1962).
2 R. A. Cowley, A. D. B. Woods, and G. Dolling, Phys. Rev.

150, 487 (1966).
3T. Toya, J. Res. Inst. Catalysis, Hokkaido Univ. 6, 161

(1958); 6, 183 (1958).

simple metals the electron-ion interaction can be treated
by the method of pseudopotentials, an eRective electron-
ion potential first derived by Phillips and Kleinman4 in
an orthogonalized-plane-wave (OPW) expansion for
the conduction electrons. The pseudopotential model
has been applied quite successfully in calculating atomic
and electronic properties. ~ There are many lattice-
dynamic calculations for alkali metals, notably that of
Harrison, ' Sham, ' and Vosko et al. ' Their good results
establish the validity of using the pseudopotentials for
alkali metals. The pseudopotential can be obtained
from a priori calculation or from measured metal prop-
erties such as the atomic energy levels' and the liquid
metal resistivities. In this paper, we study the lattice

J. C. Phillips and L. Kleinman, Phys. Rev. 128, 1437 (1962).' W. A. Harrison, PsettdopotentItals tn the Theory of Metals
(W. A. Benjamin, Inc. , New York, 1966).
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Animalu and V. Heine, ibid. 12, 1249 (1965).

7 L. J. Sham, Proc. Roy. Soc. (London) A283, 33 (1965).' S. H. Vosko, R. Taylor, and G. H. Keech, Can. J. Phys. 43,
1187 (1965).

'N. W. Ashcroft and D. C. Langreth, Phys. Rev. 156, 685
(1967); 159, 500 (1967); see also N. W. Ashcroft, Cornell Uni-
versity Materials Science Center Report No. 555, 1966 (un-
published).
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dynamics of alkali metals by using the pseudopotential
method in a phenomenological approach. This work
differs from the others in that the model potential is
determined according to the experimental elastic con-
stants. Our model potential contains three parameters,
two in the bare-ion potential and one in the screening
dielectric function.

The idea of determining lattice models by elastic
constants is well known. Usually the elastic constants
are used to compute force constants between neighbor
atoms. However, this greatly limits the usefulness of
this approach because there are only a few independent
elastic constants, e.g. , three for cubic crystals. Conse-
quently, it is impossible to account for long-range
interactions. Krebs' has calculated the dispersion
curves for alkali metals based on a model which includes
the central force for the nearest and second-nearest
neighbors and the electron screening of the long-range
Coulomb interaction between point ions. The two force
constants and the strength of the screening are deter-
mined from elastic constants. However, some recent
calculations' " reveal that the interaction of the elec-
trons with the core potential is important in determining
elastic constants and dispersion curves. The present
model has included the electron and core interaction
and since a certain form for the crystal potential is
utilized, the force constants of any atom can be ex-
pressed in terms of the model parameters. Actually, if
the speci6c form of the lattice potential is known, the
calculation could be most conveniently carried out in
k space. There is no need of deriving force constants.

We will describe the lattice model and the method of
evaluating the parameters in Secs. II and III. The
model parameters are used to compute dispersion curves
for alkali metals. To complement the dispersion curves
we have also calculated the effective ion-ion potential.
Finally, we will discuss the problem of using model
potentials determined from elastic constants to calcu-
late metal properties.

II. LATTICE POTENTIAL

In lattice dynamics we are interested in the change
of lattice energy due to displacement of the ion from
its equilibrium position. Generally the total potential is
separated into the electrostatic energy, the ion-core ex-
change energy, and the screened electron-ion potential,
the so-called band-structure energy. The electrostatic
energy can be treated by an extended Ewald's method. "
The core exchange term is often taken to be a Born-
Mayer —type potential. Such a potential, with param-
eters determined from alkali halide data, has been
applied in lattice-dynamic calculations. ~ ~ However,
this potential is expected to be much smaller for metals

"K.Krebs, Phys. Rev. 138, 143 (196&)."P. S. Ho, Cornell University Materials Science Center Report
No. 696, 1967 (unpublished)."K.Fnchs, Proc. Roy. Soc. (London) A157, 444 (1936).

due to the different core conlguration" and will be
neglected here. '

Our main concern is the effective electron-ion inter-
action, for which we use the model pseudopotential.
The idea of pseudopotential was 6rst formulated by
Phillips and Kleinman. 4 They show that in an OPW ex-
pansion for the conduction electrons, the Hamiltonian
of the lattice is rearranged so that an effective potential
can be defined for the ion. Owing to the orthogonality
condition, this potential is small within the core and
can be treated by perturbation method. In order to
introduce our model potential, we will describe briefly
the calculation of the band-structure energy Eb,.

If the total ion potential W(r) is written as a super-
position of the individual ion potentials to(r), i.e.,

W(r) =P Vv (r r~), —

the electron-phonon matrix element can be written
simply as

(0+q ~
W(r) ( q) = W,

=~(q) Us(q), (2)

where S(q) is the structure factor of the crystal and
Us(q) is the Fourier transform of Ub(r), the pseudo-
potential for an individual ion. For Us(r) we adopt the
model-potential form proposed by Heine and Abarenkov
(HA)'.

Us(r) =—Vo, for r( Esr
Ze'/r—, for r)Esr (3)

where R~ is a measure for the eGective core radius and
Vo is the core potential. Generally Vo is a function of the
electron energy and can be computed from the atomic
energy levels. Here we take Vo simply as a constant;
this implies that our potential is a local pseudopotential.
For alkali metals the core and valence states are well
separated, a local pseudopotential may not be a serious
restriction. Accordingly, we have

4m Vo singR~
+ (Ze' —VsR~) cosqRst, (4)

Qq' q

where Q is the volume of the unit cell.
The problem of electron screening was 6rst treated

by Bardeen'5 by a perturbation method. To obtain the
screening contribution to Eb„we have to calculate the
screening potential only to the first order. In this case
each ion potential can be screened independently. For a

"S.H. Vosko, Phys. Letters 13, 97 (1964).' We have completed a similar model calculation by taking the
exchange term also into account. The exchange term was taken to
be of the form A exp( —r/p). A, V(), and R~ were the model
parameters. Since the alkali halide value of p was used, it resulted
in a considerable underestimate of the screened potential. The
results were reported in Cornell University Materials Science
Center Report No. 700, 1967 (unpublished).

'~ J. Bardeen, Phys. Rev. 52, 688 (1937). See also D. Pines
Eletttetttary Exoitatiortsim Solids (W. A. Benjamin, Inc., New York,
1963).
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s(q) =1+&(q)/q' (6)

local pseudopotential approximation the First-order ma-
trix element of the screening potential can be shown
to be

W, =W,L1/. (q) —1]. (5)

For a noninteracting electron gas s(q) is the Hartree
dielectric function

on U, (q) between 0 and 2k&, the effect may be small.
However, we will see later that for atomic properties
such as sound velocity and dispersion curves it becomes
signi6cant.

In some recent calculations, "q was computed from
the compressibility of electron gas. Here we consider g
as an adjustable parameter to be determined together
with Vo and E~ from the experimental elastic constants.

3sZe'( 4k p' —q' 2ks+q )
~(q) =-

I 1+
QEp k 4kpq 2k' —q I

where
Qk' 1—s k)

Uss(k)U'(k) =
2ses s(k)

and the sum in Eb, covers all occupied electron states k.
One problem here is to calculate s(q) —1 for electrons

at metallic densities; the Hartree dielectric function
which neglects exchange and correlation will not be
accurate enough. The diKculty arises from the electron-
electron interactions. Various modi6ed forms" have
been suggested for the dielectric function; essentially,
one writes

X(q)
e(q) =1+

q'L1 —k(q)&(q)]
where

](q)=1/2(q'+rlks') .
p is a function of density only. Then

s(q) —1 &(q)/q'

e(q) 1+X(q) (1—&q')/q'

(9)

(10)

One sees that the eGect of electron interaction is ap-
proximately included in the factor 1—$qs. For large q,
1—gqs

rsand X(q))0, so Ws' increases and Wee de-
creases. This is expected from the short-range exchange
of electrons with parallel spins. For small q, 1—)q~i,
the electron interaction has little eBect on screening.
Overall the electron interaction makes Eb, slightly more
negative. For electronic properties which depend mainly

' D. J. W. Gelhart and S. H. Vosko, Can. J. Phys. 44, 2137
(1966);J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958).

Ep is the Fermi energy and k p is the Fermi wave vector.
Subtracting 8',' from lV, we have the effective screened
potential

W,e=S(q) U, (q)
=S(q) U (q)/ (q), (7)

where U, (q) is called the form factor of the screened
potential. Eb, is the energy diRerence from the ion-ion
interaction and the electron-electron interaction arising
from the screening field of the ions. It can be shown'
that

Eb, ———,
' p S*(k)S(k)U'(k),

4mZ'e'
(12)

where ~~ is the ion plasma frequency and X indicates
the diGerent phonon modes. For small k there are two
transverse modes with frequency proportional to k and
one longitudinal mode whose frequency can be written
as

~„ts=4e s—(Srs+Sss)ks

where Sj. and S2 are the sound velocities for the trans-
verse waves; this expression follows from the sum rule.
Clearly, the electrostatic energy alone fails to give a
proper acoustic behavior for the longitudinal wave.
This difhculty can be resolved by taking the screened
potential into account.

To derive the electrostatic part of the elastic con-
stants, let us consider the shear waves along the $110]
direction. For a bcc lattice the long-wave limits of these
waves give

C4P =0.7423Z'e'/a4
and

C'~=-', (CtP —CtP) =0.099/Z'e'/a4,

(13)

where a is the lattice parameter. Equation (13) is of
course identical to the results of Fuchs. " Along the
$100] direction, the longitudinal wave is directly re-
lated to C~~ and the degenerate shear waves are related

'r C. B. Clark, Phys. Rev. 109, 1133 (1958); R. A. Coldwell-
Horsfall and A. A, Mardudin, J. Math. Phys. 1, 395 (1960).

III. LONG-WAVE LIMITS IN THE
SECULAR EQUATION

In order to determine the lattice potential, we wish
to express the elastic constants in terms of the model
parameters. This can be done by taking the long-wave
limit of the secular equation"

det~D p(k) Ma) s—b p) =0, (11)

where we consider only one atom of mass M per unit
cell and co& is the phonon frequency along direction k.
The dynamic matrix D p(k) can be obtained by ex-
panding the lattice potential to the second order of the
ion displacement from the equilibrium position. I.et us
first consider the contribution from the electrostatic
energy. Detailed calculations of dispersion curves for a
Coulomb lattice have been reported in the literature. "
An important result is the Kohn sum rule.
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to C44. Applying the sum rule, we And that when k —+ 0

(toP)'=(o '—0.7423(Z'e'/aM)k'. (14)

Because of the presence of co„2, we are not able to write
the expression for C» until it is cancelled by another
identical term in the screened potential.

The screened potential part of the dynamic matrix
can be expressed as

D,ee(k) = Q[U—'(k+G) (k+G) (k+G)e
0 6'

—U'(G)G Gs], (15)

where the sum includes all the reciprocal lattice vectors
G. It is interesting to examine first the G= 0 term in the
long-wave limit. For the [100]longitudinal wave

4mZ2e2k2 QE p~82 ~2
QM 6mZe'

2 VoRsr 1
+R 'I 1— — — (16)

3Ze' 2rjk F'

and there is no contribution to the shear waves. Com-
bining Eqs. (14) and (16), one sees that the [100]
longitudinal wave becomes an acoustic wave; this is
true for the other longitudinal waves as well. However,
a stable wave still requires the k' term in co~~ plus addi-
tional contribution from the G/0 terms to exceed the
corresponding term in co~~. This imposes certain limita-
tions on the model potentials. Ke note that the first
k' term in co& gives the Bohm-Staver frequency"

boa s= (2ZEp/3M)'"

which was first derived for an ionic "jellium" model
with a Hartree electron gas. One sees then that the
longitudinal sound velocity is the Bohm-Staver velocity
modified by contributions from the effective ion poten-
tial (the second k' term), the approximate exchange
and correlation contribution (the third k' term), and
all the G/0 terms in the electrostatic and screened
potentials.

The contributions of the screened potential to the
elastic constants from the nonzero G terms turn out
to be

1 U'I

U'(G)+
0 6 2

'(G) (5G,' G,4i U" (G) G,4-

+
5 G G') 2 G'

)Gs GsGsq G2Go
c«'= —2' U'(G)

I —,I+U" (G)
2Q a kG G' I G'

where

2G'

1 —
~G ' G 4+3G 'G '~ G.4—G 'G '-

C"=—g' U'(G)l — I+ U" (G)
2n &G 2G'

U'(G) =
d U'(k)

O'U'(k)
U" (G) =

dk' ~t.-

and the prime indicates that the G=O term is omitted. We like to point out that Eqs. (16) and (17) hold not only
for bcc metals; they could be used to calculate elastic constants for any cubic metal. Finally, after some manipula-
tion, we obtain the following expression for C» in a bcc lattice

Zses ao Ror' ( 2+oRor) 1.654
10.13 +50.27

I
1—

I

— ——1 485 +Crte
a' aZ'I' a' E 3Ze' ) gZ'~'

(18)

where ao is the Bohr radius. The successive terms in the
bracket come from the Bohm-Staver frequency, the
pseudopotential, the exchange and correlation effects of
the screening electrons, and the electrostatic energy.
For alkali metals, they are of comparable magnitude,
e.g., for Rb they are respectively, 0.957, 2.718, —0.814,
and —1.485 in units of e'/a4.

IV. DISPERSION CURVES

In the last section we have expressed the elastic con-
stants in terms of the model parameters. For alkali
metals we find that we can always choose a set of
parameters to yield elastic constants to within 3/o of
the observed values. In Table I we show the result of a

"D.Bohm and T. Staver, Phys. Rev. 84, 836 (1952).
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typical calculation for Rb. In Table II we present the
model parameters and some relevant data for alkali
metals; the HA model potentials are also included for
comparison. Our calculation is based on the data for

TaBLE I. Model calculation of elastic constants (in 10" dyn/
cm') for Rb at 78'K. The model parameters used are V0=0.402
Ry, 8~=1.74', g=2.02.

Flectrostatic Screened potential
energy G=O term G/0 terms Sum

Exp~
value

Cll
C44
CI

—3.458
1.729
0.232

6.642 —0.007 3.177
0 0.257 1.986
0 0.031 0.263

3.171
1.980
0.256

' We have taken off the co&2 terms in Eqs. {14)and {16)in order to calcu-
late the contributions to CII from the electrostatic energy and the G=0
term in the screened potential.

b Based on the 78'K data in Ref. 21.

TA&LE II. Model parameters and some relevant data for alkali
metals. (Units for the elastic constants are 10"dyn/cm'. )

vo (Ry)~

R~ (i.).

Cll
C44
C'
a (X)

0.845
(0.672)
1.18

(1..48)
1.58

(2.19)
14.8
10.8
1.16
3.482

Na

0.542
(0.610)
1.22

(1.80)
1.78

(2.23)
8.50
5.88
0.729
4.234

0.413
(0.480)
1.59

(2 22)
1.87

(2.29)
4.16
2.86
0,377
5.239

0.401
(0.448)
1.74

(2 33)
2.02

(2 32)
3.17
1.98
0.256
5.609

Cs

(0.410)

(2.54)

(2.35)

6.060

a The values of Vo and R~ in the brackets are the corresponding values
given in Ref. 6. Here we have taken the A 0 values which are the core pseudo-
potentials for s electrons.

b Values for g in the bracket are calculated from the compressibility of
the electron gas. See Ref. 9.

e The CII values given here are the isothermal values which have been
converted from the adiabatic constants. There is no conversion necessary
for C44 and C'.

oo IIO

I.i"Na" and Rb" at 78'K and for K"at 4.2'K. For
Cs there is no measurement available so we take the
HA model parameters. We have not attempted to
eliminate the lattice thermal eGects by taking the
linearly extrapolated data at 0 K as in the quasihar-
monic approximation; instead data available at the
lowest temperature are used here. One reason is the
presence of the phase transformations for Li and Na
below 78'K." Furthermore, this facilitates the com-
parison of our result with the experimental dispersion
curves for Na at 90'K and for K at 9'K. As for K, the
temperature dependence of the elastic constants is
linear to 4.2'K, our result would differ very little from
that obtained in the quasiharmonic approximation.

The dispersion curves are obtained by solving the
secular equation along various k directions. In Table
III we list part of the result for K. Usually there is a
convergence problem in calculating D ss(k) due to the
oscillation of Us(k) at large k, which is caused by the
discontinuity of the potential at Rsr (see Eq. (4)j.
Here we do not encounter much difhculty since the dis-
continuity in our potential is relatively small (check
the Vs values in Table II). Nevertheless, we have in-
cluded enough terms, all 458 reciprocal lattice vectors
within 6b (b= 2m/a), to ensure proper convergence for
the lattice sums. We have also studied the Kohn effect,
an anomaly on the dispersion curves arising from the
logarithmic singularity of e(k) at 2k&. The size of this
effect turns out to be very small for the alkali metals
and probably not observable.

In Figs. 1 and 2 we plot the dispersion curves along

Electrostatic
energy

Screened
potential Mexp

2 fL

TABLE III. Contributions to u& in [110) directions for K. (All
aP are expressed in terms of ar„' and the unit for k is 2~/a. )

V

(l012
cps)

0.1
0.2
0.3
0.4
0.5

0.1
0.2
0.3
0,4
0.5

0.1
0.2
0.3
0,4
0.5

0.01130
0.04108
0.07826
0.10865
0.12033

0.00153
0.00565
0.01098
0.01551
0.01728

Transverse wave Z3[kk0)

0.00166 0.01296
0.00579 0.04687
0.01043 0.08869
0.01374 0.12239
0.01500 0.13533

Transverse wave Z~[kk0)
—0.00002 0.00151—0.00021 0.00544—0.00072 0.01026—0.00141 0.01410—0.00173 0.01555

a Reference 2.

Longitudinal wave Z~[kk0)

0.98717 —0.95435 0.03282
0.95328 —0.82802 0.12526
0.91076 —0.66220 0.24865
0.87585 —0.52050 0.35535
0.86239 —0.46462 0.39777

0.03370
0.12239
0.23168
0.31164
0.35458

0.01035
0.05324
0.09313
0.12764
0.13850

0 .25 .50 .?5 I.O .?5 .50 .25

k ~ 0 .25 .50

FIG. 1. Comparison of the calculated and observed dispersion
curves for Na. k is plotted in units of b, v3b, and v2b along [100),
[111),and [110)directions, respectively.

' H. C. Nash and C. S. Smith, J. Phys. Chem. Solids 9, 113
(1959).' R. H. Martinson, Ph. D. thesis, Cornell University, 1966
(unpublished)."E.J. Gutman and J. Trivisonno, J. Phys. Chem. Solids 28,
805 (1967).

'2 W. R. Marquardt and J. Trivisonno, J. Phys. Chem. Solids
26, 273 (1965).

"For Li see H. Hovi, E. Mantysalo, and K. Tinsanan, Acta
Met. 14, 62 (1966); for Na see C. S. Barrett, Acta Cryst. 9, 671
(1956).
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2.0

modulus 8, there is reasonable agreement for these
calculations. We feel that a measurement of elastic
constants for Cs, especially at low temperatures, will be
very useful for a model calculation of its properties.

L5
r

(ip l2
cps)

I.p

0.5

the symmetry directions for Na and K, respectively,
and in Fig. 3 we show the curves for Li, Rb, and Cs.
The neutron scattering data for Na and K are also
included for comparison; the dispersion curves for the
other alkali metals have yet to be measured. We wish

to point out that the results shown here are good in
comparison with other calculations, 5' ' which we have
not shown here for keeping the clarity of the 6gures. It
is also interesting to compute the elastic constants for
Cs. We have used the model potential determined by
Ashcroft in addition to the HA potential. The results
are shown in Table IU. Similar to the other alkali
metals, the shear constants are found to be dominated
by the electrostatic energy. For C» and the bulk

I.ioo] t'ai tj I:iso)

5.0

2,5

0
I.5

(I0~2cps)

l.o

0 .25 .50 .75 l.0 .7j5 .50 .2 5 0 .25,75
k~

FzG. 2. Comparison of the calculated and observed dispersion
curves for K. k is plotted in units of b, VSb, and V2b along $100],
[111],and L110] directions, respectively.

g2$2

V(r)= +. Ur(k)e's'd'k
(2s-)'

&'e' 0 " X(k) Uss(k)
k sinkrdk . (19)

r 27r'r s k'+X(k)(1 —gk')

However, the elastic constants do not have to obey the
Cauchy relation due to the presence of the volume-
dependent term in the total potential. The calculated
&p(r) for alkali metals are shown in Fig. 4. We notice a
resemblance in these potentials; all of them show a
minimum between the 6rst- and the second-neighbor
positions. The magnitude of the minimum is approxi-
mately 0.03 eU and is smaller for heavier elements. The
results agree quite well with two recent calculations. 9 24

The similarity of the interionic potential is reQected in
the dispersion as seen from Figs. 1—3, a fact that was
observed in the neutron scattering experiments. "Gen-
erally the potentials display long-range oscillations, but
except that of Li, these oscillations diminish rapidly
after the sixth-neighbor position. This is consistent

TAnnz IV. Calculated elastic constants (in 10~ dyn/cms) for Cs.

V. EFFECTIVE ION-ION POTENTIALS

Using the model potentials, we can calculate the
effective ion-ion potential y(r) in the real space. This
potential is useful for visualizing the ionic interactions
in the metal and has been applied for computing liquid
metal properties. ' To calculate y(r) one rearranges Eb,
into two terms, one of which comes from the indirect
ion-ion interaction via the electrons, and the other
depends only on the volume of the crystal and will not
contribute directly to the interionic potential. y (r) then
becomes a two-body, central-force potential which con-
sists of the indirect plus the electrostatic interactions,
l.e.,

0.5 HA model+ AL modelb
Other'

calculation

0

I.O—

0.5

Cll
C44
C'
'J3

l'o (Ry)
Rsr (I)

2.81
1.51
0.183
2.56
0.410
2.54
2.35

2.58
1.91
0.188
2.33
0
1.55
2.35

2.45
1.59
0.185
2.20

.25 .50 .75 l.o .75 .50,25 0 .25 .50
k

FIG. 3. The calculated dispersion curves for Li, Rb, and Cs.
Units for k are b, %b, and v2b along L100], L111], and $110]
directions, respectively.

a The model parameters are taken from Ref. 6.
b The model parameters are taken from Ref. 9.
6 The elastic constants in this column are given by H. B. Huntington,

The Elastic Constants of Crystals (Academic Press Inc. , New York, 1958),
p. 76. C44 and C' actually come from M. Bailyn's calculation, the bulk
modulus is Bridgman's experimental value, and C11 is obtained from Band
C'.

"W. M. Shyu and G. D. Gaspari, Phys. Rev. 163, 667 (1967).
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with the range of the electron-ion interaction observed
in Na and K dispersion curves. The oscillations are
caused by the singularity of the form factor at 2k&,
thus related to the Kohn anomaly. Our results obtained
here indicate that the Kohn effect will be small for
alkali metals, a point which we have reached previously.

g(r)
(IO 3Ry)

P(r)
(IO& Ry)

4

K

9 I I I3
r(A) m

VI. DISCUSSION

Li Na Rb Cs -8-

We have presented a calculation of lattice dynamics
and interionic potentials for alkali metals. In this
calculation the main interest is in the screened electron-
ion interaction, for which we use a linear screening of
the ion pseudopotential with a modified dielectric
function to account for the approximate exchange and
correlation effects. We have formulated the elastic
constants in terms of the model parameters which are
in turn determined according to the experimental data
at low temperatures. This proves to be a valid approach
for alkali metals as judging from our results in calculat-
ing the atomic properties. Since the elastic constants
measure only the derivatives of the lattice potential,
the form of the potential being determined must be
chosen first, and this limits our method to a phe-
nomenological approach. However, our choice of the
HA model potential and the parameters is not unique;
the formulation developed here couM very well be
applied to other lattice potentials.

In the lattice dynamics of alkali metals we see that
the eBect of the screened potential is mainly in the
longitudinal waves; for the shear waves the electrostatic
interaction dominates (see Table III). Since the con-
tribution from the electrostatic energy can be calculated
exactly, it is not difhcult to obtain reasonably good
agreement for the shear waves. This is also true for
elastic constants. This point is important to realize
when one attempts to deduce the screened potential
from the dispersion curves. In our calculation the dis-
crepancy occurs mainly in the longitudinal waves at
large k. In fact, the calculated frequency is generally
higher than the observed values; this indicates that the
screened potential has been underestimated. The prob-
lem appears to lie in determining the parameter g from
elastic constants. From Eq. (10) one sees that the func-
tion ~(k) —1 is not very sensitive to q for small k, so
the value of q determined from long-wave limits of
elastic constants may not be satisfactory. We found
that g has rather strong inhuence on the phonon fre-
quency at large k, as well as on the long-range oscilla-
tions of the ion-ion potential. To avoid this diKculty,

2
0

-2-

FIG. 4. The efFective ion-ion potentials for alkali metals. We
have designated the 6rst-neighbor position by a and the second-
neighbor position by a +.The inserted figure shows, as a typical
example, the long-range oscillations in the interionic potential
of K.

one may wish to calculate q from a longitudinal phonon
frequency measured at large k or even from Fermi sur-
face data. Also one shouM not overlook the question
about the validity of using the modified dielectric func-
tion to account for the electron-electron interactions in
the whole range of k.

There are other aspects that we wish to improve in the
present calculation. First is to include the anharmonic
effects, thus making the model suitable for calculating
temperature and pressure e6ects. Second is to replace
the valence charge Z, which we take as unity, by an
effective charge Z, gg to account for the effect of the
"orthogonal hole" in the OPW expansion. For alkali
metals Z,«exceeds unity by a few percent'; this will
increase both the electrostatic energy and the screened
potential (negatively). The effect is expected to be
mainly on the electronic properties. The last is to calcu-
late other metallic properties, particularly the electronic
properties, to complement the atomic properties here.
This will enable us to evaluate better the present model
calculation.
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