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A Green’s-function formulation of the statistical mechanics of ternary systems, with arbitrary composition
and pairwise interatomic potentials of arbitrary range, is given. Exact formal expressions for the relevant
correlation parameters are derived. The linear approximation is worked out in detail, and expressions for
the correlation parameters are derived in a form analogous to the results of self-consistent-mean-field
theories. The usefulness of this representation lies in its qualitative validity even in the vicinity of the
transition points. The transition temperatures are estimated through the condition of macroscopic increase
in the range of the appropriate correlation parameters at the onset of spatial ordering. The relevance of
the given expressions for inferring the ground-state orderings, i.e., the actual configurations that might
obtain when the ordering sets in, is indicated. In the limit that the atomic composition of one of the com-
ponents of the ternary system approaches zero, our results smoothly reduce to the corresponding self-
consistent, linear-approximation results for binary systems derived by Clapp and Moss.

I. INTRODUCTION

HE central problem in the study of ternary alloys
is the derivation of the statistical correlation
functions. These are related to the conditional prob-
abilities of the occurrence of an atom of type 4, B, or C,
in arbitrary spatial location when a particular type of
atom is known to be present on a particular lattice
position. The familiar notions of short- and long-range
order parameters are special features of this general
problem.

The experimental analysis of scattered diffuse x-ray
or neutron intensities, produced by the statistical cor-
relations existing in the disordered ternary alloys, can
be related to the inverse-lattice Fourier transforms of a
total of three linearly independent correlation parame-
ters: a4B(ij), aB(ig), and a4¢(i7).! In this paper, a
statistical formulation designed for the computation
of these correlation parameters, as functions of the
system temperature and the interatomic potentials, is
presented. In view of the remarkable success of the
Clapp-Moss? calculation for the corresponding cor-
relation parameter for a disordered binary alloy—there
is only one such parameter for a binary system—in the
present paper we shall, for convenience, restrict our-
selves to those simple considerations which suffice to
yield the correlation parameters for ternary systems
to the same degree of rigor and accuracy as that of the
results of Refs. 2-4 for binaries. Further improvements
and generalizations of these considerations, in regard
both to the accuracy of the mathematical approxima-
tions involved and of the features of the physical model
being considered, remain future projects.

Section II deals with the description, and an appro-

* Supported in part by the U. S. Atomic Energy Commission.

t A preliminary account of this work was presented at the
New York American Physical Society meeting: Bull. Am. Phys.
Soc. 12, 1040 (1967).
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Phys. 22, 1493 (1951); L. Muldawer, Technical Report No. 2,
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2P. C. Clapp and S. C. Moss, Phys. Rev. 142, 418 (1966).
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priate spin representation, of the rather simplified
model to be considered in the present paper. Section III
contains the essentials of the mathematical solution of
the problem. While this solution is exact, it is highly
formal. In order to do calculations with this solution,
a series expansion scheme has to be evolved. Section IV
deals with the first-order evaluation of the correlation
functions. This consists in retaining only those terms
exactly which lead to the dominant temperature de-
pendence. However, the nature of the solution is such
that it retains a subset of terms in all higher orders of
temperature. This feature is similar to that possessed
by self-consistent mean field theory solutions and
therefore leads to an approximate, but meaningful,
solution even in the neighborhood of the phase transi-
tion. In this manner, expressions for the transition tem-
peratures are derived.

The results are discussed and conclusions are pre-
sented in Sec. V.

II. FORMULATION

Consider a disordered ternary alloy with a total of N
atoms of which N4, N, and N ¢ are of types 4, B, and C,
respectively. Assume that these atoms are distributed
on a regular, isotropic, and rigid lattice consisting of N
sites. Further, postulate that the system—which has
only its configurational degrees of freedom—can be
described by a configurational interaction which is the
sum only of two-body (i.e., pairwise) interactions, i.e.,

H(config) = A4+ [BE+ HCC| [JAB| FTAC} JBC

(2.1a)
where
HM=135 VM (if)olra, (2.1b)
i
oY = 33 V¥@ij)ledep+oio], (2.10)
=) 2,5

VY(ig)= V" ij)= Vi) =V>(5i), (2.1d)
V*(i5)=V™(i3)=0; \py=A4,B,C, (2.1¢)
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and where the occupation operators o;* are defined as
follows.

or*=-1, if the th lattice position is occupied by an
atom of variety A

=0, otherwise. (2.1f)

To study the statistical mechanics of the system, it is
convenient to introduce a pseudospin representation
which will transform the set of Egs. (2.1) into a gener-
alized Ising model.5 As any particular lattice site is
allowed to be occupied by only one of the three atomic
species 4, B, and C, the appropriate representation is
within the subspace of spin 1 (in Dirac’s units, where
#=1). The appropriate choice for the occupation opera-
tors are, therefore,

er=3(Se)+5s], (2.22)
eN=1—(57)2, (2.2b)
oM =3[(S2)2—Ss], (2.2¢)

where the set (\,\',\"") is the same as the set (4,B,C).
For the sake of definiteness, in Eqs. (2.2) above, we
shall henceforth make the choice that A=4, \’= B, and
N’=C. (Note that any of the other five choices would
do equally well as long as we stick to it once it is made).

The configurational interaction, H(config), can now
readily be written in terms of the .S? operators. How-
ever, rather than displaying H(config) in this new
representation, it is in order first to give some thought
to the actual procedure whereby the statistical me-
chanics of the system should be computed. In common
with the study of macroscopic systems with given
amounts of various constituents, the grand canonical
averaging procedure is the most convenient to use
here. To this end, we need to introduce an appropriate
set of chemical potentials. The choice of the size of these
chemical potentials would then enable us to preserve the
requirement of statistical consistency at any given
temperature 7" such that the average number of 4, B,
and C atoms is identical to the actual composition of
our system.

In view of the assumption that the alloy does not
contain vacancies, etc., which is implicit in Egs. (2.1)
and (2.2), the total number V of the atoms is equal to
the sum of the 4, B, and C atoms, i.e.,

N=N44-NB4-N°, (2.3
Therefore, the amounts of only two of the three com-
ponents of the alloy can be considered to be independent
thermodynamic variables and as such we need a total

of only two chemical potentials, say, u and p.

5 Note that the term ‘‘generalized Ising model” for the set of
Egs. (2.5) is probably not in common use in the literature. How-
ever, it is our feeling that due to the dependence of the interaction
only on the z components of spins, the resultant statistical
mechanics of the system has similarities with that of the usual
Ising model well known in the study of binary systems.
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The appropriate transformation of the configuration
interaction can now be made and the operation of
statistical averaging defined; the thermodynamic
average of a set of operators Q is

0 _ Trlexp(—£50)2]

; (2.4)
Trlexp(—p3c)]

where

3=—3 2 [L1(/)S &S +12(i5)(S#)%(S5)?

%)

LGS S ]-n T Si—p T (S92, (2.59)

L) =2[2VAC(ij)— VeClif)— V44(ij)], (2.5b)
Io(ig) = VAB(if)+ VEC(if)— VEE(ij)
—ilVA4GE)+Veeli+2v4ei)], (2.50)
Is(e) = VAB(if)— VEE(ij)
+3[Vee(f)—v44@ii], (2.5)
Is(it)=15(j7)=0; 6=1,2,3. (2.5¢)

The chemical potentials u and p are computed from the
relations:

(VY= N, (2.6)
In terms of the spin operators, Egs. (2.6) reduce to
(S&H=m=mA—mC, (2.72)
((SHY=M=m4A4mC, (2.7b)

where
mr*=N*/N. (2.7¢)

III. FORMAL SOLUTION

The formalism of thermodynamic Green’s functions
is particularly convenient for the present calculation.
This method is in common use® and is amply described
in the literature. For the present purposes it suffices to
note that if a double-time, retarded Green’s function
is defined as

— 00— )@ Ob o)+ 50D as(D))= ao®); ba(t)))
- / (@03 b))y expl—iE(— 1) WE, (3.1)

where @ (x) is the unit step function which is zero for
<0 and is +1 for x>0, and where a,(¢) is an operator

referring to spatial location g and time ¢ such that
ay(t)=exp(i¥Ct)ay(0) exp(—i3Ct). (3.2)

The correlation function (a,(£)b,(£)) is simply related
to the imaginary part of the energy Fourier transform

6 See, for example, the references cited in R. A. Tahir-Kheli
and D. ter Haar, Phys. Rev. 127, 88 (1962).
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of the Green’s function through the relation

(aﬂ(t)bll(t))

+ doy Im[{{ag; b)) (wtie) ]

o= =2 . (3.3)

tme=t0 ), [i4exp(—fa)]
(lime — +0)

For the spin 1 system under consideration it is

sufficient to study the properties of two families of
Green’s functions”:

<<[ - ']So+(t); Sa_(t’)»
UL 0S#DSH@D; S

The notation [ ---] refers to any set of S operators
not pertaining to the lattice position g.

The relevant Eqgs. of motion of these Green’s func-
tions are readily found to be:

and

1
E(L--- 180 Sa_»(E):'é—([' -+ 104—2(5,)"D)

HL - JED (@S5S @

UL JED @S ASe5 SN @, (34)

1
EQL---152Sq%; Sa_>>(E)='2;<[‘ < J24S#— (S
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Equations (3.4) and (3.5) form a coupled, infinite set.
It turns out that one can write down exact, formal
solutions for these. To see how this might be done, sub-
stitute in Eq. (3.5)

[' : Jz[E(S)(g)]n, n=0,1,2,-- -, (39)

and notice that the resultant set of equations forms a
geometric set with the solution

<(Squa+§ S N@w=—

1 /248 (S,)?
———————> (3.10)
2\ E—E®(g)

and therefore,
<<|: ' ']ngSa+; Sa_>>(E)
LS T
2w E—E®(g)

(3.11)

We remind ourselves that the operator [---] is
arbitrary except for the restriction that it is not allowed
to contain any spin operators referring to lattice
position g.

Having found the above solutions, we now turn to
the set of Eqgs. (3.4). Here we combine the first and
the last terms on the right-hand side and write

E St S, *1 4—2(5,%)2
(155 g>><m—;<[---][ (5,9

+(C--- 1E®()S2Sqh; SeNa@, (3.5) i[Z—*—ng— (S)*JE®(g) ]>
where T E—E(g)
ED()=u—p+3 /Z [21:(gf)—1s(gf) 1S5 [ JEO@S 5 S (3.12)
+3 2 [s(gf)— 212 /)1(S59)*, (3.6) The set of Eqgs. (3.12) is, therefore, also a geometric
d one and the substitutions
7(2) = 2 z)2

EOQ= 2+ S IHDSAENST, 6) CLEOQT, n0igee (13)

E®(g)=EW(9)4+E(g). (3.8) readily lead to the formal solution

1 4—2SEP+H{[24S7— (S ) JED(g)/[E— E®
O R sl Pl s (3.14)

It might be mentioned here that in the above dis-
cussion the Ising-like structure of our system has been
implicitly invoked. Specifically, the absence of the spin
flip terms in 3C has dictated the ignoring of any con-
sideration of averages of the form ([ ---]S,tS,~) when
g#p. In view of the fact that the set of operators
[---7] have always been assumed to be composed of
Sz, rather than of S¥, operators, such averages can be
shown to be identically vanishing.?

7 Note that the Green’s function ({[---](S¢%)2S,"; Sg7)) is re-
dundant here.

8 This can be self-consistently verified by starting with Green’s

functions of the form (([---]S,%;Sp7)) and (([---1S,554%;557))
instead of those used in the text.

E—EW(g)

Equations (3.11) and (3.14) have next to be
transformed into appropriate correlation functions.
Using Eq. (3.3), this can be readily accomplished and
we get

€ LS+ (5D

. ={([---JeR)[2+S:*—(S,)%]), (3.15)
A-2M)—2Q@)2—SHZL--- D
=([®Qd)—2(1)—1]S,[---D, (3.16)
where
[®(n) T =exp[—BE™(g9)]+1, n=13. (3.17)
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For future convenience we shall use the notation

E®(g)=E®(g)~pt»,
E®(g=E®(g)—p—p. (3.18)

IV. LINEAR APPROXIMATION

As already noted, the solution contained in Egs.
(3.15)—(3.17) is rather formal. It turns out, however,
that starting from these equations a convergent series
expansion for the correlation parameters, in powers of
what essentially amounts to the ratio of the appropriate
ordering temperature to that of the system temperature,
can be readily generated. In the present section we shall
initially be concerned with the salient features of the
mechanics of the generation of such a power series
expansion. We shall find that while both the procedure,
as well as the resulting algebra, is straightforward, the
details of the computation become rapidly cumbersome
as higher powers in this series expansion are calculated.
This feature, of course, is common to all the power ex-
pansion schemes used in the study of the interacting
many-body problem, whether they be perturbation ex-
pansions, virial expansions, or temperature expansions.
The attractive aspect of the present formulation lies
principally in its versatility, which enables one quite
naturally to calculate the correlation parameters for
arbitrary composition as well as arbitrary range of the
interparticle interaction in a straightforward manner.

Let us first look at the functions ®(1) and ®(3)
given in Egs. (3.17) and (3.18). The appropriate high-
temperature power expansions are

(1)= X(0)-+BX(DED(g)

+% XWBEOQT, @1)
8@)= YO+6Y(VE®()

+3 YWBEO(QT, (+2)

where X (#) and Y (%) are functions only of X(0) and
Y(0) and where

[X(0)]'=1+-exp[—B(u—p)], (4.3)

[Y(0)]'=1+4exp[—Bu—n)], (44)
X()=x0O)[1—-Xx(0)],

Y)=Y0)[1—-Y(0)], etc. (4.5

Note that in the above we have carefully avoided
making any statement about the magnitude of Bu and
Bp and have not expanded the exponentials containing
these factors. This ensures the validity of the resultant
expansions for arbitrary compositions which, of course,
include those situations when these factors, rather than
being small compared to unity,—as they would be for
stoichiometric compositions—are of the same order of
magnitude as unity.
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The next step is to insert the expansions, Egs.
(4.1)-(4.5), into Egs. (3.15) and (3.16). Let us first
choose the operator [ - - - ] to be simply unity. This leads
to a set of expressions for the averages m and M as
functions of X(0), ¥(0) and of two, three, and higher
particle correlation parameters. Now, in view of the
fact that all correlation parameters are bounded in
magnitude between 0 and 1, i.e.,

0< [{(S9)™(Se)™, -+ ,(S9)™) <1,  (4.6)

where 1, 2, ---, ¢ are arbitrary spatial locations and
where 71, ns, -+, n; are arbitrary positive integers or
zero. The terms involving the correlation parameters
are smaller than those involving just X(0) and ¥(0) by
at least a factor of order (Z./T), where T, is of the
order of magnitude of a transition temperature. There-
fore, we get

X0)=2[1-M/[2—m—MT+o(T./T), (4.7
V() =[m+MY[24m—M+o(T/T).  (4.8)

Having derived the zeroth approximation to X(0)
and ¥(0), we proceed to the derivation of an equivalent
approximation for the correlation functions {(S,25,%),
((S¢2)2(Sp)?%), and (S,%(Sp*)?). This can be done by
respectively inserting in the expanded versions of
Egs. (3.15) and (3.16) the following choices for the
operator [---

L-od=S8 [ 1=(05)% p#g. (49)
We find that the left-hand side, as well as the right-
hand side, of these equations contain the correlation
functions under study. Once again, we ignore the terms
proportional to 8, knowing that they will always con-
tribute in the order (7',/T) lower than the terms re-

tained. This procedure rapidly leads to what turns out
to be the simple mean field theory result:

(S12Se2)=m2+ 61, [ M—m>]+0o(T./T),  (4.10a)
((S19)2(S2?)2) =M+ 81, [ M—M*]+0(To/T), (4.10b)
((S19)(S2%)2)=Mm—~+61,s[m— MmI+o(T./T). (4.10c)

The stage is now set for finding the next-order ap-
proximation. This consists in retaining the dominant
temperature-dependent terms exactly and ignoring
the consideration of all those terms which will contribute
in the order (7./T)" for n> 2. However, before this can
be done we need to know the following three particle
correlation functions correct to the zeroth order:

(S12522855%);  (S1252(S5%)?);  (S1#(S»*)%(S#)?);
((S19)2(S2)*(Ss9)2y.  (4.11)
The obvious procedure for their computation would

be as follows. In the expanded versions of Egs. (3.15)-
(3.16), successively introduce the following substitutions

for[---]:
[---J=S552; Si2(S2)?; (S19)(Se9)?%; 1, 2%g (4.12)
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and retain only the zeroth-order terms in the (7./T)
power expansion. The resultant equations are now
readily solved. It turns out that the zeroth-order result
for these correlation functions is identical to the cor-
responding mean field theory result,® i.e.,

(S1254255%)
=m34[01,5F 01,5+ 02,3 JLMm—m*]+561,201,3
X[2m3+m—3Mm ]+o(T./T),
(81252%(S5°)?)
— M- [b1,94 82,5 P — mM T+ 81,5 M2~ Mm?]
+81,201,3[ M — M2—2m?+2m2M ]

(4.132)

+o(Te/T), (4.13b)
(S17(S2%)*(S¥)*)
=mM>-[mM —mM*](51,5+ 81,5+ 62,3)+01,201,3
X[m—3mM—+2mM*]+o(Te/T), (4.13c)
((S19)*(S29)*(S%)?)
= M34[81,0F 61,5+ 02,8 ][ M>— M3+ 61,201,3
X[M—3M*+2M*]+o(T./T). (4.13d)

The calculation of the first-order terms can now be
carried out. After some straightforward but tedious
algebra we find

(552547
=m?+8p,d[ M — m*]+BI1(gp) [ M — m2]2+612(g?>m2
X [1—MP+BI5(gp)m(1—M)(M—m?)

+(1=8y,,)0[Te/TT?, (4.14a)
((S52)*S¢*)%
= M5, ,M[1—MJ+B[1— M Y[ 1:(gp)m*
+Ia(gp) M+ I5(gp)mM 1+-[1—64,5]
Xo(T./T)?, (4.14b)

<SPZ(Sﬂz) 2>= ((sz) 2502>
=mM—+8,,m[1—M+Bm[1—M]
XA{I1(gp) (M —m* ]+ I(gp) (M —M*]}
+3815(gp)[1— M J[m*+M*—2m*M ]
F[1—=6p,,10(Tc/T)2. (4.14¢)

The correlation parameters a4€yp), afCqy, and
4B, are now readily evaluated from Egs. (4.14).
However, before we present the results for these cor-
relation parameters, we pause briefly to consider the
salient features of their physical significance. Inasmuch
as these parameters will represent the normalized
statistical probability of finding a given type of atom
at a given lattice site when a certain type of atom is
known to be present at, say, the origin, the spatial
range of these correlation parameters must approach
the limit zero when the system temperature becomes
infinitely large. In this limit, the disordering effect of

9 An obvious extension of the results (4.10) and (4.13) is now
readily derived by induction. This states that the mean-field
decoupling limit of all correlation functions of the type given in
Eq. (4.6) is the correct zeroth-order term in a consistent high-
temperature power-series expansion.

THEORY OF DISORDERED TERNARY ALLOYS

521

the temperature far outweighs any ordering tendency
inherent in the system due to the interplay of the atomic
potentials Iy, I, and Is. Now, as the system tempera-
ture is reduced to finite values, the range of these cor-
relations is expected to increase. When the tempera-
ture approaches one of the transition temperatures, the
ordering sets in and the range of the appropriate cor-
relation parameter becomes macroscopically long. With
this view point, and in the same spirit as the recent
Padé approximant scheme,' the appropriate form of
the results is as follows.

a4B(K) = D(AB)[1—BU4B(K)(2mAmP+mC)
—BUAC(K)mC(2m4A—1)

—BUB(K)mC(2mB—1)T1, (4.15)

where
UA4B(K)=VAB(K)—3[VA4(K)+VEE(K)], (4.16a)
(og40,P)=m*mP[1—a*B(gp)], (4.16b)

a8(gp)=(1/N) % a4B(K) exp[iK - (g—p)]. (4.16¢)

The results for @4€ are obtained merely by exchang-
ing the superscripts B<«>C in Eq. (4.15) and those
for B¢ by exchanging the superscripts 4 <> C in
(4.15). The constants D(A\v) are to be determined
from the sum rules

(1/N) %a“(K)zl, (4.17)

and in the above equations the inverse lattice K sums
extend over the IV allowed wave vectors within the first
Brillouin zone.

The foregoing expressions for the correlation parame-
ters are exact only to the linear order in ratio (To/7).
However, much like the self-consistent field theory
results, they do retain a subset of terms in all orders in
(T./T). This feature makes the extrapolation of these
results to the region 7'~7T. qualitatively permissible,
although it is clear that in this region the detailed pre-
dictions of our linear theory results must be grossly in
error. It is therefore reasonable to treat the estimated
magnitude of the ordering temperatures 7'; only as
order-of-magnitude results. These estimates are readily
arrived at by locating the smallest values of 8 for which
the denominators of Egs. (4.15) approach zero, i.e.,

(kT )48 =K(AB U4B(K) (2mAmB~+mC)+ U4°(K)
limK = )
X (2mA—1)mC+UBC(K)(2mB—1)mC. (4.18)

As before, the corresponding expressions for (k7)4¢
and (kT .)BC are derived from Eq. (4.18) by exchanging
B> C and 4 < C, respectively.

The inverse lattice vectors K(\») are chosen such
that for given values of m* and m*, the ordering tem-

10 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961); A. Bienenstock
and J. Lewis, bd. 160, 393 (1967).
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perature (k7.) is a maximum. Indeed, in analogy
with the work of Tahir-Kheli, Callen, and Jarrett,'! the
wave vectors K(\v) can be expected to be related to the
actual ordering configurations of the system.!?

V. DISCUSSION

It is clear that strictly speaking the linear approxima-
tion of the preceding section would be expected to be
accurate only at infinitely elevated temperatures. It is,
however, a well-known feature of the self-consistent,
mean field theory solutions—of which Eq. (4.15) are an
example—that they are the more accurate, the larger
the density or longer the range of the effective inter-
particle interaction. Thus, for the most unfavorable
case of nearest neighbor interactions, the results of the
preceding section can be expected to be reasonable for
temperatures 7'~1.57; or greater.’® In practice, how-
ever, the range of interactions is likely to be rather
longer than the nearest-neighbor distances and there-
fore the present results should be useful even for tem-
peratures somewhat lower than 1.57..

In spite of the approximate nature of the linear-
approximation results given in Eq. (4.15), they possess
several important redeeming features. The most im-
portant of these is the extreme simplicity of their
functional dependence on the Fourier transforms of the
appropriate combinations of the interatomic potentials,
ie., A, U4B(K), U4¢(K), and UBC(K). First, it was
precisely the analogous feature of the Clapp-Moss?
solution for the corresponding correlation parameter
for binary systems which made the experimental
analysis of the diffuse x-ray scattering data so con-
venient.?* Secondly, the form of Eq. (4.15) is such
that it qualitatively approximates the gross features of
the correlation parameters even in the critical region
where the power series expansion is expected to converge
exceedingly slowly. It is this feature which enabled us
to infer the order-of-magnitude of the appropriate
transition temperatures.

The possiblity of the occurrence of a maximum of
three transition temperatures has the following sig-
nificance: The components A and » can exhibit a
mutual ordering below a temperature of the order of
magnitude of (7';)». Of course, it is clear that the cases
where there are a total of only two different ordering
temperatures, or where there is only one 7°. at which
all three components order with respect to each other,
are just special cases of this general situation.

A few words might also be said about how we expect
the results for the transition temperatures to be modified
in a more realistic approximation than is constituted
by our linearized, mean-field approximation used in

U R. A. Tahir-Kheli, H. B. Callen, and H. S. Jarrett, J. Phys.
Chem. Solids 27, 23 (1966).

12 J. Philhours and G. L. Hall, Phys. Rev. 163, 460 (1967); 163,
463 (1967).

13 R. Brout, Phase Transitions (W. A. Benjamin, Inc., New
York, 1965), p. 15.
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the preceding section. First, we can expect the actual
magnitude, for given composition and interparticle
potentials, of these transition temperatures to be
altered. Secondly, we expect that the inclusion of those
additional correlation effects, which we have implicitly
ignored in the present discussion, will alter the ordering
conditions radically in the following general way: For
given interatomic potentials, the possibility of the
existence of an ordered region will critically depend on
the system composition. And, as such, for certain ranges
of compositions, certain orderings can be expected to be
thermodynamically disallowed. Our present results do
not, of course, display this behavior.

Let us next briefly examine an application of the
present theory to some predictions regarding the actual
atomic configurations into which the system may be
expected to order as the temperature is reduced below
the appropriate transition temperature. The inverse
lattice vectors K (A\v) corresponding to which the correla-
tion parameters o™(K) are a maximum, correspond to
the peaks in the diffuse scattered intensity of the x ray
or of the neutrons. If it is assumed that the effective
interparticle potentials do not change as ordering sets
in, a possible statement might be that the superlattice
spots—in the intensity spectrum corresponding to the
appropriately ordered phase—can be expected to co-
incide with some of the positions of the diffuse max-
ima observed in the disordered phase. It turns out,
that this is only a part of the full story. To see this more
clearly, let us display the configurational energy,
(H(config)), as follows:

(H(config))= const—}—;; [a4B(K)WA4B(K)

+aPU(K)WEC(K)+aC(K)WAC(K)], (5.1)

where

WMK)=—m*mwUMK), (5.2)
and where the constant is a function only of the com-
position, rather than that of the configuration, and as
such is irrelevant to the discussion of the ordering. In
the limit of zero temperature, Eq. (5.1) represents the
true free energy of the system and its minimization
should thus locate the actual ordering. We notice that
the minima of (H(config)) for a given composition would
be achieved through an interplay of the correlation
parameters o™ (K) and of the Fourier transforms W»(K)
of the reduced potentials. Therefore, the conditions

W»(K)=a minimum; o"(K)=a maximum, (5.3)
although sufficient for describing the ordering, are some-
what restrictive. It might be mentioned that the recent
work of Philhours and Hall'? and of Clapp and Moss®+*
is based on the corresponding representation of Eq. (5.3)
for binary systems. However, the apparent simplicity of
their task is owed primarily to the condition that the

maxima of a™(K) coincide with the minima of W»(K).
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It is a simple matter to show from Eq. (5.3) that for
binary systems this simplification indeed obtains. For
the more general case of ternary systems, the solution of
Egs. (5.3) is more complicated.

In conclusion, we might add a few words about the
general direction along which the results of the present
paper should be extended. Firstly, the formal solution
for the correlation parameters given in Egs. (3.15)-
(3.18) should be explicitly evaluated to a higher order
in the expansion parameter (7°,/T) than presently car-
ried out. Secondly, the system interactions responsi-
ble for the order-disorder phenomena are not fully
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represented by the given form of the H(config). The
system Hamiltonian needs to be extended to include
the static strain energies, as well as the dynamical
lattice effects such as phonons. In the same spirit the

inclusion of higher-body potentials than the two-body
ones used presently is also indicated.
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We present a model calculation of lattice dynamics for alkali metals. The lattice potential consists of the
electrostatic energy and the screened electron-ion interaction. The screened potential is formed by linearly
screening a Heine-Abarenkov-type ion potential, and the Hartree dielectric function is modified to include
approximately exchange and correlation effects. The model parameters are determined according to the
experimental elastic constants. Expressions for elastic constants are derived by taking the long-wave
limit of the secular equation. From our results in lattice dynamics, we find that the shear waves are domi-
nated by the electrostatic potential, but for the longitudinal waves the contributions from both potentials
are comparable and opposite in size. The agreement between the calculated and the observed dispersion
curves is good for Na and K where neutron-scattering data are available. We have also calculated the
effective ion-ion potential for the alkali metals. All of these potentials exhibit a minimum near the equi-
librium position and some long-range oscillations caused by electron-ion interaction.

I. INTRODUCTION

INCE the inelastic neutron scattering technique was
applied for direct measurement of dispersion curves,
it becomes apparent that the Born-von K4rman rigid-
ion model is inadequate in treating lattice dynamics.
This is especially so for metals where the problem comes
from the conduction electrons. The electron-ion inter-
action is a many-body interaction characterized by the
long-range screening of ions by electrons. This long-
range force shows up for alkali metals. In a Born-von
K4rmé4n analysis of the observed dispersion curves,
force constants up to the fifth neighbors for Na! and
K 2 have to be included.

Clearly a proper lattice-dynamic calculation for
metals must take into account the effective electron-ion
interaction. Toya? first attempted such a calculation for
monovalent metals by extending the Hartree-Fock
calculation for the electron-phonon interactions. For
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simple metals the electron-ion interaction can be treated
by the method of pseudopotentials, an effective electron-
ion potential first derived by Phillips and Kleinman?* in
an orthogonalized-plane-wave (OPW) expansion for
the conduction electrons. The pseudopotential model
has been applied quite successfully in calculating atomic
and electronic properties.>® There are many lattice-
dynamic calculations for alkali metals, notably that of
Harrison,® Sham,” and Vosko ef al.® Their good results
establish the validity of using the pseudopotentials for
alkali metals. The pseudopotential can be obtained
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