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Wave Functions of Hylleraas Tyye
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A wave function was obtained for the 'S ground state of the lithium atom using 60 basis functions of the
Hylleraas type, i.e., with interelectronic distance coordinates. The energy obtained was —7.478025 atomic
units as compared with the value —7.478069 calculated from experiments. The wave function was used to
calculate the Fermi contact term. It was found that this basis set gave the value 2.906, which is in agreement
with experiments, when both doublet spin functions were used, but a value that was 4 jp greater when only
one spin function was used. In the 6rst case, 100, and in the latter, 60, linear parameters were varied. The
interelectronic distance coordinates are expanded according to a formula by Sack. The 6nal integrals are
evaluated analytically, and the resulting formulas, along with a short discussion of their convergence
properties, are given in an Appendix.

I. INTRODUCTION

1
CALCULATIONS of electronic wave functions for~ atoms can be done by the variation principle. One

gets wave functions and upper bounds to the true en-

ergy, the accuracy of which depends on the extent of the
calculation. So far wave functions of high accuracy have
been obtained only for the He atom. ' ' For atoms with
three or more electrons one encounters problems with
either slow convergence or computationally dificult in-
tegrals. Thus calculations have been made on the lowest
'S state by Weiss, ' who used a basis consisting of anti-
symmetrized products of one-electron orbitals. For 45
con6gurations he obtained the energy —7.4771 atomic
units (a.u.). This corresponds to about 98% of the cor-
relation energy. 4 The same accuracy can be obtained
with about 10 conhgurations of Hylleraas type, ' ~ i.e.,
functions containing explicitly non-negative powers of
interelectronic distance coordinates; but here the inte-
grals are more involved and more time-consuming to
calculate.

The present work is an extension of the latter
Hylleraas-type calculations. With the help of a formula

by Sack' it has been possible to write an automatic and
fast program for the matrix elements. For a basis of the
order 60 an energy has been obtained that is an order of
magnitude better than the previous calculations but still
not comparable to the calculations on He by Pekeris'
and Kinoshita. '

The wave function has been tested on a calculation of
the Fermi contact term, which is responsible for the

*This research has been sponsored in part by the U. S. Air
Force Ollice of Scientilc Research (OAR) through the European
Oliice of Aerospace Research (OAR), U. S. Air Force, under Con-
tract No. AF61(052)-874.

r C. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959).' T. Kinoshita, Phys. Rev. 105, 1490 (195'7).' A. W. Weiss, Phys. Rev. 122, 1826 (1961).
4 De6ned as the difference between the exact energy and the

Hartree-Fock energy.' H. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).
e E. A. Burke, Phys. Rev. 130, 1871 (1963).The present author

has not been able to reproduce the results obtained in the paper by
Burke.' Y. Ohrn and J. Nordling, Arkiv Fysik 31, 471 (1966).' R. A. Sack, J. Math. Phys. 5, 245 (1964).
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hyperfine splitting in the 'Sji& ground state. Much at-
tention has been paid to this term, mainly because pre-
vious theoretical calculations give widely spread values
even for wave functions that have good energies. ' The
unrestricted Hartree-Fock wave function gives about
97% of the correct value for the Fermi contact term,
which must be considered a remarkably good value.
Owing to the erratic results of calculations of the Fermi
contact term, it has been calculated for every step in the
extension of the basis set in order to get an idea about
the trend. A discussion of the results is given in Sec. V.

II. WAVE FUNCTION

An exact wave function for a '5&i& state may be
written:

P=P, (nPn —Pna)+Ps(2nnP —Pan —nPa, ) . (1)

it, and lt & must be such that 1( is antisymmetric, i.e.,

where 8, is the three-particle antisymmetrizer

8= e—(12)—(13)—(23)+(123)+(132). (3)

The two spin functions Xr ——nPn —Pnn and Xs ——2nnP
Pnn nPn s—pan to—gether the spin space in which S= ts

and S,=-', .
We can construct a trial wave function in the follow-

ing way:

g, —(1(yir)Xr+y(s)Xs}

= g,( P (A»4„x,+A,„~„x,)),

E. A. Burke, Phys. Rev. 1BS, 621 (1964); L. M. Sachs, ibid.
117, 1504 (1960); R. K. Nesbet and R. E. Watson, Ann. Phys.
(N. Y.) 9, 260 (1960);R. K. Nesbet, Phys. Rev. 118, 681 (1960);
K.F.Berggren and R. F.Wood, ebsd. 130, 198 (1963);J.B.Martin
and A. W. Weiss, J. Chem. Phys. 39, 1618 (1963);Z. W. Ritter,
R. Pauncz, and K. Appel, ibid. BS, 571 (1961);S. M. Blinder, in
Advances in Quantum Chemistry, edited by P. 0.Lowdin (Academic
Press Inc. , New York, 1965), Vol. 2; A. J. Freeman and R. K.
Watson, in Magletesm, edited by S. T. Rado and H. Suhl (Aca-
demic Press Inc., New York, 1965), Pol. II A.
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where the constants A» and A» may be determined
variationally. The 1V basis functions P„are, in principle,
general functions of the space coordinates for the three
electrons, having S symmetry. Since the operation of
projection on the spin space spanned by X& and X2 com-
rnutes with the operation of antisymmetrization, it is
clear that (4) is a 2S1~2 wave function and can be written
in the form (1).Note that all A2„——0 does not imply that

b ——0.
A tractable way to proceed is to have &&2& =0 and to

restrict Q'" to the form

Ke get

p&" (ri, rs, rs) = O(ri, r2) 8(rs) .

lt = O', {O(ri, r2) (np —pn) tl(rs)n(ss) }.

(5)

(6)

This wave function corresponds to the physical picture
of the Li atom: a closed shell plus a valence electron. A
natural spin-orbital analysis of a wave function of the
type (6) gives the result" that 8(rs)n(ss) is one of the
natural spin orbitals. Wave functions of this type have
been calculated by Ohrn and Nordling, ' with good re-
sults. In the present calculation it has been constructed
in a more general way. The P„'s are functions of ri, rs,
r3, r23, r13, r12 of the form

p(ri, rs, rs, r23 rls r12) rl r2 rs r28 rls r12

Xexp( —nri —rrr2 —mrs) = {sjkt21221} . (7)

The latter notation is possible since n and p are deter-
mined once and then not varied again. We will always
have

belongs to the basis. We can then form other f's by
permuting the particle indices in P. It is easy to see that
the permutation (12) gives back the same basis function
$1, while (13) and (132) give a new function f', and (23)
and (123) give a new function f".We have

f'= t2', {(13)1t(rrpa —p«) }= —S{p(rrprr «p) }, (10)—

P"= e{(23)y(nPn—P«) }= —Q{@(«P—P«) }; (11)

fi, p', and f", are linearly dependent and as a linearly

'2 S. Larsson and V. H. Smith (to be published).

The restriction to the form (5) will be removed by hav-
ing N)1 in (4) and by the introduction of terms con-
taining r13 and r» to arbitrary powers and by permitting
A2„/0.

Are there any reasons for mixing in the second spin
function at all, i.e., to have A2„/0? Suppose that the
function

i(1= 0 {$(Ger—P«) }

independent pair we may take $1 and p' —p",

A~ =4'' —lt
"=+{L(13)—(23)j4 (~p~—P«) }

= 8,{g(2nnP —P«—rrPrr) }, (12)

which follows from (10) and (11). If @ has (12) sym-
metry from the beginning we have

(13)

i.e., f» vanishes identically. It follows from (12) that
instead of introducing a function S{QX2}=ti',{L(13)—(23))QX1}, we may introduce, because of the linear
dependency, the function 8{(13)tf1X1}.Evidently, we
can, instead of using the spin function x2, make the

permutation (13) of the particle indices in p and use
Xl

In practice one usually chooses g (when multiplied
by X,) such that the energy lowering is appreciable and
such that it gives the correct localization of the electron
shells. The exponential parameters will, for instance, be
2.76 for the core and 0.65 for the valence electron. The
energy lowering when 8,{&X2}= Ol{(13)&X,} is included
will then probably be small, since (13)P is very different
in shape from qk

For the Fermi contact term, however, adjustments
to the wave functions of this kind are known to be very
important. ' The inclusion of terms with the spin func-
tion X2 does not cause any extra labor for the calculation
of matrix elements if one has already included the cor-
responding term with spin X1. The integrals are the
same; only the weights are different because of the
"integration" over the spin variables. But the resulting
secular equation will have a larger dimension. In this
paper wave functions will be constructed both with and
without terms with the spin function x2. A wave function
constructed with only the spin function X1 will be de-
noted by pi. If terms with X2 are also included the re-
sulting wave function will be denoted by f». As pointed
out above a basis function f which is symmetrical in
index 1 and 2 will give a vanishing f when multiplied by
X2 and antisymmetrized. The final p» is therefore con-
structed from 100 basis functions; 60 with spin function
Xl and those 40 which are unsymmetrical in index 1 and
2 (indicated by an asterisk in Table I) with spin function
X2.

III. CALCULATIONS

The nonrelativistic Hamiltonian for three electrons
in the field of a fixed Li nucleus is (in Hartree atomic
units)

3 3 3 1 1 1
Se= g ——;V;2—P

r23 rl3 r12

where the erst sum represents the kinetic energy V', and
the rest the potential energy'U. Since the wave function
has no explicit angular dependence it is convenient to
transform the kinetic-energy part into the mutually in-
dependent distance coordinates rl, r2, r3, r23 ——Nl, r13——e2,
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and f12= N3)

( 82 2 8 82 4 8 i2'= ——; Z I,+— +2,+-
'=1 krlr;2 r; ar, au;2 u; au;3

Br;Bsj,.

u .2+u 2
2—u .2

(15)
2 ugu2 Bu18u2)

The second summation is over the six permutations

2 3

i j k

From the variation principle one obtains the matrix
eigenvalue problem

(H —Ex)c=0,

where the eigenvalues E approximates the eigenvalues of
the corresponding Schrodinger equation from above and
the matrix elements are

JI2i= QI X$1dr and 42~= ip2p~dr. (17)

The first step in the calculation is to perform the anti-
symmetrization and to "integrate" over spin. Then we

operate with the Hamiltonian and get as a result a linear
combination of integrals.

3
I= g Lr 'u 2' exp( a,r~)r; d—r; sin6;d8;dp, ]. (18)

From the form of wave functions and of the Hamiltonian
it follows that k;& —1. The interelectronic coordinates
are expanded according to a formula by Sack, ' which is
a generalization of the well-known Laplace expansion,

u3 r12 Z + l (rl r2)+1 (cos&12)

and the same for I& and e2. P& are Legendre polynomials
and Bi2 the angle between ri and r2. R„i is a function re-
lated to the hypergeometric functions through

(—2N)1
E i(rr, r2) = r&"—

(2) i

(u) 0= 1; (n).=n(n+1), (n+s —1); r( ——min(rr, r2);
r)——max(rr, r2). We see that for odd positive 21 and for
21= —1, Kq. (21) breaks off after a finite number of
terms. For even positive I, Eq. (21) breaks off for
l&-,'e, and for /& ~e, R„i vanishes because of the term
(—2N)i. The next step is to integrate over the angles.
The Legendre polynomials are expanded in spherical
harmonics; for instance:

Pg, (cos@12)=
2l2+1

X P I'1, ,*(&r,t 1)I'1,~,(~2, 2 2) (22)

The angular integrations are now easy to perform, since
the spherical harmonics form an orthonormal set. We
get the condition

and
lg= l2

——l3 ——l (23)

IV. CHOICE OF PARAMETERS;
NUMERICAL RESULTS

The eigenvalue problem has been solved for every step
in the extension of the basis set. The energies are listed
in Table l. The second column is for $12 with both spin
functions included and thus obtained by varying more
linear parameters than the number of basis functions
listed. The idea is to make the convergence of energy
as fast as possible for a basis set with the spin function

(42r) '
I=+ g Lrj'+282, 1 exp( —a;r,)dr;]. (24)

1=o (21+1)2

The integration region is over positive r; s and to pro-
ceed we must divide this region into six parts, each
characterized by 0&rz&r„(r„(~.The convergence of
formula (24) and the remaining integrations are dis-
cussed in the Appendix. All calculations were done on
the CDC 3600 computer at Uppsala University.

The eigenvalue problems are solved by two different
methods. One is Lowdin's partitioning technique. "This
method allows for big matrices since it is possible to split
the matrix into two parts and to handle only one part at
a time. The other is Givens's method"; after A has been
triangulated" and I transformed. This transformation
is done once for the S-dimensional secular problem and
then all the eigenvalue problems can be solved directly
of orders from 1 to E, without further triangularization
or transformation.

- (~) (&)
F(n,P,y; x)=1++

(y).&'
(21)

"P.O. Lowdin, J. MoL Spectry. 10, 12 (1963).' F. Prosser and H. H. Michels, Program 62:1,Quantum Chem-
istry Program Exchange, Indiana University. Rewritten in double
precision by G. Sperber, Quantum Chemistry Group, Uppsala
University.

"H. H. Michels, C. P. van Dine, and P. Elliot, Program 97,
Quantum Chemistry Program Exchange, Indiana University. Re-
written by the present author to allow for large dimensions and in
double precision.
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No. (~jklmN)

1 001000
2* 101000
3 111000
4* 201000
5 001001
6 001002
7 000000
8* 000100
9 002000

10* 010100
ii 001003
12* 001100
13 003000
14* 101001
15* 301000
16 001004
17 221000
18 111001
19* 201001
20* 301001
21 000200
22* 000110
23* 020100
24* 110100
25 004000
26 000001
27 002001
28* 100000
29~ 102000
30* 000101
31* 010200
32* 011100
33* 000300
34~ 001200
35 001005
36* 401000
37* 401001
38* 501000
39* 101002
40* 201002
41~ 101003
42 110000
43 112000
44* 200000
45* 202000
46* 100001
47* 102001
48* 200001
49* 021100
50* 030100
5V 201003
52 005000
53* 211000
54 001006
55* 302000
56* 300000
57* 000400
58~ 100100
59* 311000
60* 301002

—Energy

7.417907
7.417823
7.430033
7.444700
7.472382
/. 473999
7.474831
7.476320
7.476786
7.476996
7.477144
7.477267
7.477363
7.477439
7.477562
7.477581
7.477586
7.477665
7.477747
7.477800
7.477819
7.477826
7.477832
7.477835
7.477848
7.477849
7.477885
7.477885
7.477888
7.477901
7.477915
7.477916
7.477918
7.477927
7.477931
7.477938
7.477945
7.477945
7.477945
7.477945
7.477966
7.477968
7.477982
7.477987
7.478002
7.478003
7.478003
7.478004
7.478005
7.478006
7.478006
7.478006
7.47800e
7.478008
7.478008
7.478008
7.478009
7.478009
7.478009
7.478010

(a.u.)
&1S

7.417907
7.417889
7.430046
7.444731
7.472405
7.474021
7.474840
7.476350
7.476826
7.477033
7.477185
7.477287
7.477377
7.477455
7.477579
7.477598
7.477602
7.477683
7.477765
7.47781.7
7.477841
7.477847
7.477856
7.477860
7.477869
7.477870
7.477905
7.477914
7.477923
7.477935
7.477957
7.477957
7.477963
7.477967
7.477971
7.477978
7.477984
7.477984
7.477984
7.477985
7.478006
7.478009
7.478010
7.478010
7.4/8015
7.478016
7.478017
7.478018
7.478018
7.478019
7.478019
7.478019
7.478020
7.478021
7.478021
7.478022
7.478024
7.478024
7.478024
7.478025

Fermi contact
term (a.u.)

2.041
2.237
2.823
3.845
3.605
3.516
2.859
3.071
3.013
3.207
3.238
3.321
3.289
3.287
3.231
3.224
3.226
3.155
3.122
3.170
3.147
3.129
3.176
3.208
3.199
3.184
3.157
3.156
3.161
3.162
3.211
3.199
3.208
3.185
3.187
3.167
3.146
3.147
3.147
3.147
3.173
3.147
3.096
3.049
3.001
2.998
2.999
2.976
2.986
3.003
3.003
3.004
3.008
3.007
3.007
3.008
3.009
3.010
3.012
3.019

2.041
3.165
3.240
3.101
2.964
2.917
2.572
2.666
2.818
2.882
2.909
2.919
2.962
2.961
2.914
2.921
2.920
2.911
2.900
2.870
2.868
2.865
2.861
2.857
2.865
2.860
2.875
2.875
2.884
2.887
2.893
2.893
2.892
2.891
2.892
2.889
2.887
2.894
2.893
2.894
2.895
2.896
2.898
2.899
2.898
2.899
2.900
2.900
2.901.
2.903
2.903
2.903
2.903
2.904
2.904
2.907
2.907
2.907
2.906
2.906

X&. The matrix elements are simultaneously calculated
for the spin X2 since this, as has already been pointed
out, gives no new integrals.

The 6rst function rn.ay be considered as an approxima-
tion to the Hartree-Pock function and the energy—7.4179 atomic units (a.u. ) is fairly close to the HF

TABLE I. The energies and the Fermi contact term for various
numbers of basis functions. The asterisk indicates that two spin
functions are possible.

TABLE II. Variation of the parameter a at nine basis
functions (one spin function).

2.70
2.80
2.90

—Energy (a.u.)

/. 476749
7.476766
7.476576

energy —7.4327 a.u. ' This function is 6rst improved in
the core as in the work by James and Coolidge, s with the
functions 2—6. So far we have still a wave function of the
type core-geminal —valence-orbital. The next three terms
are included to give more Qexibility to the valence elec-
tron and to take into account the correlation between
this electron and the core.

Tn order to determine the parameters n and y the cal-
culation with nine basis functions was done with
0,=2.70, 2.80, 2.90 and 7=0.65. These values were de-
duced from earlier calculations. The result is given in
Table II. A simple interpolation gave the best value
+=2.76. After this minimization the scale factor

(25)

was calculated. '4 The value was very near to 1 (1.00019).
Therefore n= 2.76 and y=0.65 could be accepted and
were kept 6xed during the remaining calculations.

The next basis functions were chosen mainly by trial
and error. When some new functions had been intro-
duced they were ordered after contribution to the total
energy; those which gave only a small energy improve-
ment were deleted. Next functions related to the best of
the previous ones and also new ones were tried. The
process was continued until almost all conceivable corn-
binations had been tried. To some extent it is possible to
predict beforehand if a configuration will be good or bad.
We may, for instance, compare the terms S((010100)Xt)
and 0',({100100}Xr).The 6rst one contains the factor
r2r23 and therefore describes the situation when electron
1 is near the nucleus and electron is 2 farther out. Be-
cause of the factor r23 it will not come too near the val-
ence electron. The second term does not have this fea-
ture since instead it contains the factor rir~e. The 6rst
thus describes the repulsion between the core and the
valence electron in a much better way and also gives
a much greater energy contribution.

The procedure described is of course not unique. One
function may give a large or small contribution to the
energy depending on the preceding functions of the set.
The method cannot be applied when the basis is large,
since every step in the extension is then rather time-
consuming.

The energy value calculated from experiments by
subtracting relativistic and 6nite nuclear mass effects"

'4 P. O. Lowdin, J. Mol. Spectry. 3, 46 (1959).
is C. Vil. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev.

127i 830 (1962).



CALCULATIONS ON THE '5 GROUND STATE

is —'7.478069. If this value is correct it can be seen that
the convergence is rather bad at the end of the expan-
sion. A possible way to improve it is perhaps to use terms
with other exponential functions. The inclusion of the
second spin function partly has this effect.

The scale factor g was calculated for all the wave func-
tions. It was between 1.0000 and 1.0001 in most cases.
The values given in Table I for energy and Fermi con-
tact term are those obtained from a scaled wave func-
tion. (This explains why one basis function in Table I
actually gives better energy than two basis functions. )

f=(4' P 8(r,)o„), (26)

where we have

;n(i) = (s) o*;P(i)'= —P(s) (27)

V. FERMI CONTACT TERM

The wave functions were used to calculate the expec-
tation value of the Fermi contact term"

of course is that we have varied more linear parameters
in Prs. Another is that when a basis function is multi-
plied by Xs this corresponds to (13) change in the func-
tion qh and therefore introduces another exponential
decrease and acts as a 6ne adjustment in the wave
function. The fvalues from ll r are larger than the experi-
mental value in general, while the f values from ltr~s are
slightly smaller than the experimental value between 20
and 40 basis functions. This may be attributed to the
fact that we have not included terms containing factors
of the type r;,/(r;+r, ) and (r; r,)/r;;—. Such terms were
introduced by Kinoshita in his He calculation. ' Accord-
ing to him a Hylleraas expansion may still be complete,
even though terms of the type above are not included.
Probably we could even have avoided terms with the
power 0 on all the r s, and still have had a complete set.
Such a cutoft of terms would, however, give the Fermi
contact term equal to zero. In our case we have still a
number of terms which have a nonzero value at the
origin of the respective electron coordinates and the
effect should therefore be small and decreasing for an
increasing basis.

Because of the 8 function, f is a "one-point" property
of the wave function, and may therefore be expected to
vary considerably for different wave functions.

In a Hartree-Fock calculation' (restricted or unre-
stricted) or a natural expansion of more accurate wave
functions, "one obtains f as the difference between al-
most equal and large contributions from the two core
orbitals plus a small contribution from the valence
orbital. This fact will cause the Fermi contact term to be
still more dependent on occasional inadequacies of the
wave function.

The results are given in Table I.We see that the wave
function constructed with only one spin function gives
remarkably bad values. Even after 42 basis functions
have been introduced and we have obtained 99.8% of
the correlation energy, the discrepancy from the experi-
mental value 2.906'r is as much as 8%. Just as remarka-
ble is the good agreement obtained with mrs. Here we
obtain, after 100 basis functions (60+40), complete nu-
merical agreement with the experimental value. Several
explanations for this may be given. The most obvious

'e E. Fermi, Z. Physik 60, 320 (1930).
"The experimental value is calculated from the formula (see,

e.g., Blinder (Ref. 9)g

9 uf=—— C=2.9062 a.u.
4 gl pygmy~

Here, g=electronic g factor=2. 0023; @0=the Bohr magneton
=0.92731 10~e erg G ' (Cohen el al.);pN=the nuclear magneton
=0.50504 10 " erg 0 ~ (Cohen et al.); a=the measured space
factor=401. 756 Mc/sec (Kusch and Taub); gI =the measured
nuclear g factor=3. 256310 (Ramsey); C=factor for conversion
to atomic units=0. 981726X10 4' a.u. sec (Mc/sec) ' ergs G '.
E. R. Cohen, J.W. M. Du Mond, J.%'. Layton, and J. S. Rollett,
Rev. Mod. Phys. 27, 363 (1954); P. Kusch and H. Taub, Phys.
Rev. 75, 1477; N. F. Ramsey, in 3IIoleesdar Beams (Oxford Uni-
versity Press, New York, 1956), p. 172.
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APPENDIX

After the interelectronic coordinates have been ex-
panded according to Sack's formula" and the angular
intergrations performed, we are left with the sums

Js = g g $r '+sRs, „exp(—a~;)dr~j. (28)
e=o (2x+1)s nv ~-&

The integration region Qp is given by 0&rq&r„&r„(eo, where {),ls, v} is the permutation E of {1,2,3}.The
function R is deined by (20) and (21).From the form of
E it follows that the series is in6nite only when all k s
are odd. It will be shown below that the convergence of
the ininite series is as for

or better. In general ten terms are enough to obtain 10
signiicant 6gures.

After the expression for the R's has been inserted,
every term in (28) breaks down to integrals of the fol-
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lowing k.inds:

A(k, n) =

U(k, l,n,P) =

x'e dx=
~k+1

P(x&y(oo

x~y'e 'e»dydx, (3o)

l(0 and m(0 we get in addition exponential integrals.
In general the rational part is just the first terms in the
Taylor expansion of the logarithms or exponential in-
tegrals in question. This leads to a loss of significant
figures which is difficult to handle in an automatic pro-
gram. Instead a scheme was developed which is similar
to that by Ohrn and Nordling. '

From the recursion formulas we obtain

(s(y(z(oo
x'y's

8"(k,l,m, a,P,y) = Q
v=i (k+p)!

Xe ~*e»e r'dsdydx. (31)

In (29), (30), and (31) we have k&0, k+1&—1,
k+l+rN& —2. We can easily obtain recursion formulas
for these integrals if we write them in iterated form and
integrate partially. The recursion formulas are given by
James and Coolidge. ' The case k, l, m) 0 is trivial and
we obtain immediately expressions convenient for pro-
gramming. In the case of either 3&0 or m&0, but not
both, (31) can be evaluated in terms of logarithms and
rational expressions of n, p, and y. In the case of both

X U(k+v+l, m, n+P, y)+R(M), (32)

R(M) = Lk!/(kl M)!)n~W(k+cV, /, m, n, P, y), (33)

R'(N) = Lk!/(k+N)!]n~V(k+N, I, rr, P) . (35)

We want to estimate R'. For t&0 we have from (30)

& c" 'kl
V(k, t,n,P) =- Q A (k+v+1, o+P)+R'(N), (34)

~=i (k+v)!

V(k+N, I, n, P) =
0(x(y

x + +'(x/ ) 'e *e»dydx&
p«*y

xk+N+le —axe—pydydx

1 (k+N+l)!
xs+~+'e i'+e&'dx= — . (36)

p (~+p)s+N+l+1

Thus for large N, (34) converges as a geometrical series
with the quotient n/(n+P) In a sim. ilar way one can
show that (32) converges as a geometrical series with the
quotient n/(rr+P+y). It is then obvious that (32) and

(34) or their corresponding recursion formulas provide
a general and accurate method by which to calculate 8'
and V. In our calculations we always have

/(+p+v)&
and we therefore need about three steps or terms in (5)
for each significant figure to calculate O'. For the calcu-
lation of V we need more terms but here fewer opera-
tions are involved.

By looking at the leading term in (34) we see that
V(k, l,n,P) behaves like 1/k for k increasing with k+3
constant. Then it follows from (32) that W(k, t,m,n,P,y)
behaves like 1/k' for k increasing with k+rN and l con-
stant. In (28) we have a product of three R functions
which contain the factors (r&/r&)~. We get W' functions
in (28) of the kind W(k+2', l, m —2~) and thus these
behave like 1/~s when Ir tends to infinity. If we now

examine (20) and (21) we see first that the 1 is the
dominating part of the hypergeometric function when
t(= ~) tends to infinity. We also have (for n odd)

for large If:.
~ (n+1) /2

There are three such factors and it turns out that for
our choice of wave functions the product of them con-
verges as 1/K' or better (in the case when the series does
not break oR). It is then clear that the series (28) con-

verges as
1 1 1

(2~+1)' ~' ~'

or better. The total time required to calculate an inte-
gral with ten significant 6gures of the kind (18) in the
most diTicult case, i.e., with all k s odd, was about 4 sec
on a CDC 3600 computer.

's Y. Ohrn and I. Nordhiig, I. Chem. Phys. B9, 1864 (1963).


