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Electron-Phonon Interaction and Phonon Dispersion Relations
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A new version of the "Schrodinger method" for treating the electron-phonon matrix element is presented.
Using the Schrodinger equation, the matrix element is transformed so as to obtain the first-order perturbed
charge density of the valence electrons self-consistently as the sum of two parts. The first or "bound" part
corresponds to the rigid movement of the valence charge density inside a volume Vo (chosen for maximum
convenience) in the unit cell with the ion core, while the second or "deformation" part represents the rest
of the perturbation and may be calculated as the self-consistent response to a weak effective driving po-
tential, called the residual potential, which does not contain the deep well near the core. The screened
matrix element is obtained, and the relationship to Bardeen's method and to the more recent pseudopotential
methods is discussed. A certain resemblance of the residual potential to the Heine-Abarenkov model po-
tential is pointed out. Finally, the dynamical matrix is transformed without approximation to be written
as the sum of an interaction between pseudoatoms and a deformation part. The advantages of such a re-
casting are discussed. Explicit expressions are derived based on the APW representation of the valence
wave functions, since it is intended to apply the formalism to transition metals and other more complicated
solids.

I. INTRODUCTION

~ 'HERE have in the last few years been several
fundamental calculations' 7 of the phonon dis-

persion curves for simple metals, i.e., metals for which
the cores are small and the conduction electrons are
free-electron-like over most of the crystal volume. As is
well known, this involves two central problems, namely,
the calculation of the electron-phonon matrix element,
and the calculation of the many-body response of the
conduction electrons. In general, these problems are
rather closely intertwined. If one tries to calculate the
electron-phonon matrix element (henceforth referred to
as the EPME) directly, one runs into problems of
accuracy in evaluation of the EPME as well as of con-
vergence in performing the perturbation sums. There
have been two basic approaches to overcome these
problems.

One approach has been through the use of pseudo-
potentials' 5 or model potentials'~ in the case of free-
electron-like metals. The pseudopotential method is
based specifically on a representation of the valence
wave function in terms of orthogonalized plane waves
(OP%'s), and relies on certain cancellations which
occur between different terms when the EPME is ex-
panded in terms of these functions, so that one may
start with a basis set of single plane waves to represent
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the pseudo-wave-functions and calculate the effect of
the lattice by ordinary second-order perturbation
theory. The model potential of Heine and Abarenkov
(hereafter referred to as the HA potential), although
not specifically based on the OP% scheme, also utilizes
the above approach. However, calculations of phonon
dispersion curves in metals using the OP%-based
pseudopotential2 ' ~" so far have not been very
successful in obtaining good agreement with experi-
ment, except for Sham's calculations on sodium, which
give reasonable agreement except for one branch. It
should be noted that Sham uses a Born-Oppenheimer
expansion rather than a simple perturbation expansion,
and takes the bound motion of the core parts of the
wave functions into account in detail. The HA potential
gives better agreement, especially for potassium' but
for other metals still contains discrepancies for several
branches of the dispersion curves.

Ke believe that one reason why great accuracy is
hard to achieve by these methods is the considerable
cancellation that occurs between two contributions to
the dynamical matrix (DM)—that due to the purely
electrostatic interaction between the ions, and the band-
structure contribution, i.e., that due to the second-order
perturbation of the electron energies due to the lattice
vibrations. Thus a small error in calculating the latter
leads to a large error in the sum. Other reasons for the
poor accuracy obtained in many cases include the fact
that the band-structure contribution is expressed com-
pletely as a sum in reciprocal space which does not
converge very rapidly, 4 ~ and the fact that the OPW-
based pseudopotential is sensitive to the details of the

' V. Heine and L Abarenkov, Phil. Nag. 12, 529 (1965).
e W. A. Harrison, Pseudopotentiats in the Theory of Metals
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ionic potential near the cores and to the energies of the
core states. The last disadvantage does not apply to
the HA potential, although in that method the energy
dependence of the potential is usually neglected. Per-
haps the chief limitation of the above methods, however,
is the fact that they cannot be applied to other than
free-electron-like metals, such as the transition or rare-
earth metals, or to tightly bound solids. This is ob-
viously true of the OP%-based pseudopotential. It is
possible that the HA model potential could be applied
to these substances, but the theory would have to be
modified, in the sense that one could no longer apply
simple perturbation theory using a plane-wave basis set;
and further, the self-consistent response of the actual
(rather than pseudo) wave function inside the chara, cter-
istic radius of the HA potential would have to be
evaluated more accurately.

Another approach, which has been called the
"Schrodinger method, "' is of the kind first used by
Mott and Jones. "The Schrodinger equation is used to
transform the integrals over the unit cell appearing in
the EPME into surface integrals involving wave func-
tions at the cell boundary, together with certain terms
proportional to (Eq—Er..), where k, k' refer to the initial
and final states in the EPME, respectively. This trans-
formation can actually be made in several different
ways. The Mott and Jones transformation was utilized

by Bardeen" in his pioneer calculation of the EPME in
monovalent metals, taking electron screening into
account. Toya' later extended Bardeen's method to
calculate phonon dispersion relations for a number of
metals. The Bardeen method, however, suffers from a
number of defects. It assumes simple %igner-Seitz
wave functions for the conduction electrons which
Taylor, Moore, and Vosko'4 have shown to be a fairly
bad approximation even for simple metals. It also
assumes that the potential in a unit cell is simply that
due to the ion core in that cell together with the Hartree
potential due to a uniform charge density in the cell,
and it also approximates the Kigner-Seitz cell by a
sphere. Further, Bardeen's calculation is not truly self-
consistent, as has been pointed out by Cochran" and
Sham, ' in that he neglects the terms proportional to
(EI,—E~) in the EPME before performing his self-
consistency calculation, whereas both the electronic
density perturbation and the energy perturbation in-
volve virtual transitions for which (E~—EI, ) is nonzero,
and which will therefore contribute to both the screen-
ing and the dynamical matrix. It will be shown in
Sec. IV that only for completely free electrons is
Bardeen's result correct, so that caution must be
exercised in applying it to most metals. The calculation
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also suffers from the same disadvantage mentioned in
connection with the pseudopotential methods —namely
the large cancellation between the electrostatic con-
tribution to the DM, and the band-structure or
electronic contribution.

Recently, Taylor, Moore, and Vosko'4 (henceforth
referred to as TMV) have developed another version of
the Schrodinger method and applied it to a calculation
of the EPME in sodium, although they have not ex-
tended their method to the problem of calculating
phonon dispersion curves. The chief advantage of the
Schrodinger method lies in the fact that one is not
restricted to free-electron metals. By transforming to
an integral over the surface of the cell one eliminates in
principle a large part of the difficulties associated with
both the deep potential well near the cores as well as
the atorniclike oscillations in the wave function in this
region. However, TMV have pointed out that the
surface integrals are extremely sensitive to the deriva-
tives of the wave functions at the cell boundary and to
the energies EI, of the unperturbed states, and thus in a
sense the EPME calculated by this method is still im-
plicitly dependent on the details of the potential inside
the unit cell. However, with the advent of accurate
solutions of the Schrodinger equation in a large number
of crystals by modern computing techniques, it is likely
that this Schrodinger method will be relied upon
increasingly for accurate 6rst-principles calculations of
the EPME for many metals.

V/e finally point out another difficulty that has been
present in calculations of the phonon frequencies in
metals such as the noble or transition metals. The
valence electrons are usually split up into s electrons
and the latter are treated as atomiclike wave functions
moving rigidly with the cores, and giving rise to an extra
contribution to the DM in addition to the electrostatic
and band-structure contributions. This is supposed to
arise from overlap of the atomic orbitals representing
the d electrons, and is usually pararnetrized according
to the Born-Mayer type of potential. "Since such inter-
actions are considered to be quite large, agreement with
experiment may often be obtained by adjusting these
parameters, '"not withstanding the fact that the above
picture of Born-Mayer interactions between overlapping
atomic orbitals is not at all rigorously based. This has
already been pointed out by Vosko" in connection with
sodium. Strictly speaking, according to recent band-
structure calculations for these metals" the s and d
electrons should all be treated on the same footing, and
any short-range interaction between the ion cores should
arise in a natural way out of performing a systematic

"M. Born and K. Huang, Dynamica/ Theory of Crysta/ JatHces
(Oxford University Press, Fair Lawn, N. J., 1954), Chap. 1.' S. K. Sinha, Phys. Rev, 143, 422 (1966)."S. H. Vosko, Phys. Letters 13, 97 (1964)."T.Loucks, Aggmented P/ane 8'ave 3fethod (W. A. Benjamin,
Inc. , New York, 1967), pp. 10, 11.
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Born-Oppenheimer perturbation expansion to second
order.

It is our purpose in this paper to present an alterna-
tive version of the Schrodinger method which appears
to have several advantages in dealing with the diffi-
culties that arise in the pseudopotential methods and
at the same time does not suffer from the defects of the
Bardeen method. It is based on the fact that during a
lattice vibration, each core may be regarded as carrying
in some sense a bound portion of the valence charge
density rigidly along with it, so that the first-order
perturbed charge density Ap(r) may be split up into a
bound part and a deformation part which represents
the rest of the perturbation. Using Schrodinger's
equation to transform the EPME, we 6nd that it is
precisely the terms proportional to (I's E&) in o—ur
method that give rise to the bound part of Dp(r), and
further that these terms arise mainly from the deep
potential wells near the cores. Thus we are able to set
up a truly self-consistent equation for the deformation
part of Ap(r) which turns out to be the self-consistent
response to a weak residual potential, so that we may
term our method the residual potential method. The
above considerations remain true whether the electrons
are free-electron-like or tightly bound, as we shall see.
In Sec. II we show, by considering the case of a free
atom, how separating out the bound part of Ap(r) im-

proves the convergence of the perturbation sums in the
Born-Oppenheimer perturbation expansion and gives
rise to explicit cancellation in the expression for the
perturbed electron energies. Thus we may understand
why the Born-Oppenheimer expansion converges, and
why the phonon energies are small compared to the
electronic energies, even though the perturbing poten-
tials are very large in the regions of the cores. In Sec. III
we develop the formalism in detaiI for an actual crystal.
In Sec. IV we obtain and discuss the expression for the
effective EPME. In Sec. V we use our formalism to
develop an important transformation of the expression
for the second-order energy perturbation to yield Gnally
an explicit expression for the DM which contains two
contributions. The first is due to interaction between
rigid units composed essentially of the cores and the
bound part of Ap(r) surrounding each core, and may be
expressed in terms of the usual force constant for-
malism. " The point to note is that the electrostatic
interaction is now considerably reduced because of the
compensation of the core charge by the bound part of

Ap(r). Thus the cancellation between the electrostatic
and band-structure contributions in previous theories
is explicitly built into our formalism without involving
the matrix elements of our residual potential or the
dielectric response function. The latter only go into
calculating the second or deformation part of the DM
which is much smaller than the conventional band-

'0 A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc., New York, 1963), Suppl. 3.

structure contribution, and hence errors in such calcu-
lations are not so critical. The rigid-atom force constants
obtained in this way also contain a small non-Coulomb
contribution due to exchange and correlation sects,
which decreases rapidly with increasing neighbor
distance. It should be pointed out that a model approxi-
mately along these lines was discussed earlier by
Toya."

We provide in Appendix A explicit formulas for some
of the matrix elements that appear in our formalism
based on the augmented-plane-wave (APW) repre-
sentation of the crystal wave functions. The formalism
may thus be applied to any solid for which an accurate
APVf band-structure calculation may be performed.
Of course applying the formalism to a transition metal
will still be far more complicated than applying it to a
free-electron metal because of the unavoidable fact that
the dielectric screening itself is very much more com-
plicated in such solids. However, as we shall see in
Sec. IV, our formalism will have helped considerably to
simplify even this problem.

II. PHYSICAL BASIS OF THE METHOD

Let us first consider the case of an isolated hydrogen
atom situated at the origin, and consider the electron
to be in some state with wave function @ (r). Now
consider a small displacement u of the nucleus. If V(r)
is the potential field of the undisplaced nucleus, the
change in potential to first order in u is —V'V(r) .u. By
Born-Oppenheimer perturbation theory, the first-order
change in the wave function will be

(y ~ IBV/cix. ly )
~4 (r)=-Z I 2 4 (r), (I)

a . ec'gm E —E ~

where E denotes the unperturbed energy of state p
If we write the Hamiltonian H as P'/2sst+ V(r), then
we have the identity

H .
-Bx~

(2)

"T.Toya, Lattice Dynamics (Pergamon Press, Inc., New Yorlc,
1965), p. 91.

Substituting in Eq. (1) and using the completeness
property of the Q„we get

8
A4-(r)= 2 I- 2 9—- I

—I4-&0-(r)
a m'Nm gg~

= —V'y„(r) u. (3)
The change in electronic energy to second order in u is
given by

(0-I &vl»-
I 4- &(4- I &vl&e

I 4-&gg(s) =Q
eP ~'Wm

O'V
+s(4-I lt-& ~-~s, (4)

BXcrBXP
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where we have noted that (P ~
BV/Bx

~ P ) vanishes by
Kq. (2). Using Eq. (2) and the completeness property of
the P ., we may show also that

~a&»=o.

The results in Kqs. (3) and (5) are physically obvious
and could have been written down without recourse to
perturbation theory. On the other hand if we had wished
to calculate AP (r) using the actual perturbation sum
in Eq. (1), we would have found it slowly convergent
due to the deep potential well in V(r) and the oscilla-
tions in P (r). Thus we see how we may allow for the
e6ect of the deep potential well exactly in this case. The
Born-Oppenheimer perturbation expansion ensures
correct calculation of any quantity that can be usefully
expanded in powers of u, and the harmonic and adia-
batic approximations of lattice dynamics imply that
the energy perturbation due to the lattice vibrations is
just such a quantity. Further, we see how, although the
matrix elements Q ~BV/Bx ~@ .) are not necessarily
small, the two terms in Eq. (4) cancel each other. In
the next section we generalize the above considerations
to make a self-consistent perturbation expansion in an
actual crystal lattice.

III'. CALCULATION OF THE SELF-CONSISTENT
ELECTRON RESPONSE

Let us consider a monatomic lattice, and in the usual
manner split the electrons up into core electrons and
valence electrons. For transition metals, we must place
both s and d electrons in the latter category. For a
phonon mode propagating with wave vector g, one can
write the lattice displacements as

u '=(XQ) '"(Q e'&"+Q *e '&")e

where E is the number of unit cells per unit volume, 0 is
the total crystal volume, Q~ is the normal coordinate
operator, x& is the equilibrium position of the nucleus in

the 3th cell, and e is a Cartesian component of the unit
polarization vector, which we can take to be real in

this case. I et us choose a volume Vp inside each unit
cell (which we leave arbitrary for the moment), and
write the perturbed electron density to first order as

t 0«)

dr' p(r' —r&) i (r—r'), (11)

where the suffix Vo(l) indicates integration over the
volume Vp in the /th cell only. If the unperturbed crystal
potential is V(r), we may split p&(r —r&) into two parts as

$,(r—ri) =W(r —«)+ U(r —ri), (12)
where

W(r —r~) =P,(r—r~) —V(r), for r inside Vo(l)
=p, (r—ri), for r outside Vb(l) (13)

and

with the core in that unit cell. We may term it the
bound part of Ap(r). The second term Ap&'&(r) then
represents all the rest of the perturbation and we call
it the deformation part.

We assume that the bare interaction between valence
electrons that goes into a self-consistent screening
calculation may be written in terms of a local potential
n(r r'—) It.s Fourier transform is assumed to be of the
form

v(K) = (4~e /Q&2) [1—f(K)],
where f(K) is supposed to allow approximately for ex-
change and correlation effects. There are several choices
for the form of f(K). We may follow Sham' and
Animalu~ in taking f(K) to be of the form

(10)

where ( is the length of some characteristic wave vector
which we may leave as an undetermined parameter
since theoretical many-body calculations" which sup-
port the form (10) differ in estima, tes of t, and further-
more only apply to the case of a free-electron gas. The
procedure of representing the exchange and correlation
effects by a local potential in the above sense may be
questioned. Nevertheless, practically all calculations of
electron screening in real solids have eventually made
this or an equivalent approximation.

Let pb(r —r&) denote the potential seen by an electron
due to the bare core at r~, and p, (r—r~) that due to the
core plus the unperturbed valence charge density inside
volume Vp surrounding it. We may term this composite
unit a "pseudoatom" for our purposes. We have

where we define
U(r —r() = V(r),

=0
for r inside Vp(l)

for r outside Vo(l). (14)

p(r —r~) is de6ned as that function which is equal to the
unperturbed valence number density for x inside the
volume Vp in the lth cell and is zero for r outside it.
The fact that Apt'&(r) is not defined on the surface of

Vp need not concern us for reasons discussed below.
Thus hp&oi(r) represents to 6rst order in the n', the'rigid
movement of the unperturbed number density inside Vp

Physically, W(r —r&) is a potential which for r outside
V0(l) is due to the pseudoatom inside Vb(l), and for r
inside Vo(l) is equal to nzimus that due to all the charge
distribution outside V,(l). Its general form is illustrated
in Fig. 1. The deep potential well in the core region is
incorporated into the second term of Eq. (12).

Note that the apparent singularities in the deriva-

22 S. H. Vosko and D. J. W. Geldart {tobe published). See also
R. H. Ritchie and J. Cromwell, Bull. Am. Phys. Soc. 11,S33 (1966).
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I
I
I
I
I

I
I
I

V(r, )

I
I

I
I

I
I

+
V(rs)

l the instantaneous nuclear coordinate R'. Using the
definitions (8) and (11) we can lump the first two terms

(a) together to obtain
I
I

8
d Vi(r) = —Q I ' y, (r—ri)

l ra Qga

et (r-rg) W(r-r~) V ( r-r&) + dr' ap t'i(r —r') v(r —r') . (1/)

I I
I I

I
I I
I II

I I

I
I I

I~ rs
I I

For most purposes we shall 6nd it convenient to take
Vo to be a sphere of some radius r, centered about r& and
we shall assume tha, t it is chosen small enough so that
p(r —r&) is spherically symmetric about r& (T.his is in
practice not too stringent a restriction on r, .)

AV, (r) AVi(r)+AVrx(r)+ AViii(r) (18)
whereI {r-r~) W (r-r&)

Fro. 1. (a) Illustration of the way the potential due to a pseudo-
atom is split up. (b) General form of the potentials W and W"
defined in the text.

tives of S' and U due to their discontinuity on the
surface of Vo cancel out since their sum is continuous.
The sum of hp&'& and hp&') is also continuous across
this boundary. We may thus exclude all the boundaries
of the volumes Vo by enclosing their surfaces between
shells (Sp—e) and (Sp+e). 13y letting e-+ 0 we can let
the excluded volumes tend to zero eventually, in which
case so vrill their contribution to the matrix elements,
to 3p(r), and. to the energy perturbation, since these all
involve quantities vrhich are continuous across the
boundary. Hence by "the volume Vo" we shall always
mean the limiting volume vrhich tends to Vo from
inside, and similarly by "the surface So" we shall mean
the surface vrhich tends to the surface of our chosen Vo
from inside.

In order to calculate hp(r) we use first-order self-
consistent Born-Oppenheimer perturbation theory

8
d U'(r) = —Q si ' W(r —ri),

l, a ~&a

AV"(r)= dr'Apt'&(r')p(r —r'), (20)

a V(r)
d U'"(r) = —I ', for r inside Up(l)

BXa

=0
7 for r outside all the Vp(l). (21)

1
V(K) =— dr V(r)e—'K'.

0
(22)

Then vre may split up the integral into tvro parts
corresponding to the region inside Vo and that outside
it. Thus

The removal of the singularity in the derivative of
W(r ri) at t—he surface of Vp(l) by means of our limiting
process has some important e6ects when we calculate
the Fourier transform of hV'(r).

Let us de6ne the Fourier transform of any potential
U(r) by

where the prime over the summation indicates that we
omit the term k'= 0, and AVt, is the total self-consistent
perturbation due to the phonon to first order in the
lattice displacements.

AV, (r)=p yp(r —ri)g '
t,aug &

—QN' dr
Q a

W(r r~)e 'I'—
Xa

e iK t—Q ~r
0 a

88"
dr (r—r)e—'K &'—«&

Vp(l) ~Xa

85'
+ dr (r ri)e—~K ir—r(i

x' outside Vp(l)

+ dr' hp &P& (r') e(r—r')

+ dr' hp&'&(r') p(r —r'), (16)

=—e 'K"Qu ' iE
0 a ll space

dr W(r)e *I'

where fl/fIZ, ' denotes differentiation with respect to
dS V(r)e 'I'

Sp

(23)
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1
—pg' dr
Q a

BH/'

(r r )e
—r'K r

BX~ = ie-'K" P e.'K.W'(K), (24)

erhere

where we have used the divergence theorem on the
integrals inside and outside Vo. The resulting surface
integral contains the difference between the values that
W(r) tends to at the surface of Vo from inside and
outside, respectively, and by the definition of W(r) in
terms of Eq. (13), this is simply V(r) W.e shall further
assume that V(r) may be taken to be spherically sym-
metric on the surface So and equal to V(r,) everywhere.
We may then transform the surface integral in Eq. (23)
back into a volume integral to obtain

contain the deep potential wells due to the cores.

Q,.I~V'"Ip, )=- —p I i
8V

«4 r,
'—4's (31)

o(~) OX'

BU 8 8
4a, =Pa * &pi pi *&—

OX' BXO BX~
8

=(~i—&i )4i *
l9XO

I9

BX~ t9X~

Ke may now again use the identity represented by
Eq. (2), except that we have to allow for H being non-
Hermitian in the finite volume Vo. Therefore we write

W'(K) =— dr W(r)e 'K'
all space

1
+—V(r,) dr e 'K'.

0 8
4i+~i, i„(32)

Vo(~) AX

= —2 ~.'(~a —~a )It is the transform of the potential W'(r) given by
whereW'(r) =p, (r) —V(r)+ V(r,), for r inside Vo

=y, (r), for r outside Vo. (26) M'il i =
2m&~ o(&)This potential is also illustrated in Fig. 1. It may be

noticed that unlike W(r) it does not possess a dis-

continuity at r, . Its derivatives are discontinuous at r,
but this discontinuity is small because the gradient of

V(r) at r, will in general be small. Thus W'(K) may in

general be expected to decrease rapidly with increasing
K. An explicit expression for W'(K) may be obtained
from Eqs. (26).

8
X V'Pr, *

Pa Pr, *V' —ilri . (33a)
BX~ Xrx

Using Green's theorem, this can also be written as

Pu'
2m&~ o(Z)

where we have used the Schrodinger equation for pi
and fz . Substituting in Eq. (31), we get

(25) Q ~
I
6V'"

I f )

where

W'(K) =W(K)+(Vo/f~) V(r.) 8(«.), (27) 8 8 8'
X —4'a * Pi Pi * fa—, (33b)

BB BX BORAX1
W(K) dr W(r)e —r'K r

all space

(x cosx —sinx
g(~) =3I

x'
(28b), , H

~ (r)
~pi (r) =Z' {Q i I

~V'+ ~VH
I A)+~i i,}

A.
"

28a
where B/Bri denotes differentiation normal to the
surface So(l). Using the result in Eq. (32), we get
from Eq. (15)

AV'(K)= —(cVQ)"'~(Q e E )

X W'(K) Q [Q,&K,,+H+Q, *~ K, ,+H]

[H= a reciprocal lattice vector].

Also from Eq. (20),

gV"(K)= Qhpi" (K)i(K)

(29)

(3o)

Let us calculate the matrix elements of &VH (r) w»ch

py means of Eqs. (6) and (24) we may immediately
write down the transform of hV' as —Q'Q u 'Pr, (r) dr' P„* P„. (34)

&o(&) OX'

In the second term we may formally include the term
k'= 0 since it vanishes for finite q by Bloch's theorem.
Ke may then use the completeness property of the
Pi, to do the sum in the last term, to obtain

4'(r)
~A(r) =2' {O'I~V'+&V" 14.)+~'.}

k' &I —&A:

8—Z I-' A(r) v(r —«), (35)
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where

y(r —r&) = 1, for r inside Vo(l)

=0, for r outside Vo(l). (36)

=P' .(q+H')op&»(q+H')
H'

—(1v/0)"'iQ, Q (q+H')

Xe W'(q+I') x(q+H, q+H')

1 m(k) —m(k')+E'— Mk &,(p&, le '«+ &'i/i ), (38)
k, k' Q

where
ri(k) rs(k')—

x(q+H, q+H') =Q'
I&„k'

Equation (39) has the familiar form of a general self-
consistent screening equation (see Sham and Ziman"
or Animalu, " for example) where dp&'&(r) is the self-
consistent response to a driving potential whose matrix
elements between f& and P& are given by

((4& l~v'l4'&)+M& &).

The form in which the last term of Eq. (38) has been
written means that we may treat the nonlocal part as
effectively Hermitian. The non-Hermitian part is
incorporated in Ap~') as shown in Appendix B. As ex-

"The author is indebted to Dr. R. Pick for illuminating
discussions on this point.

2' L. J. Sham and J. M. Ziman, Solid State Phys. 15, 221 (1963).' A. O. E. Animalu, Phil. Mag. 11, 379 (1965).

Note that Eq. (35) does not imply any discontinuity in

hf&, on the surfaces So since the 6rst term will cancel
out any discontinuity in the second.

In Appendix B, it is proved that Eq. (35) leads to an
expression for Ap(r) which is exactly of the form
assumed in Eq. (7), with the deformation part Ap&»(r)

given by"
rs(k) e(k'—)

k, I&,
" PA.—PI,I

X (Q ~
l

1& V'+1& V" lP )+M ~ )P *P . (37)

Since AV'r also involves Ap&'&(r) we have effectively a
self-consistency equation for this quantity. It is con-
venient to write it in terms of its Fourier transform. It
may be shown that the only nonvanishing Fourier com-
ponents of Ap"& are Ap&" (q+H) and Ap&" L

—(q+8)j,
the latter being the complex conjugates of the former.
Using Eq. (29) we obtain from Eq. (37),

6p &'& (q+H)

plained in the Introduction, we may refer to these
matrix elements as the matrix elements of our "residual
potentiaL" By Eq. (29) we see that the 6rst part
corresponds to the movement of a local potential with
form factor W'(K), where the deep well near the core
has been removed, and the second part corresponds to
a nonlocal non-Hermitian effective potential acting
between states f&, and P&, . The analogies with ordinary
pseudopotentials are obvious. Note that we do not need
to assume for this purpose that there exists a weak
pseudopotential for the static lattice. In fact for the
limiting case of tightly bound nonoverlapping wave
functions, it may be seen that if we choose Vo to be the
whole unit cell, the M» become very small by Eq. (33b)
since the f&, are small on the cell surface, while

Q4 lhV'lP&, ) remains small. This is to be expected
since in this case Dp&'&(r) will represent the major por-
tion of Ap(r) as is obvious physically. Note also that
even outside Vo, W(r) is much weaker than the Coulomb
potential due to the bare ion because of the neutralizing
charge inside Vo.

It may be seen that letting Vo in the unit cell shrink
to zero volume causes ~p ' and Mp I, to vanish by
de6nition, and W'(r) becomes the ba.re ionic potential,
so that our residual potential goes over in this limit to
the actual potential. The other extreme limit is to tak.e
Vo to be the whole unit cell. However, because of the
inconvenient geometry of the cell surface, one is forced
to make the approximation of the equivalent Wigner-
Seitz sphere, with consequent loss of accuracy in calcu-
lating 3fq ~ because of its sensitivity to the derivatives
of the wave functions at the surface of Vo. Further, our
assumption of the spherical symmetry of V(r) on this
surface is liable to break. down. Since we wish to
emphasize the application of the APK method to our
scheme, the natural choice for us will be to take Vo to be
the APW sphere in the unit cell. In Appendix A, we
have explicitly derived an expression for M» using its
representation in terms of a surface integral in Eq. (33b)
and based on the APW method. It turns out to be calcu-
lable in terms of quantities which are calculated in the
course of an ordinary APK calculation. The APK-
based M» is likely to be particularly accurate, since by
the nature of the APW method, the wave functions P&,

Beside Vo are numerical solutions of the Schrodinger
equation for the given energy EI„which is really all that
the rigorous derivation of Eq. (33) assumes, even if the
finite number of APW's taken makes P&, only an
approximate solution of the Schrodinger equation out-
side the volumes Vo. As mentioned previously, we may
take Vo as the limit of a sphere tending to the APW
sphere from ieside. For the same reason, any possible
discontinuity in the slope of the P&, obtained by the
APW method at the APW radius need not bother us.
Note that the matrix elements of the residual potential
do not involve the details of the ionic potential or the
wave functions inside Vo explicitly, although they might
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be implicitly involved in the sense that they might affect
the surface integral used to calculate M~ ~.

IV. DISCUSSION OF THE SCREENED
ELECTRON-PHONON MATRIX

ELEMENT

It may be verified that the formal solution to Eq. (38)
is given by

Apl. "&(q+H)

Now from Appendix A,

Mk'k q(&/~l) LQq+k'-k, q+Qq ~k' —k,—qj g e

where the symbol Ak k, q denotes unity if k' —k=q
modulus, a reciprocal lattice vector, and zero otherwise;
k,k' denote the Bloch wave vectors of the states k, k',
respectively, in the reduced zone scheme. Thus the
state k is specified by k and a band index v. Using,:this
form, we may for convenience write Ap&'&(q+H) as

1
(&/fl)'"qQq 2 (q+H')-

e(q+H) I' a
where

Ap~'&(q+H) =f(E/0)'I'Q P e F (q+H), (42)

Xe W'(q+H'){8HH —e '(q+H, q+H'))

e(k) —e(k')
+—q '(q+H, q+H')i (q+H') Q'

0 k, k'

X(p le '«+ '&'lp-)M k, (40)

where the dielectric matrix e(q+H, q+H') is defined as"

r.(q+H) = P (q+H'). W'(q+H')
e(q+H) &r'

X {bHHI —e (q+H, q+H ) j
1 &q(k) —n(k')

+q '(q+H, q+H')v(q+H') Q'—
k, k' Q

XQ" le """"IA)I-" (43)

(41)
In terms of this we obtain for the total (screened)
EPME, using Eqs. (29)-(31),

and x(q+H, q+H') is defined in Eq. (39). In Eq. (40),
we have taken account of the nonlocal and non-
Hermitian nature of the residual potential, and ex-
change and correlation corrections to the Hartree
screening approximately through the form of o(K) given
in Eq. (9). As is well known, '4 the real difliculty lies in
inverting the matrix e.

It is here that the simplicity in the treatment of free-
electron metals is manifest, as e collapses into the well-
known scalar dielectric function for a free-electron gas.
For more complicated solids, we may note that the fk
outside the volume Vp in each cell are in general smooth
combinations of a few plane waves. Since the major
portion of the perturbed charge density inside the
volume Vq may be represented by Ap&'&(r), we might
hope to get an accurate enough estimate of Dp&') from
Eq. (40) by calculating the dielectric matrix using
simply the "smooth" parts of the linear combinations
of the APW's analytically continued inside Vp. How-
ever, we shall undoubtedly still need several combina-
tions of plane waves for this purpose, and these will give
rise to off-diagonal elements in e corresponding to "local
Geld effects" which we may no longer neglect. Never-
theless our formalism has made the sum over H' in
Eq. (40) much more convergent than if we had used
the actual bare ionic potential to calculate Ap(r) self-
consistently. Ke may thus truncate the matrix
e(q+H, q+H') to be of finite size, invert it and calculate
Dpo&(q+H) from Eq. (40).

X I "'"+DQ {v(q+H)F (q+H)

—(q+H) W'(q+H)) Q „ l
«e+ &'Ilp„)

1
+ q(E„E„.) P e'q'— — 8

dr P„* P„, (44)
p($) BXa

l,a

8
X dr Q k *pk)+Mk k~~, (45)

~o(&)

where we have considered only the case where x'= qq+q
modulus a reciprocal lattice vector. In the case where
x'=x—g modulus a reciprocal lattice vector may be
obtained from the Hermitian property of the EPME.
Since self-consistency has already been achieved, we
may at this stage neglect the last term in Eq. (44) for
energy conserving transitions. Note that neglecting it
before the self-consistency calculation would have re-
sulted in the neglect of the bound part Dp( ) altogether.
Ke now discuss the relationship between our method
and Bardeen's original method. " This utilized the
famous Mott and Jones identity which is effectively an
alternative expression for Q k l

d prrr
l ipk) in our

terminology:
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A comparison of Eqs. (45) and (46) with Eqs. (32) and
(33b) shows that Mb. bM~ is actually the Hermitian
conjugate of our M~ ~, i.e., M~ ~~~=%I,~*, and that
the terms proportional to (Eb—Eb ) are different in the
two cases. Equations (32) and (45) in fact show that
our residual potential is Hermitian only if it acts be-
tween two states of the same energy. This is in accord
with the general behavior of pseudopotentials. '

As stated in the Introduction, Bardeen neglects the
term involving (Eb Eb.) —at the outset. He further
assumes plane waves for the fb and parabolic energy
bands, and is led to neglect also'a part of 3f~ ~~~ equal
to

(&b —&b) 2 I-'
l, a

8
4'b'

p (l) ~&a

Thus the sum of the neglected terms is equal to

(~b—&b) 2 N. '
l, a

l9

drgb*
p(&) BX(2

which, apart from a sign, is just the first term of
Eq. (32). This is only rigorously correct for a solid
where the valence charge density is uniform everywhere,
for then grad p(r) vanishes everywhere inside Ve.
Bardeen's method will therefore be quite inaccurate if
applied to other than free-electron metals.

It should be noted that TMV in their calculation of
the screened EPME also drop a term proportional to
(Eb—Eb ) before dividing by a dielectric function,
although the neglected terms may be smaller in their
case.

Finally, we point out a close similarity between our
residual potential and the method of Animalu and
Heine. ~' Let us consider the case where the wave
functions may be described by single OP%'s. In
Appendix C we prove that a slightly different way of
splitting Ap into bound and deformation parts leads to
a driving potential whose local part corresponds to the
movement with each ion of a potential

W"(r) =—(Z—Z'+Z")e'/r, for r) r,
(r, =radius of sphere V()) (47)

where +Ze is the core charge, —Z'e is the total charge
of the valence electron charge distribution inside Vp,
and —Z"e is the value the latter quantity would have
if the valence charge density were everywhere equal

cc B. J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 2'j6
(1962).

Mbb~~= PN ' dS
2t7$ & sp(g)

8 8 8
X ~b 4b* Pb — Pb* . (46)

Bs 8$~ Bs8$0

V. DERIVATION OF THE DYNAMICAL MATRIX

Since we are treating only the tightly bound core
electrons and the nuclei as the cores, we may suppose
the latter to interact directly by means of a Coulomb
potential g'(r). Then by the Born-Oppenheimer
theorem, the potential energy function for the nuclear
displacements is given by

@(2) t Q (y l(')cg (I 1'+gg(2)
l, l', ~,P

where
j2 c

(49)

(y eH')c—
8$~8XP g—gg—g ~r

for l/l'

= —Z(4 e")' for J= t' (50)

and b,E&') is the energy perturbation for the valence
electrons to second order in the displacements as
calculated from self-consistent Born-Oppenheimer per-
turbation theory. It is given by'

)s(k)
gg(~)= & p'

&&((4bIAVb") IA )(A I~V~IPb)

+QbI~VcIA )Qb I() Vb"'IA)}

+~~(~)Qbl~Vb()ly, ), (SS)

to its surface value p(r, ) inside V(). We have assumed
in deriving Eq. (47) that for r) r, there are no exchange
or correlation corrections to the core potential. Note
that (Z—Z'+Z")=Z*, the effective valence on the
core which is different from Z due to the core part of
the valence charge density. Figure 1 shows that for
r(r„W"(r) is small and slowly varying, so that its
contribution to Qb IAVrlpb) is small. The driving
potential also includes a nonlocal non-Hermitian part
Mb b which is mainly determined by the ipb and their
derivatives at r, . In the method of Animalu and Heine,
Dp(" is effectively taken into account by letting the
core parts of the valence wave functions move with
the cores, and Ap") is the self-consistent response to a
potential given by

Vbr ———Z*e'/r, (r) r,)
= —P( A(P(, (r(r, ) (4g)

where A~I'~ is an operator acting on the /th angular
momentum component of the wave function and again
may be determined by the value of the wave function
and its derivatives at r, .

Ke note however that it is our particular trans-
formation for (fb I

AVr" Igb) in Eq. (33) which allows
us to make the important transformation of the DM
into a pseudoatom part and a deformation part as
described in the next section.
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transform I iven bfe veri e6 d that its Fouri$t may

I)e.lt.v(K) ~p((52) &VIv(K) = z(I~1 )

*5 I»+H~ ' 5S)p LQ () H+Q

g, (r—rI)(I)(r) =Q ua
t, a

where

tential; ~V&r change in bar
~

e ion&c p
otential

is the first-o
rst order cha g

de6ned» q' .
otential. givenion&c pochange in transiorm o r)p

Iv+ ~gv (59)+(2) QjV I I+ g+III+ QE

82

p, (r—rI) .
Bra~&p

l(,)( ) I P uauP
F (54) asg Eq . (56) d (y) we may p'

(53) ioiiows

~V (I)(r)gp{r)~~(2) dr ~
2

o(r) &U( (2) r), (54)

g~(» asily rewriteUsing Eq. 5) emayrea Iy
here

1
UI( )gp(o)(r),

2

~@II dr &U ('I )q (')(r)
2

(60b)t on densityrbed valence e
to distingu

rewrite q.Using Eqs. (11) anand (12) we may re
'

q.

-UhV (')(r)= —P u (r—rI)+
BXa

W(r —rI)

~U'"(r) ~p")(r),++III
2

(60c)

v r—r') . (55dr' p(r' —rI)
BXa

rmation which led from
d( ),Eq. (16) to6 to Eqs. (18)

II +VIV(r) (56)DV"I(r)+hV r,
in E (19) andI ~VIII are defined in Eqs.where hVI, 6

AU'v(r) Ap(o) (r)AEI~= — dg
2

+— dry U' (r)Ap "( ), ( o
2

aEV= dr zz(')(r)AU( (')(r

+— dry "'() "'() ( o
2

lDVIv(r) =P u
l, a 9(tl)

v(r —r') . (57)dr' p(r' —rI v —' . 57
BXa

A endix D, where itare evaluated in Appendix D, whThese quantities are eva
is shown that

Na Spl l'~I"=—.Z
ll', ap

82
r—rI) W(r —rI ) (61a)

H) QW'(q+H)F p(q+ H)+comp. conj. .*P e epP (q+~~"=——.&Q»Q» (61b)

l'ggIII Sa Np
ll', ap

8
r—rI) —PU(r —rI.)

+ ~ (

1 zz(k) —zz(k')—P Q,Q.*g e.ep P — S.
ap

H).(q+, » HH)Q'Q *Dp(»(q+H)-'Z SQ I~'' ' SQ I~' P P (q+H).e.p(q+

61c)I "'~j +comp. conj. ,+~) k, »)Ip"H)PW'(q+H) }+2)& (Qv(q+H) J'p(q+H —q
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QPxv —1 Q I lg v

ll', aP

8
dr dr'p(r' —ri)p(r —r~) v(r—r')

&o(l) &o(l') BSaBSp

—hi(1VQ)'I' Q P (q+H)~e~p(q+H)v(q+H)Q'Q~*hp('&(q+H)+comp c.onj.), (61d)

&F. = 'Q I-'Np' dr n&')(r) yb(r —ri)—
laP BSaOSp

a2V(r)
dr p(r —ri)

Po(l) BSaBSP
(61e)

Substituting these results in Eq. (49) we get for the total potential energy function of the vibrating lattice:

= 2 Q Na +p @ap +QqQa Q eaep+ap(q) &

laP ap

where for lQl'

(62)

()2 C

—2
8$a BSp

and for l=l'

dr p(r —rb) W(r—rb )
Vo(l) 8$a8$p

+ dr dr' p(r —rb) p(r' —ri ) v(r r') —(63)
&o(l) ~o(l') 8$aBSp

Q2 C

—2 dr p(r —r() W(r —r()
~$a~Sp r=rl —rl' yO(l) 8$a8$p

~o(l) ~o(l)

dr' p(r —ri) p(r' —ri) v(r —r')
8$a8$p

+ dr n(') (r) yb(r —ri)—
8$a t9$p ~o(l)

O' V(r)
dr p(r —r~) . (64)

8$aBSp

Using the deinition of W(r —rq) given in Eq. (13) and the relation between p, (r—r&) and @b(r—r&) given in Eq. (11),
we may rewrite Eq. (64) as

()2 C

4-p"= E
8$ 8$p

E p is given by

82 82
dr p(r —rb) W(r —rb)+ p dr p(r —rb ) $b(r —r~) . (65)

8$a8$ p
l'gl yo (li) ()SaBSp

E.p(q) = —-,'E P (q+H) QW'(q+H)F p(q+H)

1 n(k) n(k')—
+,'cV Q'—- (I b'b)*L Q Q b i

e'«+Hi)gb)(Qv(q+H)F p(q+H) —(q+H) pQw'(q+H) }
k, k' Q QI —PJi H

+ ', (6 ««, ,+&4 -«,,)Ip"'j+comp. conj. . (66)

From Eq. (62) we may immediately write down the
expression for the dynamical matrix

(6&)

iD p
—Mco'5 pi=0, M=atomic mass. (68)

from which the phonon frequencies may be obtained by
solving the secular equation

Thus we see that we have split up the DM into two
parts —one expressed in terms of force constants be-
tween pseudoatoms and a deformation contribution
E p(q). We now discuss these contributions in some
more detail Consider .the rp p"(lNl') given in Eq. (63).
The 6rst term on the right represents the electrostatic
interaction between the bare cores, the second term is
twice the interaction between the valence charge distri-
bution inside Vo in the lth cell and the core plus the
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8
sgc(r —rI) = —— e rlr —r'1

2 fr —r'J
(7o)

Then by our assumption of spherical symmetry for the
valence charge distribution inside Vo, q p" as obtained
from Eq. (63) splits into two parts:

valence charge distributions inside Ve in the (1 )th cell
(including exchange and correlation effects), while the
third term subtracts off the interaction between the
valence charge distributions inside the volumes Vo in
each cell. Thus the three terms together represent the
force constants due to the direct interaction between
the rigid pseudoatoms composed of the core plus the
valence charge inside Vo. Let us split the interaction
between electrons s(r—r') into a "Hartree" part and an
exchange and correlation part:

s(r—r') = s~(r —r')+ s.,(r—r') . (69)

If we take the Fourier transform of w(r r') —to be given
by Eq. (9) and choose the form (10) for f(K), we see
it is consistent to take

interaction, since as mentioned in the Introduction that
should really arise out of the deformation part. In fact,
we may see from Eq. (70) that s„(r—r') is an attractive
interaction, due to modification of the Coulomb inter-
action between electrons by the exchange and correla-
tion effects. The integral in Eq. (73) may be evaluated

by standard methods" and gives rise to an effective
short-range interaction between ions of the screened
Coulomb form.

Note that we do not have to calculate the

P s"(t'= l) explicitly, since they contribute a constant
to D p given by

@ s"———P $ s" —hmE p(q) .
l'gl (i~o

Ke may verify this explicitly in the special case where

Vo is taken to be the whole unit cell. In this case, it may
be easily verified that as q —+0, the Mk A, vanish, and so
does Apt'&(r). Hence E s(q) —+ 0. Using the fact that for
this choice of Ve, W(r —ri)= —Pi ~i&,(r—ri) for r
inside V&(t)., we obtain from Eqs. (63) and (65),

iV (y Ll')E+(y tl')R (7i) Z 4-s"=0 (75)

(y p")~ represents the purely electrostatic force con-
stants as calculated between point charges Zt,'where

Z= (Z—Z'), (72)

where +Ze is the core charge and —Z'e is the total va-
lence charge inside Vo. For a metal, it is obvious that one
could make (rp s")~ vanish entirely by choosing Vs to
be the whole unit cell, although we do not do so for the
reasons mentioned in Sec. IV. Nevertheless for most
choices of V0, a considerable cancellation is thus ex-
plicitly obtained in what is normally taken to be the
"electrostatic" contribution to the DM. The quantity
Z'e may be obtained from AP% calculations, for
instance, where it may be shown" that the total charge
density inside the APK sphere can be expressed in
terIns of the logarithmic derivatives of the wave func-
tions at the surface. The total electrostatic contribution
of the (p s")~ may then be obtained by application of
the Ewald method. " The remaining part of y p" is
given by

(y LV) R—
0(&)

Finally, we turn to the evaluation of the deformation
contribution E s(q) from Eq. (66). We note that this
contribution is expressed as a sum in wave-number
space. The first term on the right of Eq. (66) is obtained
directly from hE' and represents the interaction
between the external fields of the pseudoatoms and the
deformation charge density. Since the latter arises self-
consistently out of the residual potentials due to the
pseudoatoms, we thus have an effective atom-atom
coupling via the deformation charge density. It is a
long-range interaction since the external potential
W'(r) of a pseudoatom goes as Ze/r at—large distances,
although as mentioned above Z can often be made quite
small by a suitable choice of Vo. The remaining terms
on the right of Eq. (66) include what is conventionally
termed the "overlap" interaction between neighboring
atoms, and appears here as a natural consequence of our
perturbation expansion. To see this we note that it
arises out of second-order perturbation expressions
such as

Xp(r —ri)p(r' —ri ) &„(r r') . (7—3)
8$~8xp

This represents a modi6cation to the rigid pseudoatom
force constants due to exchange and correlation effects.
This is not to be confused with what is in general
termed the "overlap" modification to the ion-ion

~7 J. Callaway, Energy Band Theory {Academic Press Inc. ,
Neve York, 1964), p. 99."E.W. Kellerman, Phil. Trans. Roy. Soc. London A238, 513
(1940).

L'see for instance Eq. (44)). M&z may be regarded as
the M.E. of an overlap operator in the sense that it
represents the departure of the kinetic energy operator
from Hermiticity in the 6nite volume Vo, and vanishes
if the wave functions vanish on the surface of Vo, i.e.,
if there is no overlap. The second M.K. is none other
than that of the screened potential which gives rise to
the deformation charge density. Thus these terms

"P.J. Roberts, Proc. Phys. Soc. (London) 89, 265 (1966).
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represent the overlap interaction of an atom in one unit
cell with the deformation part of the wave function in
that cell caused by the residual potential fields of other
pseudoatoms. As before, this leads to an effective atom-
atom coupling which also contains long-range com-
ponents. However it is expected on physical grounds
that the greater part of this interaction will be short
range.

VI. SUMMARY AND DISCUSSION

We have presented a variation of the Schrodinger
method for treating the electron-phonon interaction,
and applied it to the problem of calculating phonon
dispersion relations in solids. The first-order perturbed
charge density Ap is split up into a bound part Ap~ ) and
a deformation part hp&", and the ionic potential is also
split up into a part which contains the deep well near
the core and a residual part. The Schrodinger equation
is then used to transform the matrix elements appearing
in the self-consistency equation for Ap, to obtain an
expression which gives us back the form dpi'&+Ap"&.
What we thus obtain is a self-consistent equation for
6p~ ~ which turns out to be the response to a perturbing
matrix element from which the rapidly varying part of
the potential has been removed and which we ca,ll our
residual potential matrix element. The physical basis
for the elimination of the deep potential well near the
core is clear—it has gone completely into d p&'), i.e., into
dragging the valence charge density near the core along
with the core itself, a circumstance that remains true
for all kinds of solids, whether tightly bound or not. A
further transformation has then been made on the
expression for the second-order perturbation of the
electron energies and it has been shown how the
dynamical Inatrix may be split up into a pseudoatom
part involving force constants between rigid units com-
posed essentially of the cores and valence charge distri-
butions inside the volumes Vo and a deformation part
which involves the matrix elements of our residual
potential, and the Fourier components of Ap&').

The method depends on a reasonably accurate
knowledge of the wave functions in the unperturbed
crystal, such as may be obtained from an accurate band-
structure calculation. We have emphasized the applica-
tion of the AP% formalism to our method because the
AP% method has proved to be both accurate and
versatile in performing band-structure calculations for
a wide variety of solids, " and APW wave functions
have been used already to calculate quantities like
x-ray form factors" and positron annihilation in solids. "
In addition, as discussed in Sec. III, the nature of the
AP% scheme seems to make it particularly suitable to
apply to our transformation scheme.

Since we intend to apply the formalism eventually to
the transition metals, 'we have not been able to simplify
the matrix elements of the form (Ps.

~

e'«+I&'~fs) that
ao F. J. Arhughsus, Phys. Rev. (to be published).
Nt T. L. Louclrs, Phys. Rev. 144, 504 (1966).

appear in our formalism, and this has unavoidably led
to an increase in complexity for the expressions ob-
tained. These would simplify considerably if we applied
our method also to the case of the free-electron metals.
%e believe that in this case, the Inethod might have
some advantages over the pseudopotential methods. Sy
explicitly separating out a part of what is conventionally
calculated as the band-structure contribution and lump-

ing it together with the pseudoatom contribution to the
dynamical matrix, we have achieved to some extent the
explicit cancellation between the conventional electro-
static and band-structure contribution. Since our
matrix elements and dielectric function, etc., are only
involved in the residual deformation part, we believe
that errors in calculating the latter will not be quite so
critical as in the conventional pseudopotential for-
malism. Further, the energies of the core states, and the
details of the ionic potential near the cores (involving
exchange and correlation with the core electrons) are
not explicitly involved. We may also note that the
discontinuity in the Heine-Abarenkov potential which
causes oscillations in its Fourier transform and con-
vergence diTiculties for the band-structure part is not
present in the matrix elements of our residual potential,
as discussed in Sec. V. In conclusion, we might say that
at the expense of not being able to apply the method to
such a variety of properties as the pseudopotential
method, the present formalism offers a potentially more
accurate method for lattice dynamics calculations, and
is applicable to a wide range of solids.

The main practical difficulties we anticipate in actual
application. are (1) sensitivities of the wave functions
from band-structure calculations to the crystal poten-
tials used, which are in any case rarely self-consistent,
and (2) possible poor convergence in the sums over
excited states k' in calculating E p(tl) from Eq. (66).We
believe tha, t the erst problem may not be too serious
provided we are consistent in calculating W(r —r~) from
Eq. (13) in terms of the same atomic potentials used to
build up the crystal potential utilized in the band-
structure calculation. One also hopes that, as discussed
in Sec. II, removal of the d p"' part helps improve the
convergence of the sum over k'. Needless to say these
points may only be checked by an actual calculation.
It should be noted, however, that as discussed pre-
viously, the last two terms in E p as calculated from
Eq. (66) contain a large portion of what is effectively
the overlap interaction between neighboring atoms,
which is known from experiment to drop off rapidly
with increasing neighbor distance. Thus it is possible
that the sum in wave-vector space may not be rapidly
convergent, and special methods may have to be used
to improve the convergence of the sum. Details will be
published in a forthcoming paper.

After the inception of this work, a recent paper by
Qolibersuch" on the electron-phonon interaction by

"D.C. Golibersuch, Phys. Rev. 157, 532 (1967).
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the APW method was brought to the author's attention.
Golibersuch obtains a formula for the EPMK by
assuming that the lattice perturbation corresponds
essentially to a rigid displacement of the muffin tins
centered on the ion cores, and further he considers only
the case of energy-conserving transitions. No attempt
is made to consider the effect of the electron response in
a self-consistent manner. A comparison of his formula
for the total EPME with ours for the particular case of
energy-conserving transitions shows that his assumption
is equivalent to keeping only the term I "'" in Eq. (44).
Further, the absence of the (Eq—Eq') term in his
EPME implies that one cannot use it as it stands for a
calculation of the phonon frequencies.
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APPENDIX A

Inside the APW sphere of radius r, centered on the
lattice site r„, the APK wave function may be written

as"
oo +l

@&(r)=—4n.e'"'"p aH'p p i'ji(lk+EII», )
gn H l=o m-—1

Ni(c)
X ~in*(k+H) ~i-(~, v), (A1)

ui(», )

where the mixing coeScients aH of the APW's are
normalized such that fz*gz is normalized to unity in the
volume 0; the coordinates of r relative to r, are expressed
in terms of (p, g, p) in spherical coordinates, and Ni(») is
the radial solution to the Schrodinger equation inside
Vo(v) with angular momentum l.

Substituting these wave functions into Eq. (33b), and
using Eq. (6), we get

M ~ = i($/0)'"I-Q, A"'-', +Q,*h"'-",-,)J .„, (A2)

where ~~ ~,, is unity if k'=k+q modulus a reciprocal
lattice vector, and zero otherwise. (We are working in
the reduced zone scheme such that the state k is speci6ed
by a wave vector k in the erst zone and a band index
which we shall not need to write explicitly. )

u, .*(»,) Ni(», )E, l'=O na, na'

jv(lk'+H'I» ) ji(1k+HI» )
Jg p

—— 16m'», 'P (-aH"')*aH" g Q i('+'—')(—1)' Fi „(k'+H') l'i„'(k+H)

x P e. dn ui'"(».)vi „.*(s,p) Lu, (p) v,„(s,p)&,=„,
0 8$~

8
up*(», )F—i *(8,p) (Ni'(p)—Yi„(8,q)j,=„, (A3)

Bs~

where u (») denotes a radial derivative. Let us transform to a spherical basis for the e-, thus

r
6
50

—1/W2 i/~2 —0 e, '

0 0 1 eg

1/v2 —i/V2 O e,
(A4)

Then, using the gradient operator theorem, "we have the result that

i+1+I-
I I

~'(.)+ ~(.) I~. .---'-"'~, -4--,
&2t+1)

where @(») is any radial function and the C s are the Clebsh-Gordan coeKcients. Substituting this result back in

Eq. (A3), and using the radial Schrodinger equation for the e&(»), we obtain finally

~va=ip'/")'"I-Q, ~~ ~,,+Q,*~a g, q] Q '.I.", (AS)

» M. E. Rose, Elementary Theory of Angular momentum (John Wiley Bt Sons, inc. , Ne~ York, 1957), p. 124.



ELECTRON —PHONON INTERACTION

f22

I "'"= -16m'r 2 P (aH'a')~aaa 2 j&(l k+HI r,)F'&~~(k+H)
2m lm

X P j&+z( I
k'+H'

I
r,)P'~&, (k'+H')C, '+' ' 'I

t(l+1) 2m 2 et+~'(r, ) )) n~'(r. ) t u$+ j (r,) Nq'(r, ))X + [V(r,)—Ea]— +
I

+-
fg 0' r, n~+~(r, ) )u~(r, ) r, n~+a(r, ) n~(r, ) )

1/2

+jg g(Ik'+H'Ir, )Y'( ), (k'+H')C
2t+li

t()+I) 2m (2 w& ~'(r,))N((r, ) (l+1)(uj(r,) g, ~'(v,
))x + [v(r,)—Ea]—I

—+
I

+
r.2 52 kr, N~ )(r,) IN&(r, ) r, ku)(r, ) u) ~(r,)

m—m', a p
A

where A; is the matrix defined in Eq. (A4).
The logarithmic derivatives (u~ /N~) are calculated in

the APW calculation, along with the coeKcients aa"
and the energy Ea. The N&(r,) are to be evaluated at
energy Ea and the u~~~(r, ) at energy Ea. .

term of Eq. (82) we obtain

8
hp(r)= —Q n ' y(r —r()—n«)(r)

l, a

APPENDIX B

If n(k) denotes the occupation number of state k, the
6rst-order perturbed electron density is given by

o(l)

Substituting in this the result in Eq. (35) we obtain

l, a

X{(i(a IELV'+AV" Ii)t )+M ~ ). (84)

where

iK p(K)e '*"

We shall now prove that the 6rst term in curly brackets
in (84) is Bp(r—r&)/Bx as defined in Eq. (g). The
Fourier transform of Bp(r—r~)/Bx is

+~V" I4 a)+~a a))f a (r)Pa*(r)
1

p(K)= — drn(')(r)e 'K'(' ").
0 yo(l)

(85)

n(k)
{

k, k' gz, —Pz, r

+~V" I4 )+~ '8 *(r)A(r) (82)

where n (') (r) is the unperturbed valence charge density.
Now by using Schrodinger's equation we may derive the
following important relation between Mz, z, and its
Hermitian conjugate:

The transform of the first expression in curly brackets
in (84) is

n(0)(r) e—~K (r—rl)

BXa

~a a~=~aa +Z & '(Ea —Ea )
l, a 0(l)

d& A*pa, (83)

where dS denotes the o. component of the vector dS.
Thus, by interchanging k and k' in the sum in the last

Since by the Bloch theorem the second term vanishes
for k=k' and 6nite q, we may formally include this
term in the sum. Then applying the completeness
property of the Pa to the second term of (86), we may



169S/+HAK ~

andwrite e equation

1
sK rl

Q yp(Z)

;K. (r—rt)

BXa

;K. (r—rl)n ')(r)e ' '

p(l)

/d r p p (0) (r') v(r

8
lP u~ I(,)(, )7(r' —r() )v(rI

a

Ivr —r)d, „(o)(r')V(ra be rewrittenr ence theoreme
l, a

d „()(,) — ( —'
Xa

(C6)
—iK«—e

0 p(Z)

,K. (g—rOi(o)(r)
l9Xa

(K),K ri (87)=iE p

APPENDIX C
t

Consi er'd the equation

84),„the right «Kq.that the erst ter
. (8), and hence t

ence we see
defined in Eq

d formation

(0)r as .
ith t e e

is exactly ~p
t be identifi. ed wisecon d term mus

part ~p (i)

Zya p(l)

l=Q ua
8, () v(r —r),

8+a

, , („-(o)(,)-~p"'("»~ ~

Idg. n("(") (' '
p(l)

8
Idx v(r —r )p u. 'p(r

l, a

(c7)—gp(0)+ gp())hp= p (C1)

g

fQ ~ )AV., -+.v-~p, )+~, ,)

g (0)rent deinitions of Apw choose silightly diff t~,.ll ..d,6..a new p
82), and a

Ap'". Speci6 y
equal to t e r

(') e ual to t e

emembering

( o)3d 6 italo of AV' L
e lf-consistency eqet a new se-

o(l)

v(r —r') = — v(r —r
8$a

(C8)

Hence Eq. (C4) becomes

Z, a

f the unperturbed valence
the surface of Vo

used the divergence theorem

where

n'. (C2)XPa )*+comp. conj., 8
u ' 1F"(r—r~),AV'(r) = —Q u (C9)

and

~v"(r)= fdr'ap o) r/) (r rf) (C3)
where

8"'(r—r&) = W(r —r~—
p(Z)

—r' . (C10)dr' p(r, )v(r —r ) .

8
u l lV(r r&)hU'(r) = —g u

" r—r() equals Z*/r for—"(—A discussed in
th ff t e valence onr&r, where Z is

(o) r' v r—r' . C4)
' th (')(r') —dp(o)(r'))v r r-+ (Er' hp

' — (o)r vr

Now

Idf p'6 (')(r')v(r —r)

APPENDIX D

'n use of thehat by making u
mp ro erty of the f& we may w

'
completeness property o
as

u ' y(r —rg) n(o)(r6 (o)(r)= —g u y — n(o) r~p = — u
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Using this result and the expression for AV given in where

Eq. (19), we get 5E III= —g u I g u(k) g„,~/VI+/VII~/„)
k, k'

where

AEI=-' Q (y e"')Iu 'uev
ll', np

8
dr —W(r —r() u «&(r)

, (L) ~&a BXp

aS, —W(r —r, .) ~«&(r)
0(&) ~x

dr p(r —r~) W(r —r~.),
0(g) BXO BXp

(D2)

(D3)

8
X «A* ~~ Q'.—(&VI+&V If ')

Fo(l) ~&a

8
«Pp * fg, (DSa)

o ($) l9X~

u(k) —e(k')
gE III I

k, k'

XQa I
AV'+~V" ~4a)~a. (DSb)

8
AE,I"=-', gu 'g e(k) Mv~ dr f&*

l,a k, k' Vo(~) Bx~
where we have used the fact that inside Vo(l),
u& &(r)=p(r —r~). We shall find it more convenient to
express hE" as a reciprocal lattice sum. For this

purpose we make use of a well-known theorem in
Fourier analysis: u(k) —u(k')

Mk'kMkk' e

k, k'
(DSd)

8
dr pk

* fI, , —(DSc)
p(~) Bx~

dr F(r)G(r) = 0 g F(K)G*(K). (D4)

En —'i(XO)'12 g Q (q+H) e W'(q+H)Q
H a

XQqL&p~" (q+H) j*+comp. conj. (DS)

Using the representation for Ap't" given in Eq. (42),
we get the expression for AEII in Eq. (61b). To obtain
AEIII we first use Eq. (37) for Ap&"(r) to transform
back into the form

N(k)
gEIII —1 P&

k k' ~k—Ek

X{Q I; (
&V'+ &V"

(f I,)Q I, (
&V"'

( pa )

+(O'~ ~V"'(a.)(a.]~V'+~V" lS')

Ke shall also frequently make use of the fact that since
all our potentials and charge densities are real, G*(K)
=G(—K). Further, since our potentials are even func-
tions of r we shall take W"(K)=W"(—K), etc. Making
use of Eq. (29) we get

Note that again we have formally included the terms
k'= k in hE "~ and AE '" since such terms vanish for
q&0. %e may then use the completeness property of
the |4.to obtain

AE "'=-' Q u ' Q n(k) dr
&,0, k &0(&)

8
X 4.* 5(~V'+~V")4~j

OX'
8—$ *(hV +hV")

Bx~

=2 Qu~
8

drp(r —r&) (AV+AV )
0(&) Bx~

—I Q (y LV)IIIu lu V

Ll', np

where

+2+ua
l,a

l9

dr p(r r~) A V"—(r), (D9)
o(&) Bx~

82

(4.e")'"=— «p(r r~) W(r——r~) (D«)
~o(&) 8$~8xp

Applying Eqs. (30) and (D4) to the second term of
Eq. (D9) we get finally

+Ilrr~, ~(p~ (
+VIII )QI, ,)+~~~,(p~,

~

+VIII ~p~)} (D6) ~E~ 2 Z (~ e ) u ue

Using the identity (32) for ($1, ~
IIVIII ~QI,) we obtain

QEIII —AE III+QE III+QE III+gE III (D7)

+{I~i(lvQ) '~' P Q (q+8) ~e,p(q+H) v(q+8) 0'

XQ,L&p "&(q+H)j+comp. conj.}. (D11)
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To evaluate ~E~'" let us write

AVI+0 V"=P {V(q+H)e «+H"

+V*(q+H)e-' ~+"&'} (D12)

since we know that these are the only nonvanishing
Fourier components of the perturbing potential. Then
we may write

n(k) —II(k')
AE III 1 Pi

k, k' Qk —/k'

XZ {V(q+H)Q. I
""""IA)M.

In the second term we have interchanged the indices
k,k' appearing in the sum. Formally including the term
k=k' and using the completeness property of the Pz
we may show that the two terms in the curly brackets
cancel.

To evaluate BED"I we use Eq. (B3) to transform
Mkk and obtain

e(k) —n(k')
~&P'=2 Z' Mi, aMI a*

k, k'

——', Q' {e(k)—Ii(k') }Mi,.i,
k, k'

+V*(q+H)(lp/, Ie '«+I&'Ii/1, .)MI, I }, (D13) l, a
(A*4') (D17)

o(l) &a

(Eei")I=-,'1VQ,Q,*Q e e
aP

where we have interchanged k, k in the summation in Using Eq. (AS), the first term may be written as
the second term. Using Eq. (83) to transform the first
term, we may write this as

e(k) —e(k')
gg III 1 Q& V(q+H)

k, k'

Xgq Ie'«+Hi'I)i)Mq I*+comp. conj.

1 e(k) —e(k')
(I I'k)*1 I'k

k, k' Q gk —/k'

X -,'(&l, &,,+&»,,)+comp. conj. (D18)

——; P {~(k)—~(k')}P V(qyH)
k, k'

X@I, Ie'"+8"Iga) 2 N.
l, a

Interchanging one of the sums over k,k' in the second
term we may write it as

(~Z,**I),=—g. P"(k)

By using the expression for V(q+H) obtained from
Eqs. (29) and (30), and for Mzz given in Eq. (AS) we
may show that the first term yields

8
X M~ ~ dr (&I*&„.)

Vo(l) ~&a

1 I(k) —e(k')
~~I'"=2&QgQa*Z e ee Z Z'-

ap I k, k' Q gk —Ekr

x(1 ")*(~'I '&" &'I~.)

XLQv(q+H) J e(q+H)
—(q+H)eQW'(q+H))+comp. conj. (D15)

The second term vanishes since it may be written as

—2'-' -'Z V(q+H) 2' (k)Q I
""""I4')

l, a H k, k'

In Appendix E, we combine this term with hE~"' to
show that their sum vanishes identically or else con-
tributes a constant term to the dynamical matrix which
may be absorbed in C e". Using Eq. (D1) and Eq. (57)
for AV~v we may show exactly as for the result in
Eq. (D3) that the first term of dEIv may be written as

I Q (@ lV)IVI IN V

ll', aP

where

X dS f f~—Q'e( )(kf [e" + &'IP.)
k, k'

(@ elv)Iv — dr eir

&o(l) ~o(l)

o(l)
(D16) Xp(r' —ri) v(r —r') . (D20)

8XaBSP
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h'
(EE "') +dkZ"'= —-' g e(k) P u 'u '—

By using arguments similar to those used in deriving we get
Eq. (D5) we get for the second term the expression

—(2i(1VO)"' p g (g+H) „e,p(q+H) v(q+H) 1P

XQ~*hpu'(z+H)+comp. conj.).
Thus AE'v is given by Eq. (61d) in the text. Again using

Eq. (Dl) and the expression for 8 E'~' given in Kq. (21)
we may use arguments similar to those used in deriving
Kqs. (D3) and (D20) to show that

dr AUm(r) Ap(0&(r)
2

8'v(r)
= ——', P u. 'up' dr p(r —r() .

0(l) ~Xa~Xp

Finally, using Eq. (53) for AV»&'& we obtain

k, k' l, l', a, P 21n

8«' V.%*(r) 0 (r)
&g(l') BXa

8 8—y, .*(r)V,' y, (r) P,.(r') P,*(r')
BXa - BXp

8 8—V.V»*(r) 4'(r) 4*-(r)V' 4' (r)
BXa BXa

xf
Vp(l)

t9

X 4 (r'),4 *(r') (K2)
BXp

By summing over k' and using the completeness
property of the P& we may show that the first term
vanishes unless t=l'. The second term may be trans-
formed by means of the divergence theorem to yield

dr e&'&(r) AV»&" (r) ——', P e(k) Q u 'up' df
k, k ll, ap 2', y (l) 0(l')

=-,' P u. 'up' drn&'&(r) P»(r —rg).
laP BXaBXp

Thus EFv is given by Eq. (61e).

APPENDIX E

From Appendix D,

(BED"')2+DE '"=—-' Q u ' Q u(k)
l, p k, k'

X ~kk
8

dr A. 4»*
0(l) BXp

l9

dr 4» 4»* . (E1)
p(l) BXp

Using the expression for M». » given in Eq. (33a),

8 8
V,'P *(r) P„,(r) P*(r)V—,' P (r)

BXa BXa

a 62

X P»*(r') — P»(r') +-,' Q n(k) Q u 'up'
QXp k, k' ll', aP

I9

dr dSp' V»f»*(r) P» (r)
V S BXa0(l) 0(l')

8—f»*(r)V,' f» (r) P» *(r')P»(r'). (E3)
t9Xa

Now we may again use the completeness property of
the f» to show that the above expression also vanishes
unless I= 1'.

Thus (ARq" )2+DR."' may be written as ——', P&„p
XN 'Ip'C and contributes only a constant to the
dynamical matrix. The constant C may be absorbed
into P p" which need not be calculated explicitly as
discussed in Sec. V.


