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The general moment-method calculation of diffusion is reviewed for the high-temperature long-wavelength
limit. The temporal Fourier transform of the correlation function is assumed Lorentzian with a Gaussian
cutoG. Exact expressions for the second and fourth moments are obtained as lattice sums over the spin-spin
interactions. For a spin system with K=~X;,;A;;I;.I;, and 2;; nonzero only for i, j nearest neighbors,
one has D=cA;;b~/5, where b is the nearest-neighbor distance and c=0.328 for the bcc lattice and 0.296
for the sc lattice; the latter agrees with a similar calculation by Mori and Kawasaki. For exchange-energy
diGusion, c=0.67 for the bcc lattice. In a classical dipolar spin system, the exact moment method gives
nearly the same result as the density matrix theory of Lowe and Gade. Reduction of diBusion by moderate
quadrupolar interaction and diffusion energetics in an inhomogeneous field are discussed.

I. INTRODUCTION

PIN diffusion was first invoked by Bloembergen' to

~

~

~

~

~ ~ ~ ~

explain his measurements of T1 in impure ionic
crystals. In crystals like these, ambiguous characteriza-
tion of samples and theoretical complexity have com-
bined to prohibit, until very recently, an experimental
estimate of the diffusion coefFicient. The first quantita-
tive spin-diffusion measurement was apparently that of
Reich, ' in solid He'. His data were not very accurate,
but agreed with the spin-diffusion coe%cient which he
guessed fairly accurately from the exchange interaction
between spins, inferred from the exchange narrowing
of the nuclear-resonance line. The present calculation
was stimulated largely by the possible measurement of
the diffusion coefhcient in a type-II superconductor, '
as suggested by Caroli and Matricon, 4 and by a careful
series of measurements of the spin diffusion coefficient
in He' by Thompson, Hunt, and Meyer' which estab-
lished conclusively that spin fIip-Bop diffusion, rather
than some other mechanism, was operative, and which
allowed an accurate estimate of the diffusion coefficient.

In the above, magnetization is the entity which dif-
fuses; in a large static magnetic field Ho energy and
magnetization are proportional to each other and we
call the diffusion coefFicient Dz (Z for Zeeman energy)
in this case.

Ever since measurements of relaxation time T1 have
been performed in zero field, it has been recognized'
that mutual spin fhps would also cause diffusion of
interspin energy at a rate comparable to Dz but different
from it, different because both the thing diffusing

*Also at Physics Department, Columbia University.' N. Bloembergen, Physica 15, 386 (1949).' H. A. Reich, Phys. Rev. 129, 630 (1963).' W. Fite and A. Redfield, Phys. Rev. 162, 358 (1967).
C. Caroli and J. Matricon, Physik Kondensierten Materie 3,

380 (1965).
5 J. R. Thompson, E. R. Hunt, and H. Meyer, Phys. Letters

25A, 313 (1967).
'A. Redneld, Phys. Rev. 115, 315 (1959). Errata: Insert

(—1)" before 3/2„on second line, p, 316; delete (—1)" after
Eq. (3),

(spin-spin energy) and the diffusing interaction (un-
truncated spin-spin interaction) are different than in the
case of the process described by Bloembergen. The
same is true for spin diffusion in the case of strong rf
field experiments analyzed in the rotating Geld. ~ We
will not concern ourselves with these classical dipole
cases because they are formidable to calculate, but
rather with He', where it is possible to observe nuclear
resonance in an external field small compared to the
interspin exchange interaction. '" In that case, the
small classical dipolar interaction between spins can
couple Zeeman and exchange energies, and, if the ex-
ternal field is small, the easily observable Zeeman
energy serves as a thermometer measuring the local
spin-spin (exchange) temperature. The magnetization
is then expected to appear to diffuse at a rate charac-
teristic of exchange energy, and we call the diffusion
coefficient D& in this case. It has recently been measured
in bcc He' by Thompson and Hunt. '

Many theoretical papers treat an imaginary Heisen-
berg paramagnet, having no dipolar interaction. In that
case, at least in the high-temperature limit, the mag-
netization and the exchange energy diffuse completely
independently of each other and of the applied uniform

magnetic field (the latter because the 6eld can always
be transformed away using a rotating frame of reference
without changing the Hamiltonian or density matrix).
D& is the thermal diffusivity in the zero-field limit.
Apparently, it cannot be measured by neutron diffrac-
tion.

Theoretically, it is expected that

Dz =cb'~;

where ar; is the root-mean-square spin-spin interaction
between nearest spins (i.e. , approximately T, ' in the—

7 I. Solomon and J. Ezratty, Phys. Rev. 127', 78 (1962).
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classical dipolar case), b is the nearest-neighbor dis-
tance, and c is a number of order unity. A perturbation
calculation of Dz is not expected to be accurate because
the spectral width of final states is of the same order
of magnitude as the predicted Qip-Qop probability.
Such a calculation has nevertheless been carried through
by Lowe and Gade" for the classical dipolar case, on
the reasonable grounds that there the Qip-Qop terms
are half as large as the secular (S;,8;,) terms of the
spin-spin interaction, and that the perturbation limit
might therefore not be too bad.

The moment method, ' which we describe brieQy
below, was introduced by de Gennes" to obtain space-
time correlations of Quetuations in magnetization in a
paramagnet, measured experimentally by small-angle
inelastic neutron diffraction, and related to spin dif-
fusion by the Quctuation-dissipation theorem. Estimates
of Dz by the moment method" "have been reviewed by
Bennett and Martin" and by Resibois and DeLeener, "
who have also estimated Dg down to the critical point
in a Heisenberg paramagnet (in which there is assumed
zero dipolar interaction so that Zeeman and exchange
energies are independent as long as 3E is small compared
with the saturation magnetization). Except for these
last two articles, all calculations assume the high-
temperature limit, including ours. We calculate Dg
from an exact calculation of the 6rst two nonzero
moments; earlier papers are based on approximate
fourth moments and treat only the exchange interaction
in the sc lattice. Knowledge of the exact second and
fourth moments does not yield an exact value for Dz,
since prediction of the latter depends on guessing a
function g(pp) whose second moment only is known from
our calculation.

We also calculated D& in the same way for bcc He'.
The only previous calculation of Dz of which we are
aware is that of Kawasaki. "

Spin diffusion should not be confused with spectral
diffusion, which can occur when different spins are
subjected to a local static field larger than the interspin
interaction, the local static field being uncorrelated
with position. There have been no simple satisfactory
solutions to the spectral-diffusion problem, or, for that

"I.I.Lowe and S. Gade, Phys. Rev. 156, 817 (1967). A related
experiment is described by D. Tse and I. J. Lowe, Phys. Rev.
(to be published),

'~P. G. de Gennes, J. Phys. Chem. Solids 4, 223 (1958). For
more recent work and references on neutron diffraction, see M.
F. Collins and W. Marshall, Proc. Phys. Soc. (London) 92, 390
{1967); also, M. F. Collins, J. Appl. Phys. 39, 533 (1968).
Collins and Marshall point out an arithmetical error in de
Gennes's simple cubic value for M4, their expression for M4 for
arbitrary k agrees with our Eqs. (14) and (23) in the small-k
limit.

"H, Mori and K. Kawasaki, Progr. Theoret. Phys. (Kyoto)
27, 529 (1962); K. Kawasaki, ibid. 29, 801 (1963).' H. S. Bennett and P. C. Martin, Phys. Rev. 138, A608
(1965)."P.Resibois and M. DeLeener, Phys. Letters 25A, 65 (1967);
Phys. Rev. 152, 305 (1966); 152, 318 (1966);J. Kocinski, Phys.
Letters 25A, 92 (1967),

matter, to the spin-diffusion problem in the presence of
such inhomogeneous broadening.

G. MOMENT METHOD

In a previous paper' the moment method was out-
lined based on a transient or time-domain argument;
we here review it brieRy in the frequency domain, using
the same notation as much as possible. We first discuss
diffusion of magnetization in high field to obtain
Dz, we then describe how the argument is changed to
calculate Dg.

In this method we assume without proof that the
space-time variation of magnetization obeys a diffusion
equation in the limit where the applied held is a uni-
form field plus an infinitesimal space-time varying field,
its variations in space being smooth over a distance
large compared to a lattice spacing, and, in time, slow

compared to a spin-Qip time. We then seek an expression
for the linear response of the system which is consistent
with this equation and is also in accord with the high-
frequency response of the system (still for slow space
variation) as constrained by expressions for frequency
moments of energy absorption, obtained just as Broer"
obtained the absorption moments in the paramagnetic
absorption experiments of Gorter and co-workers. The
low-frequency diffusion assumption and the high-
frequency predictions are reconciled in the same way
as exchange narrowing was treated by Van Vleck, '7

and by Anderson and Weiss."The assumption of dif-
fusion, and the final state implied thereby, should not
be taken lightly because it has been conjectured that
spin diffusion may be quenched in the case of large
inhomogenious broadening. "

We suppose that a large field Hg has induced a
magnetization 3fo as a result of spin-lattice relaxation
which will thereafter be neglected as infinitely slow.
At some time an infinitesimal space-time varying 6eld
is applied, one of whose Fourier components can be
written

h(x, 1) =Hi cos~t sinkx. (2)

This field is assumed to be in the s direction, in violation
of Maxwell s equations, which is probably not signifi-
cant since transverse components omitted in (2) only
tilt the field slightly if IIO is large.

In the linear limit, this Fourier component can be
treated by itself. If ~ =0, the dc response of the system
a long time after (2) is applied, and after spin diffusion
has equalized the Zeeman temperature, will be M=
Mp+ris(x), where m(x) =xpk(x). Here xp=Mp/Hp, or,
more generally, 7(p is the ratio of (M) to Hp, where ( )
denotes space average. The magnetization is expected
to obey a diffusion equation consistent with this long-

IL. J. F. Broer, Physica 10, 801 (1945).' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948)."P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269
(1953).

» P. &, Anderson, Phys. Rev. 109, 1/92 (1958),
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time equilibrium:

m, /at=DzV (M. ~a.),
H, =Hp+k(x, t).

If the small field (2), with p~=0, is turned off after
equilibrium is reached, the the magnetization will decay
back to its uniform state exponentially with time
constant r = 1/Dzk'. If, on the other hand, (2) is applied
continuously with co/0, the response will be Debye-like
appropriate to the time constant 7.

sinkx
222(x, t) =xpPi (cospit+pir sin&pt) .

1+perp

To make contact with the moment method, we calcu-
late the rate at which energy is absorbed by the spin
system from the coils which produce the field (2); this
is the space-time average of k Bm/Bt. The average power
absorption per unit volume is

ED(pi k) = 'IIi'y()pPr/(1+-pPr') (4)

For large co, the energy absorption is a constant
function of co, according to this reasoning; in the limit
k—+0, Ek—' is a constant except for a region O'Dg near
zero frequency, in realistic cases a region encompassing
at most a few cycles.

This cannot be true for large co, since there are no
transitions possible for co))WHO. In fact, the absorption
must drop to zero for frequencies near the spin-spin
interaction frequency, just as it does in the case of
zero-field paramagnetic absorption as discovered by
Gorter and co-workers. Thus the true absorption is
expected to be given by

E(pi, k) =Eg)(pi, k) g(M),

where g(0) =1 and g(pp) is positive and decreases to
zero as co—+~.

We use 0., P to label eigenstates of the system in the
uniform field Ho, and define P p as the matrix element
of the time-dependent perturbation

~=+ k(x, , t) S,„ (6)

where i labels diiferent spins.
l
P,s l

is thus proportional
to the transition rate between states n and P, induced by
J'.

The ratio of two moments of the absorption is

f,co~ppE(k ~) d~ p (~ ~ )2n+2l p l2

fp~pi2™E(k,(g) d~ Q p(pp —~p)2~2l P p
l-'

(7)

where co is the energy of state n, divided by fi. The ex-
pression divers from the familiar Van Vleck'7 moment
expressions by the extra factors of (pi —pip)2 on the
right. These" arise whenever absorption is not confined
to a narrow line and come from the fact that the rate of
energy absorption associated with two levels is pro-
portional to the transition probability times the energy

absorbed per transition fc(cp —cps) and also times the
thermal occupation probability difference 5 (cp —~ps) /k 7
(in the high-temperature limit). We define

Z s(pp —&s) "I &el
Z-sl ~-s l'

These moments can be calculated, at least in principle.
We also have

3f,=,g da), ,g d . 9

In the numerator the integrand can be replaced by
g(M) because, as mentioned above, the other term is
diGerent from unity only for very low frequency; and
likewise in the denominator g(pi) —1 in the range where
the other, Lorentzian, term is appreciable. Thus

fg(M) dc'

fl:r'/(1+~'r') 3d
= (2/7rr) fp"g(pi) dpi; (1o)

likewise

M4 fp pp g(pi) dco

M, fpgg(p)) dpi

All the higher moments of g(pi) can likewise be calcu-
lated, in principle. In practice one calculates only M2
and M4 and guesses a form for g(cp) consistent with
these two moments. We assume" '2 that g(~p) is Gaus-
sian because a Gaussian has 6nite moments, is mathe-
matically tractable, and has been successful in other
similar cases.

Of course, the form of g(&v) depends on the Hamil-
tonian, and may well be radically diferent from a
Gaussian. We have mentioned that diffusion may not
occur, or may be strongly inhibited, in the case of in-
homogeneous broadening. " In that case g(p~) might
have a delta function at co=0, or a strong peak near
co =0, and such a peak would not be easy to predict from
the moments of g(pi) . For the cases treated in this paper
we believe that diffusion does occur, and therefore that
g(pi) is well behaved near co=0. Inspection of the ex-
pressions' for the high moments suggests that for these
cases the ratio M2„+,/M2„ is not strongly dependent on
n, consistent with a finite-range function like a Gaus-
sian. If g(pi) is assumed to be a step function, the pre-
dicted Dz is decreased by a factor of only 0.72 compared
with the prediction (12) below.

Assuming g(pr) is a Gaussian, Dz is then determined
by (10), (11), and the equation r '=Dk' as

Dz = (M2/k') (2rM2/2M, ) '". (12)

Equation (8) becomes, ' after converting the sums to
traces of commutators, and assuming a uniform spatial
distribution of one species of spin (100% abundant),

-'2k2+;x;pTrLSe, S;,]pe, S,,]
fi'TrS;,'
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where x;,'=x;—x;, and K is the Hamiltonian of the
system in a uniform 6eld.

Likewise,

&'g;x,, TrL3., S,,)&X, S,,j
M4 2Q;x,PTrEX, Pe, 8;.Z(Se, L3'., 8;,]g

(14)

This completes the general theory. Ke will not attempt
to justify or discuss it further.

Of course, in general, Dz is a tensor for the dipolar
interaction even in a cubic crystal, and for the exchange
interaction in noncubic crystals. The x-s component of
the Dz tensor, for example, relating diffusion in the x
direction to the magnetization gradient in the s direc-
tion, would be obtained by replacing x;; with x,;s;; in
(13) and (14).

We now turn to the calculation of D~, which is a
simple generalization of the above. Although a more
general discussion is easy, we specialize our treatment
to He' in zero applied field, where the dominant inter™
action is exchange between nearest-neighbor spins
only; it is reasonable that next- and further-neighbor
interactions are negligible. For the Bravais lattices we
discuss, this exchange is the same between all spins.
Now assume the crystal is subjected to some space-
time varying deformation; this will produce a space-
time modulation of the exchange interaction of the form

P =0'iQ E~ cosMf slnkx~, (15)

where E; is an operator whose expectation value is the
unperturbed exchange associated with spin ~;

E;=Q Ag, S,'Sg. (16)

Here Ag, is the unperturbed exchange interaction be-
tween spins i and k, so that the exchange Hamiltonian
in this case is BC =—,g,E;.The constant ei is proportional
to the imposed ac strain variation. The exchange inter-
action Ag, is zero unless i and k are nearest neighbors;
then it is some constant A for all nearest-neighbor
pairs. The perturbation (15), like (6), is artificial since
any real lattice deformation would involve shear as well
as the pure compression implied in (15).

The response of the system as a result of diffusion is
to make the expectation value of E; vary as sinkx;
spatially, and. periodically with period ~, temporally.
In fact, all the reasoning leading to (12) follows with
S;, and S;, replaced by E; and E; in the expressions
for M, and M4, (13) and (14). This completes our
general derivation of DJ..

Note that at extremely low temperatures the thermal
conductivity of the spin system would produce attenua-
tion of phonons, just as thermal conducitvity of a gas
does for ultrasonic waves. Conversely, phonons could
relax the exchange system via the same rnechanism-
an eBect which we have not seriously studied but believe
to be negligible.

This ratio is maintained at this value by the weak clas-
sical dipolar interaction with a cross-relaxation time of
less than 1 sec if HI, Hp in He'. lf diffusion is meas-
ured over a time scale slow compared to this cross re-
laxation rate, this ratio would be maintained and the
diffusion coefficient is expected to be the average of
Dz and DE weighted against the relative contribution
to the total energy (taking as zero energy a completely
disordered spin system). We thus expect that

D = (DzH(p+ DJyHr, ) /(Ho +'Hl, ) . (18)

The denominator of (18) is proportional to the heat
capacity of the spin system, the numerator to its ther-
mal conductivity. More generally, the behavior of the
system might be described by two diQusion equations,
for exchange energy and for Zeeman energy, connected
by spatially local cross relaxation.

Finally, we should mention that spin-echo experi-
ments in He' usually measure the diffusion of transverse
magnetization M„M„whereas we have defined Dg
above as the diffusion coefFicient of M, . From the rota-
tion invariance of the exchange interaction it is easy to
show (by transforming away the dc field with a rotating
coordinate transformation) that space varying tra, ns-
verse magnetization will diffuse with the same coef-
ficient as M, in a uniform 6eld. The measurements are
performed in a nonuniform 6eM, however, but it is
reasonable, though not proven, that the usual spin-
echo diIIfusion measurements yield the same diffusion
coeKcient as long as the field variation between neigh-
boring spins is small compared with the exchange inter-
action, as it always will be. Diffusion of M, could be
measured by the stimulated-echo method.

For a classical dipolar solid, the diffusion coef6cient
of 3E, and M„ in the presence of steady rf irradiation is
different from that of M, (with no irradiation). It
could be calculated by generalizations of the methods
used to calculate Dg and DI:, .

III. COMMUTATORS AND TRACES

A. Magnetization Diffusion

The most complicated part of the calculation of Dg
and D~ is the calculation of the traces appearing in M2
and M4,' the lattice sums subsequently needed are rela-
tively simple.

We next discuss the case of He' in a Geld comparable
to A/57, the exchange-interaction field. In the high-
temperature limit, the ratio of the expectation values of
the exchange and Zeeman energies in a uniform field,
at thermal equilibrium, is expressed in terms of a local
field HL,

(-,g E,) H; Tr(-;g E,)
(AyHOQ S,,) Ho' Tr(A'yHOQ 8,,)'
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%e write the truncated Hamiltonian as

K=-', Q (Ag(sg+5( +BggSI,ISi.)+Q Av&OSI, I.
kl k

(19)

For the classical dipolar interaction, ' Bkl,= —2Akq,.
both fall off as the cube of the distance between k and l,
with the well-known P~(cos8) angular dependence.
For He, Bki=Aki.

The commutators needed are

pc, S,,]=—-'.g A;I, (5 S -—S; 5~); (20)

2[BC, [BC, 5,,])=Q A;g{2A g, (s,,sp+Sp —SI,.S~S, )

+Bg, s;,(5,~51, +5, SI,+) B,I, (5'—+SI, +5; 5—~+) 51—.
+Q [A,&5,,(5&+5( +SI, 5&+)

Then (23) becomes

Tr[X, [3C, 5;,]]pC, pC, 5;,]]
=Q A'{—AAe(A;a+Au)

+-ss—,A g,A p, }——,'A g4. (23')

Here and later we write terms like A;j'Ak~ as AA;jAk~,
where A is the value A;j assumes when i and j are near
neighbors.

B. Intersjpin-Energy Diffusion

Here we specialize the calculation to bcc He', using
the exchange Hamiltonian [i.e., Bq~=AI, g in (19)).
Vector notation shortens the calculation. For this
Hamiltonian (3:=—,'g;E,) the second-moment com-
mutator and trace are, for 5= 2,

[&, E']= —iQ A ~(As~ —A, ~) (&&X% S,), (24)

Tr[X, 5;,)[R, Sg.] (22)

TrPC, PC, S;,))PC, PC, S,,])
TrS ' ~

X{+3A „'A ' —A '[4Aa2+4A, a'+(B I BI)']—

—Axis~*(&ps'-+R 5,+)

+(Bi~—A') R.(5~5~ +S,-so+)]} (21)

Henceforth in this paper, all sums over indices are
restricted in that no index of summation can equal any
other index of summation or other index (i in the above)
in', the summand. Mathematically, in the sums in (21),
igkQlQi. Sums are not restricted in the sense that
permutations of the same spins over diferent indices
are all included; thus the factor of —', in (19) is included
since each pair of spins occurs twice in the sum.

The commutators above, and traces below, are much
simpler for a spin- —,

' Heisenberg paramagnet. In that
case, vector notation is useful and the resulting calcu-
lation can be used as a check.

The traces need are

(25)

The A, ~ term in (24) sums to zero because of the anti-
symmetry of the vector product under interchange of
k and I.

The double commutator needed in the fourth-moment
computation is lengthy but is simplified when the no-
two-mutual-nearest-neighbor property of the lattice is
used to eliminate terms. It is

[&, [&, E~])=2A Q A,I,Ax(SJ (S,—S()

+Q [—A;IAg(A(„(iklm)+A„~A, IAI ((mikl)
klm

A;gA p, A 1,
—(ilmk)] (26).

Here (iklm) is shorthand for 8;XS„.Q, XS .
A long calculation, with much cancellation of terms

but no tricks other than omission of three nearest-
neighbor terms, yields

Tr[X) [Xy E$]][X)[Xp Eg]]=2~(3/64) A'

X {—2A'Q AgAp, +A+ [2AgAI)A(;+2Ap;A;;A;)

+2A,~A,'A, ,(B'a+B,' 2Bv) }—[5(5+—1)~15)

X[10A; +(2S—1) (25+3) A'P(B'P+4A'P) $~ (23)

where i&j and the sums over k are restricted as men-
tioned above. Collins and Marshall" have obtained es-

sentially the same result.
The second trace simpli6es greatly when applied to

bcc He' since S=-'„8;k=A;k, all A& are equal and as-
sumed nonzero only if i and k are near neighbors, and,
least trivially, there are no three spins which are all

mutually near neighbors in the bcc lattice. Thus terms
involving A;;Ay, A;& are zero for this lattice (also for
the sc lattice) while the last term is zero for S=2.

2Aij AjkAk) 2AklA liAij p AzkAjkA )k AikA&j A jp

—Al, ;A, (A (,)+2+ A;pAp;A;(A h}. (27)

IV. EVALUATION AND COMPARISON WITH
EXPERIMENTS

A. Solid He'

The lattice sums in the case of He' are quite simple
because there are a 6nite number of terms. It is perhaps
worth mentioning some identities which apply to the
bcc lattice and which may possibly be useful in other
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M4/M p 13A'/2——f/,',
Dz=0 328(bmA/f/, )

(31)

(32)

where b is the nearest-neighbor distance.
This agrees well with the experiment of Thompson

eI, u/. ,
' who find

Dz = (0 35~0 03)b'A/f/, (33)

The same calculation for a sc lattice yields Dz=
0.296b'A/f/, which is about 3% greater than the highest
previous estimate" and 31% higher than the lowest
previous estimate. " These estimates are based on a
Gaussian assumption for g (o/) and differ only in approxi-
mations or errors in the evaluation of 3f4.

Turning to exchange-energy diffusion, the quantity
corresponding to M2 is exactly twice as large as in the
case of Zeeman diffusion for the bcc lattice. For the sc
lattice it is also twice as large, and this is a general
property of any Bravais lattice.

The bcc sum corresponding to M4/M2 is 25A'/4f/, ',
that is, nearly the same as the Zeeman value. It is by
no means obvious that these quantities should be
nearly the same. Thus for the bcc lattice

Dz =0.67A b'/f/. (34)

Thompson and Hunt' have measured DJ, in solid He'
and found it to be (0.75&0.15)Ab'/5, in good agree-
ment with our result.

B. Classical Diyolar Interaction

Perturbutioe Limit of Dz

The evaluation of M4 for pure dipolar interaction
would involve a lengthy evaluation and summation of

cases. The first is

Q x;PA, /A//„. ——2Q xg'A;, A//, +2+ x;PA@'. (28)

This is proven by rewriting x;/2 on the left, as (x;/, +x») ',
and noticing that the cross term x;l,x~; will sum to zero
for any Bravais lattice if j and k are unrestricted. The
right side is obtained by relabelling indices of summa-
tion and adding the last term so that the ijk sum on the
right can be restricted again. Equation (28) further
simplifies to

Q xg'A /, A;/,
——16+ x,PA, /2, (28')

jI

since 16 is twice the bcc coordination number, and A;I,
and A;& equal A;; or zero.

Another identity based on a more involved but similar
proof is

Q x~PA, /, A/„/Ag, (3C' ——2—C+1)A'g x 'A" (29)
A:lj.

where C is the coordination number of the lattice.
The result of the summation for the bcc lattice is

M2 ——(4k'/6f/, ') b'A', (30)

(23) according to (14). While this is possible, it does
not seem worthwhile in view of the lack of precise ex-
periments and the remaining theoretical arbitrariness
in the choice of the form of g(&v).

If we assume arti6cially that AI, ~ is much smaller
than B/. / in the Hamiltonian (19), then our theory
should give the perturbation limit result provided that
g(&o) can be taken as Gaussian in that case, as seems
reasonabl. If B&&A, then only the 8'A' terms in M4
need be retained, while M~ is the same. The resulting
prediction is

, ~(g,x,,2A,,2)~S(S+1)»2
Dz=A '—

12+/, x zA '(B g
—B/, )' (35)

This is identical to the result of Lowe and Cade" in
the same limit. This can be simplified while introducing
little error by unrestricting the sum to permit i=i or j;
and assuming the cross sum involving —28;J,B;I, is
small. Then (35) becomes

7r"'S( S+1)Q,xg'A u'

4ft2 (g~2 )t/2
(35')

where (A&a')'/' is the Van Vleck second moment" of
the high-field transverse resonance line.

The value of Dg which would be ca}culated using the
exact expression (23) is probably very close to this,
because in (23) it is probably permissible to drop all
terms involving the erst power of A;;, Bg„etc. These
will tend to average to zero because of the angular
variation of A;;, after summation. The 6rst term of
(23), on summation, can be operated on with an iden-
tity similar to (28); and if B,, —2A;;, then= (23) can
be written, for S=—,',
—Tree, PC, S,.jjLX, Pe, S,,gj/Trs, ,

=-',4S'(S+1)Q A;~B/, '

+-', [S'(S+1)'j(SA 'B ' gA „'B„') —(23')

This is not supposed to be correct for given i and j, but
is expected to give the correct answer after summation
over i and j. The last two terms largely cancel, and in
any case are small compared to the first term, which
leads to (35').

In many cases it is sufhcient to estimate the average
of Dz with respect to the angle between the crystal
axes and the magnetic fieM. It is simple, and not too
inaccurate, to replace (Da&') by its angle average. It is
easy to average the numerator in (35'), using the fact
that the angle average of x,P(1—3 cos'8,")' is 4r '/21
from simple integration. Then the angle average of
Dg is

Dg ——
s-»2 S(S+1)y4f/2g r,4-j ij

35II
84 (~2 )I/2

In the above, we considered di6usion of M, in a
gradient transverse to IIO. Di6usion is faster along the
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s axis, and is calculated by replacing x; by s; in the
above. This yields a diffusion coefffcient 11/5 times
larger than in the x or y directions.

The average of Dg with respect to direction of dif-
fusion relative to the dc field, that is, 3 the trace of the
Dz tensor (which is already averaged with respect to
the angle of the crystal axes relative to Hp), is 7/5
times the value (35"). This is the average appropriate
for theories of diffusion-limited relaxation by para-
magnetic impurities in insulators.

The sum g,s,, 4 has been evaluated by us for the
bcc lattice, and is 22 6/b4, . where b is the nearest-
neighbor distance. The slow convergence of this sum
means that the variation of (35') with respect to crys-
tal axes will not be too great and may come from the
variation of (hoP)'~' as much as from the numerator
sum.

If the perturbation-theory result (i.e., Eq. 35, with
8;~——A,I,) is applied to the solid-He' problem, the
predicted Dz is approximately v2 larger than the exact
moment-calculation prediction, thereby worsening the
agreement with experiment. Perturbation theory should
be less applicable to this case since the off-diagonal
and diagonal parts of the interaction are more nearly
the same.

&gee( of Moderate Rarldom Quadrupole Interaction

Cubic crystals frequently contain sufficient impurities
that virtually all nuclei feel an electric quadrupolar
interaction, due to the strain set up by the impurities,
which is larger than the dipolar interaction. This will
change the spacings of the nuclear spin levels and thus
eliminate many of the resonances between neighbors
which permit them to mutually Qip, as is needed in spin
diffusion.

If the quadrupolar interaction is not too large, then
the spacing between the m, =+—', and ——,

' levels is un-
changed for all spins, and transitions between these
levels can still contribute to spin diffusion. In this sec-
tion we assume that these are the only Qip-Qop transi-
tions which are important in spin diffusion. This will be
true only if the quadrupole interaction is strongly vary-
ing from spin to spin, and may not be a correct assump-
tion if the interaction comes from a low density of point
or line interactions, for example. ' "

To define the problem further. we need to consider
whether the

~
m,

~
&-,' levels play any role at all in the

problem. If the quadrupolar interaction were large
enough, a spin in one of these levels would find no other
spins reasonably close and resonant with it, and the
spin would remain in that level until removed by lattice
relaxation. We believe, however, that in many cases the
quadrupole interaction will be small enough to permit

20 This is the "semilike" case of K. Kambe and J. F. Ollom,
J. Phys. Soc. Japan Il, 50 (1956).

"See also A. Abragam, Nuclear Magnetism (Oxford University
Press, New York, 1961),p. 130.

a spin in such a level to be moved out in a tiilie com-
parable with the spin-diffusion time (Dzk"-) ', by means
of multiple spin Qips like those proposed by Bloem-
bergen et al."In other words, we assume that the local
spin temperature of the

~
m,

~

&-', part of the system is
maintained the same as that of the

~
m,

~

=~~ system,
but diffusion is only by the latter. Thus, the diffusion
coeKcient is much smaller in this case. The

~
m,

~

&-,'
levels contribute most of the heat capacity of the sys-
tern.

There are two ways to proceed: The easiest is via
perturbation theory, comparing the sum of flip-flop
transition probabilities for this case with the sum of
probabilities for the many more cases allowed in the
pure dipolar case. The second is to use for formalism of
this paper, truncating S; and S,„ to include only the
& 2 matrix elements. "The ratio M4/M2 is easy to calcu-
late if it is assumed that B,I, is much greater than A;~,
as in perturba, tion theory, because M4/M, is then un-
changed from its perturbation value for the pure dipolar
case. The result by either method is

I 2Ll (2s+1)O'I'

L3s(s+1) (2s+1)j' (36)

@N. Bloembergen, S. Shapiro, J. A. Artman, and P. Pershan,
Phys. Rev. 114, 445 (1959).

where Dz@ is the diffusion coefFicient in the presence of
the quadrupolar interaction, and Dz is that without.
For 5= 2, the factor in front of Dz is 0.0363.

In an earlier paper, one of us' expressed caution
whether this theory is really applicable, because he be-
lieved that the slow variation of the fields coming from
spins in the

~
m,

~
& —', levels would impede diffusion.

For example, two spins in states
~
M,

~

=—,
' having the

same local field might Rip at some time, but if their
]ocal Gelds due to other spins did not change to ran-
domize phases and make them nonresonant, they would
Rip back in a way not envisioned in perturbation theory.

We now doubt that this is a serious problem, for two
reasons. First, the sum M& of transition probabilities
weighted against x;,' converges slowly, so that many
spins are interacting importantly with a given spin,
making for a more macroscopic system. Second, the
theoretical second moment of the usual nuclear reso-
nance line for this case," S=~, is roughly twice that
predicted if only the diagonal (I3,I,I,,II„) part of K is
used to calculate (Ace'). Physically, this means that a
spin in its m, =-,' level feels a transverse, nearly reso-
nant ac field due to precession of neighbors in their
m, =~-,' levels which is roughly the same size as the
s field which it feels mostly from other neighbors in their
~
m,

~
& ~ levels. The fraction 2/(25+1) of spins

which are in &-,' levels thus form a system, with a strong
transverse interaction, whose dynamics is not likely to
be drastically affected by the comparable interaction
with the rest of the system.
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For 5= ~~ the result can be written

Dzo ——0.012''A4+ r,;~/(A~')'I', (37)

where we should emphasize that (6~2) is the Van Vleck
second moment calculated assuming no quadrupolar
interaction. For vanadium, we take (h&o')'~' as 2.42&
104 sec ', and use the value for the sum given in Sec.
III with nearest-neighbor distance 2.63 X, obtaining
Dzo=5&&10 "cm'/sec. From an experiment' on type-
II superconducting vanadium we obtained 4.6 and
7.7&(10 "cm'/sec in different runs.

V. SPIN DIFFUSION IN A MACROSCOPICALLY
INHOMOGENEOUS FIELD

In this section, we point out briefly some features of
diffusion of magnetization when there is a field gradient
small enough that neighboring spins are in essentially
the same magnetic field, but the two ends of the sample
are in a very different field. We doubt whether these
phenomena are of much importance in real systems.
Some of the same considerations may be important in
spectral diffusion.

Suppose we start with uniform magnetization and
uniform field, and apply a field gradient. We expect that
the system will tend toward a uniform spin temperature,
via diffusion, with local magnetization proportional to
local field.

But after diffusion has occurred, the average mag-
netic energy (space integral of —M H) has decreased.
The only place this energy can go is into spin-spin
energy. This cannot go on long. Soon the spin-spin
temperature would become negative.

The analysis of the problem is like that of cross re-
laxation of two overlapping resonances. " The Hamil-
tonian can be divided into two commuting parts. One
part is the Hamiltonian of interaction with a uniform
field equal to the average field. The other part contains
the inhomogeneous part of the 6eld (whose average is
zero) plus the spin-spin interaction. The two subsys-
tems of the second part of K will tend toward equilib-
rium, and this means that diffusion will stop when

(H —Ho) /(M —Mo) equals the temperature of the
spin-spin part of the Hamiltonian divided by Curie's
constant, where Ho and Mp are the average values of
jV and M.

Conversely, we can ask what happens if we prepare
a crystal with a negative spin-spin temperature, then

"J.Jeener, H. Eisendrath, and R. Van Steenwinkel, Phys. Rev.
133, A478 (1964}.

put it in an inhomogeneous field. Spin diffusion will
then proceed in the direction opposite to one's naive
expectation, and the spin-spin temperature increases
toward a high-negative temperature. By monitoring
the increase of spin-spin temperature the diffusion coef-
ficient could be measured.

The time constant for this degradation of spin-spin
energy would be equal to Dz times the field gradient
squared divided by the mean-square local field in the
rotating frame. ' Using the estimate of Lowe and Gade, "
Dz ——3.5)& 10 "cm'/sec, and assuming a field gradient of
10 kG/cm, the time would be around —', h. The main
problem is to find a sample with such a long lattice re-
laxation time for spin-spin energy.

In a ferromagnet, the nuclear spin-diffusion coeffi-
cient is predicted to be huge by this theory because of
the long range of the Suhl-Nakamura interaction be-
tween nuclei. If this prediction is correct, then the ef-
fects discussed here may be important and observable
because of the inhomogeneous broadening typical for
NMR in ferromagnets.

VI. CONCLUSION

The most striking result of this calculation is the
good agreement with the measured diffusion coefficients
in He'. As emphasized by Bennett and Martin, '4 the
diffusion process involves many collisions, whereas the
present calculations are limited to three-spin interac-
tions (for Dz) at most. The success of the calculation
and the success of a related calculation" for spin re-
laxation indicate that the higher moments involved are
related to the lowest moments in a simple way. It
would be interesting to study the statistical topology of
the diagrams representing terms of high moments, and
the algebra of their contribution to the moments, to
understand why this is so."""It would also be easy to
calculate Mq (for Dz) and the corresponding moment
which enters into spin-spin relaxation, to check the
validity of the Gaussian approximation.
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