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The lattice-dynamical theory of ferroelectric phase transitions relates the dielectric anomaly with an
anomalous "softening" of a TO mode as q

—+0. It is shown that the elastic anomalies, which are commonly
observed at ferroelectric phase transitions, are predicted by the lattice-dynamical theory of ferroelectricity,
within a diatomic approximation. The softening of the TO mode is associated with variations in d(cora)/dq
which are reQected in the behavior of the transverse and shear elastic constants. The discussions are extended
to more complicated systems and are illustrated by an examination of the available neutron scattering data
on the temperature dependence of the dispersion curves of the TO and TA modes of SrTi03 and KTa03.

iHE dielectric anomalies of the ferroelectric phase. transitions are commonly associated with anomalies
in the elastic properties. ' ' The two anomalies may be
shown to be intimately connected with the lattice
dynamical instability in potassium ferrocyanide
LK4Fe(CN)s 3HsOj. ' Imry, Pelah, and Wiener have
proposed a dynamical model which associates the di-
electric and elastic anomalies of KHsPO4(KDP) with
the cooperative motion-of the protons in the lattice. 4

The lattice-dynamical theory, as proposed by Cochran'
and Anderson, associates the ferroelectric transition
with a low-lying TO mode for which oo&o~o at q~o
when T—+T,. The purpose of this paper is to show the
interdependence of the elastic and dielectric anomalies
within a diatomic approximation of the lattice-dynam-
ical theory of ferroelectricity. Cochran has discussed
this interdependence for the special case of a zinc-blende
structure. 7

The 6)&6 matrix that describes the lattice dynamics
of an alkali halide in a symmetry direction factors into
three sets of 2X2 matrices, and leads to the charac-
teristic equations

211(q) —mrco Ass(q)
=0.

Ass*(q) Ass(q) —msco'

This expression is general; where more than nearest-
neighbor interactions are included, a]l the A coefFicients
are q-dependent. The solution of Eq. (1) for a given

q gives two frequencies. For positive solutions of co,
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A~~ and A~2 must be positive. The solutions may be
expressed:

.(q)= (q)+L (q) —c(q)],
'(q) =&(q) —L&'(q) —(-(q) j'",

(optic) (2a)

(acollstlc)

(2b)

~()
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211(q) Ass(q)

%SAN mQ

Ass(q) Ass*(q)

mg m2

211(0)—311(0)

Assuming that all the elements of A are continuous in

q and dividing each by 8(q) one obtains

C(q) = fm m /(rm s+m 1))Bs'(q) P(q), (7)

where I'(q) is a polynomial whose first term is asq'.

e M. Born and K. Huang„Dynamica/ Theory of Crysta/ Lattsces
(Oxford University Press, New York, 1956), pp. 55—57.
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(3b)

The determinant D is obtained by dividing the first
row of A by ns& and the second row by m2.

The relation between the elastic constant E and the
dispersion curve for the acoustic branch is given by~

-. (q-o) = (2 /s) (~le) q, (4)

where s is the length of the unit cell and the density is
p= ( mt+m) ss/. Taylor expansion of Eq. (2b) gives

~'(q~0) =&(q) —&(q) f&—lK'(q)/&'(q) 3+" l

= sK'(q) /&(q) ]. (2c)

Combination of Eqs. (4) and (2c) gives

&= sp(s/2w)'LC(q) /&(q) q'L (5)

At q=0, the determinant A becomes~

~11(0) ~11(0)
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TAaLz I. Temperature dependence of o)Tp and o)TA.

SrTi03 296'K 90'K 28'K &u (296'K) /cy (90'K)

KTa03
G0TQ

~A

q = (0.2, 0, 0~
q = (0.2, 0, 0)

q= (0.25, 0, 0)
q = (0.38, 0, 0)

4. 1
1.92

13.5
5.5

3.5
1.63

10.7
3.75

1.17
1.18

co (296'K) /~ (28'K)
1.26
1.46

~ Reference 10, Fig. 7, energy in 10» Hz."Reference 10, Fig. 6, energy in 10» Hz.
0 Reference 11, Fig. 1, energy in meV.

~ Reference 11,Fig. 4, energy in meV. [Conversion factors: (meV cm) -i =
8.07; (HzimeV) =0.242 &(10 i2. ]

Substituting Eqs. (2a) and (7) into Eq. (5) gives

E= —,'p(s/27r) 'fm, m, /(mg+m2) 'ja2~.'(0) . (8)

The proportionality between the elastic constant E
and co,' implies that a dielectric anomaly, where coTp~0
at q

—+0, should be associated with an elastic anomaly.
Equation (2a) describes the dispersion curve of the
optic branch whose polarization vector describes the
relative motion of the positive ions in the unit cell
against the motion of negative ions and may, therefore,
be denoted as the "ferroelectric mode. " Substitution of
Eq. (3) into Eq. (4) gives

(q~0) 4 fml 2/( 1+m2) 3~2q ~ (0) ' (9)

It is clear from Eq. (9) that if coTo—+0 at q~0 (q/0),
then or TA must change anomalously for the same q.

co~', a2, and ~,' depend differently on the long- and
short-range interactions in the solid. One may construct
a situation in which the temperature dependence of a~

and cv,2 cancel and leave co,' unchanged. Such a situation
will require cancellation of the temperature dependence
of many unrelated parameters and cannot be considered
a general case.

The elastic constants are determined by the square
of the slopes of the acoustic branches at q

—+0 LEq. (4) j.
Pure shear elastic constants are determined by the ap-
propriate TA branches, while the transverse elastic
constants are determined by combinations of TA and
LA modes. The anomalous behavior of the shear elastic
constant at the phase transition will, therefore, depend
on the temperature dependence of the frequency of the
ferroelectric mode at q

—+0.
This diatomic treatment may be extended to more

complicated cases like BaTi03, where the crystalline
structure below T, suggests that the ferroelectric mode
is the transverse optic mode in which all the positive
ions (Ba and Ti) are vibrating in phase against all the
negative ions (oxygen) .

Direct measurements of the temperature dependence
of the frequencies of both the TO and TA modes have
been performed by Cowley' on SrTiO3 and by Shirane,
Nathans, and Minkievicz" for KTa03 using inelastic
neutron scattering techniques. Carefu1 exa,mination of

' R. A. Cowley, Phys. Rev. 134, A981 (1964}."G. Shirane, R. Nathans, and V. J. Minkiewicz, Phys. Rev.
157) 396 (1967)

their data shows that, for similar values of q, the fre-
quencies of both the TO and TA modes indeed show a
similar dependence on temperature. The experimental
results are summarized in Table I.

This treatment may be extended to more complicated
solids if one considers the relative displacements of the
center of mass of the positive and negative charges, re-
spectively. The amplitude of this vibration will be
predominantly determined by the optical vibration in
which all the positive ions are vibrating in phase against
all the negative ions, and. Eq. (I) should hold. Since
in the more complicated solids there may be several dif-
ferent ions of the same charge, other optical vibrations
will also make small contributions. If the ferroelectric
mode is one in which all the positive ions vibrate
against all the negative ions, the dielectric anomaly
should be accompanied by an elastic anomaly involving
shear. Since the elastic constant E may vanish as a
result of a&—+0 t Eq. (8) $ with no change in a&,', the
inverse is not always true.

When d(a»z)/dq changes at q~0 and a dielectric
anomaly occurs, this may be considered as strong evi-
dence that a lattice-dynamical instability occurs and
that coTo~0. The only alternative explanation requires
the accidental occurrence of an elastic anomaly at the
same temperature as the ordering of a system of per-
manent dipole moments. Such an explanation is un-
likely since the elastic anomalies have been observed
for a wide range of ferroelectric materials. If the coin-
cidence between the two anomalies is not accidental,
then when a dielectric anomaly occurs and an elastic
(shear or transverse) anomaly is also observed, the
mechanism of the transition must involve the lattice
dynamics of the structure and coTo~0 at q

—+0. Many
ferroelectric transitions that have been previously
classified as order-disorder transitions can now be
identified as lattice-dynamical transitions. Some impor-
tant examples are potassium dihydrogen phosphate, '
potassium ferrocya, nide, ' guinadine sulphate hexahy-
drate, ' and Rochelle Salt. '
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