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EfFect of Ordinary Scattering on Exchange Scattering from
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We investigate the ordinary and exchange scattering of conduction electrons by magnetic impurities. We
And that for thermodynamic properties the eGect of ordinary scattering is entirely absorbed into an effective
exchange interaction J cos q, where q is the phase shift due to the ordinary scattering alone. The resistivity
is calculated by using the Nagaoka-Hamann scheme. The ath-order leading logarithmic term (~J"+' log" 2'

in the absence of ordinary scattering) is multiplied by (cosv)'"+' cos2v, in agreement with Fischer, who
obtained this result for n=1. We discuss the alloy Rh-Fe, where the resistivity was interpreted in terms
of a positive exchange interaction, whereas the susceptibility data indicated a negative one. We point
out that these results are not inconsistent with each other in the light of the present theory.

l. INTRODUCTION We also discuss the alloy Rh-Fe where the resistivity
was interpreted in terms of a positive exchange inter-
action, whereas the susceptibility data indicated a
negative one. We point out that these results are not
inconsistent with each other in the light of the present
theory.

NOMALOUS scattering' of conduction electrons
.L from a magnetic impurity in metals has been the

subject of a considerable number of recent works. '
Most of the authors are concerned with the low-tem-
perature anomaly which is associated with a negative
s-d exchange interaction. Recently, Fischer' has con-
sidered the e6'ect of ordinary scattering on the exchange
scattering and found that the first ln T term in the
resistivity changes its sign when the ordinary scattering
is sufficiently large. Since the well-known low-tempera-
ture anomaly is associated with the divergence of a
series in 2 Spin( T/D) in the case of no ordinary scatter-
ing, a question immediately arises as to what the series
looks like and when the anomaly occurs in the presence
of ordinary scattering. We obtained the leading log-
arithmic terms and found that the series is in
2 Jpcossriln(T/D) so that the low-temperature anomaly
occurs at the temperature Dexp(1/2Jpcos'ri) when J
is negative. We also investigated the eGect of ordinary
scattering on thermodynamic properties and found that
it can entirely be absorbed into an effective exchange
interaction Jcos'g. This is in conformity with the
result on resistivity.

2. THERMODYNAMIC PROPERTIES

We consider the free conduction electrons and a single
magnetic impurity which is located at the origin of the
coordinates and interacts with the conduction electrons
via an exchange interaction. We take account of the
ordinary potential arising from the impurity as well.
Thus our Hamiltonian consists of two terms, H0 and H',
which are expressed by

HO= Q ekQhg Gkg+(V/E) Q Gk, Gk'~) (&)
ks

& = —(~/&) 2 I:(&~t '&~ i
—&~ 1'&~ 1) s.

+~~t'~~ &&-+~~1'~~ l &+j, (2)

where uk, t and uk, denote the creation and the annihila-
tion operator for the electron ks, S is the spin operator
of the impurity, and E is the total number of the unit
cells. V and J represent the strength of the ordinary
and exchange interaction. We neglect their dependence
on the wave vectors. In this section we discuss the
thermodynamic properties of the system represented
by the Hamiltonian Hs+O'. In the next section we
discuss the resistivity using an approach different from
that of this section.

By using a unitary transformation

ag, t= Q (n I k)a„,t, (3)

we diagonalize H0 as

HO ~ &nuns ~ns (4)

The secular equation for this transformation is ex-
pressed by

"(& I
I)+(J'/&) g (&'

I
~)=e-(lr

I ~) (5)
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We define a Green's function4 which takes full account is the plane-wave function. We define the density of
of the ordinary scattering by states at the origin by

Gj,.d((u) = Q (&'
( N)(~ —e) '(e

~
k). (6) Q ) e„) '= —m

—'Im Q Ggg'(ar+ib)do)
uC ~~&cu+dv

where

P(~) = VL1 —VF (~)3-' (9)

F(Q)) =1K Z (N —ep) = p(M ) t(0 td j dM (10)

p(~) denotes the density of states per atom per spin.
We now apply the transformation (3) to H' and

obtain

H'= —( J/X) g c„*c„$(a„t'a„~ u„~'a„—~) 5,
nnI

+ t ~" i~—+&. ~ o t ~+3 (11)
where

e„= Q(k) I). (12)

From (4) and (11) we see that our problem reduces to
an s-d problem with a factorizable exchange inter-
action Jc„*c„butwithout an ordinary potential. We
note from (11) that with each annihilation (creation)
operator a„(a„t) is associated a factor c„(c„*).Let us
consider the perturbation expansion of the partition
function considering (11) as a perturbation. We note
that with each factor H' we create an electron and
destroy another in such a way that an electron once
created is eventually destroyed or vice versa. This is
because we are interested in therma1 averages. This
means that the factor c appears in the form j e„~ ' in
the partition function. Thus if the rth-order term of the
partition function in the absence of the ordinary
scattering is given by

J'" Q H(eg„~ ~ ~, g„)e,

the same quantity in the presence of it will be expressed
by

J" Q [e„, )
' ~ ~

/
e„„)'H(e.„~ ~ ~,e„,). (14)

Let us consider the sum

Z I c. P H(..),
where H (e„) is any function of e„.We note that

~ c„~ '=
[ $„(0) [

'/
( fq(0) [', where f„= Zq(h [ e)fq and fj*

P. W. Anderson, Phys. Rev. 124, 41 (1961).

The equation for the Green's function is obtained as

Gg go(a&) = baal, ((o—eg) ~+ (V/E) (co—eg) 'QGg y 0((o),
nfl

(7)
which is solved as

Gj, g (co) = hat, (co—eg) '+(t ((o)/Ãj(a —eg) '((o —eg )

(8) E p or 1—VIi or io 'B M de.

Ke see that the effect of the ordinary scattering is
wholly incorporated into the factor

~
1—VF (co+i6)

~

We are interested in the case where this factor does not
have a strong dependence on or. Since the characteristic
energy range of the low-temperature anomaly will be of
order kT&, this factor as well as p(u) may be taken
out of the integral sign with their values at the Fermi
surface. Thus in order to translate the results on thermo-
dynamic properties obtained in the absence of the
ordinary scattering to those in its presence, we just
replace Jp(e&) by Jp(ep)

~

1—VF(ep+i6)
~

'. There
is no change of the sign of the exchange integral.

In the following, we use a widely adopted approxi-
mation

Then we have

F(ce+i8) = —imp=const. (17)

L1—VF(~+i8) $ '= cosy e''t, (18)

where q is deined by tang= —mVp. We dehne the
effective exchange integral J by

J= Jcos'q. (19)

This is the real part of what Fischer defines as the
effective exchange interaction.

3. RESISTIVITY

We now discuss the resistivity, where the argument of
the previous section is no longer valid. We use a different
approach, na, mely, that which has been used by
Hamann' and Falk and Fowler' recently. We use
Nagaoka's truncation scheme for the electron Green's
functions, convert the self-consistency equation into
an integral equation for the f matrix, and solve it within
an approximation which is valid for the leading log-
arithmic terms. We could pursue this program only
with the approximation (17) . Furthermore, we could
do so to a lesser extent than Hamann could. However,
the result obtained is sufficiently general to answer the
question raised in the Introduction.

We go back to (1) and (2) and look at Green's

~ D. R. Hamann, Phys. Rev. 158, 570 (1967).
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= —x 'Im{XF((v+i8)/L1 —V

&(F(~+i8)]I d(o

=Xp(co)
~

1—VF((a+i')
~

—
'da&,

where use has been made of (8), (9), and (10) . Then
(15) is expressed as
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functions:

G'. ( ) =&~k t I
~»') (20)

Fk'k(co) (cck' f S ++M' )S—j ctk) ). (21)

terms of t(co). The results are

G(~) =G'(~)+&", F(~') t(~')
F (co') —F (co)

(31)

The equations of motion are written, after Nagaoka's
truncation, as

(co &k') Gk'k+ (J/+) Q Fkk bkk'+ (V/+) Q Gkkp

F(co') F(—co) Dt(co')
F co = 2F(y'

co—co Je«(co )
—S(S+1)F(co), (32)

where

(~—.k') Fk.ky( J/X) (2~,,—1) g F„

+(J/E)ES(S+1)—mk j g Gkk= (V/E) g Fkk,

G (-) =~- Z Ef(")—:V(--"),
At=t —t .

(33)

(34)

where

f denotes the Fermi distribution function. The func-
tional notation 5 is defined by

(24) S„.EGge(co') j= (i/2n)
Sg= Cy~ Cg~

mk ——3 Q (ak(tak)S ).

Equations (22) and (23) are solved as

d~' f(~')

(25)
XEGAB (co'+i o) —

Gzz (co' —z5) $. (35)

Gk~k(co) = 8kk~(co —&k) +Et(co)/Nf(co —&k) (co—&kc)

(26)

We process the functional operations in the same way
as Hamann did to the point that 6 and F are now
expressed by

where

t(~) =t'(~) E1 —VF—(~)j '

X
J.cc2 (co) I'(co)

27
1+2J,ff(co) G(co) +J.ff'(co) F(co) F(co)

J.«(~) = JE1—VF(~) j ' (28)

G(-) =-~- Z ( .—:)/(--"),

G(co) =Go(co) +in p2 t*(co'+ib)

XEf(co') ~~ j/(co —co'+i8)—dco', (36)

F (co) = —S(5+1)F(co) —(2p/ J,«') ht*(co'+i&)

XEf(co') —~ j/(co —co'+ib) dco', (37)

where we assumed J,cc(co) is a constant.
F(&) =& ' Z E~k—S(S+1)j/(~ —ek) (3o) Using these results in (27) and using (17), (18),

(19), (33), and (34), we obtain the integral equation
Following Hamann, we express G(co) and F(co) in for Dt:

ht(co+i') =

At*(co'+i8)
inJ'pS(S—+1.) cosgeac&+2 Jpe"& Ef(co') —2)dco'

co—co +18

cos et++ J p S(S+1)e""+2Jp El+2nipe '"ht*(co'+i8) g . dco'
f(~') —

n

co co +zB

(38)

Dt (co+i o) = ht*( —co+ih)—(39)

is satisfied Esee Hamann's (2.32) ). In our case, (39) no
longer holds because of the phase factors of q in (38).
Since (39) would imply that the imaginary part of ht

This becomes identical to Hamann's (2.29) when g= 0.
At this point it is no longer possible to pursue the
scheme further in the same way as Hamann did. The
next step which he took can be carried through only
when the syrnrnetry relation

is an even function of ~ and since giant thermoelectric
power is obtained on]y when it has an odd part, the
fact that (39) no longer holds for g/0 is nothing but
another expression of our previous result7 that giant
thermoelectric power is a result of a cooperation of V
and J.

We can solve (38) if we restrict ourselves to the ]ead-
ing logarithmic terms. The leading logarithmic terms
of Dt will turn out to be g„C J"+'ln"co. The part of the

7 J. Kondo, Progr. Theoret. Phys. (Kyoto) 34, 372 (1965).
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integral in the denominator which contains At* will
then be at most g„d„J"+'ln"+'&o, which will contribute
g„b„J"+41n"ei to Dt. Thus within the approximation of
keeping the leading logarithmic terms, the mentioned
part as well as the second term of the denominator may
be neglected. This is consistent with the later approxi-

Qt= ge"s i—nJ'.p S(S+])c.os stre"'

we obtain the equation for Q:

(40)

mation (45) which is also valid for the leading log-
arithmic terms.

Making a transformation

@(4e+ib) = 2Jp

I r

Lf(te') ')d—a)-'+4rriPp'S(S 1), '. dt's'
te +zb te —ts +zb

1y2J f( ) s

te —4e'+ib

(41)

It is now possible to show

$(es+ib) = —Q*( 40+—ib)

from (41) . We change the variable from 40 to y by

f(~')-s ~,y=
4e—M +s5

We define a function C (y) of y by

@b =f,, Lf( ') —l j4 '.

(43)

(44)

energy. The first two terms of the expansion of (49)
( J' and J' terms) have been obtained by Fisher. The
eBect of the ordinary potential on the eth-order
logarithmic term is seen to replace J"+' by J"+' and
multiply by cos2g. The temperature dependence of
(49) is such that the resistivity increases (decreases)
with decreasing temperature when Jcos2tl(0 ()0).
For negative J, Eq. (49) is no longer valid in the
region T & T~—=De't'&4, where we will have to look for
another solution.

4. DISCUSSION
Correct up to the leading logarithxnic terms we have

dc (y)/dy=~(y), (45)

where use has been made of (42) Lace Hamann's
(3.14)j. Solving (41) for 4 and differentiating both
sides with respect to y, we obtain

dry/$P niPpS(—S+1)5=4J'pdy/(1 —2Jpy). (46)

This differential equation is easily integrated as

y=tri JspS(S+1)Ei (1—2Jpy) —'j (47)

which satisfies the boundary condition that the first
term of the expansion should be 4rri Pp'S( S+1)y—, as
easily seen from (41). Using (40) and (34) we finally
obtain

t= Vt 1—VF(&e) P' vari J'pS(S+—1) cossrtes4"

+niPpS(S+1) e '"t 1—(1—2J'py) 'j. (4g)

The relaxation time of the conduction electron is
expressed by

$2r(e~) )—'= —cX Imt(te+ib),

where c is the fraction of the impurities. The resistivity
is obtained as

3c 0
It.= —

( sinsrt —2n' J'p'S( S+1)cos4rtsin'tt
x'8 vp p A, E

+n'J'p'S(S+1) cos4tlcos2rtL1 —2Jpln(T/D) $ 'I (49)

where 0 is the volume of the metal and D is a cut-off

We have seen that the effect of the ordinary scatter-
ing on the exchange scattering is not to change the
sign of the eGective exchange integral. Thus the low-
temperature singularity will always be associated with
a negative exchange integral.

However, the slope of the resistivity-versus-T curve
can change its sign when g is greater than ~~x, as first
noted by Fischer. This result seems to be particularly
important in view of the recent experimental results on
Rh-Fe alloys. The resistivity of this alloy decreases
with decreasing temperature. s This result was inter-
preted as arising from a positive exchange interaction. '
However the recent measurement on the susceptibility
made by Knapp' shows that the magnetic moment of
the iron atom is considerably smaller than what is
expected for a free spin. This is a feature generally
accepted as arising from Nagaoka-type spin compensa-
tion associated with a negative exchange interaction.
This apparent contradiction may be reconciled by the
results obtained in this paper, because the above
experimental results" are consistent with a negative
exchange interaction and q greater than ~x.
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