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Spin-Fluctuation Contributions to the Specific Heat
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The specific heat is calculated for weakly ferromagnetic and nearly ferromagnetic metals. These systems
are characterized by an enhanced susceptibility indicating large spin Quctuations. An expression for the
mass enhancement on both sides of the ferromagnetic instability is presented. The specific heat just above
the Curie temperature is investigated. In this region, the terms which lead to the large low-temperature
mass enhancements are greatly reduced, and a new term contributes a singular specific heat at the Curie
temperature. Spin-Quctuation contributions to the low-temperature specific heat are calculated for both
phases, and numerical results are presented. Very large magnetic fields are shown to be effective in reducing
the strongly enhanced specific heat. Calculations of the temperature dependence of the specific heat due to
spin Quctuations in the paramagnetic phase are compared with the experimental results on He .

1. INTRODUCTION AND RESUME

LARLY neutron-scattering measurements gave di-
& rect evidence for critical fluctuations in the

magnetization of ferromagnets above the Curie tern-
perature. Recently, it has been shown by Berk and
SchrieBer' and by Doniach and Engelsberg' that
fluctuations of this same type must also exist in ma-
terials that are not ferromagnetic but have an en-
hanced susceptibility. ln both cases these fluctuations
have a large effect on the specific heat of the metal.
In a paramagnet, their contribution is such that the
slope of the specific heat at low temperatures goes as
the logarithm of the susceptibility. In a ferromagnet,
they contribute a logarithmic singularity to the specific
heat at the Curie temperature in addition to the very-
low-temperature mass enhancement which persists
from the paramagnetic phase into the ferromagnetic
phase. The mass enhancement in the latter phase is
predicted to go as the logarithm of the longitudinal
susceptibility. ' In this paper we present an investiga-
tion of the eGects of spin fluctuations on the specific
heat at low temperatures and near the Curie temper-
ature for weakly ferromagnetic systems. tA'e also con-
sider the effect of a magnetic field, finite-range inter-
action, and higher-order corrections to the specific heat
of almost ferromagnetic systems.

This section includes the motivation and justification
for the approach that we use along with a brief descrip-
tion of the results. The detailed solution to each of
the problems we consider is given in the sections
following.

The model which we use is one in which there is a
spatiaOy uniform exchange enhancement of the suscep-
tibility. As discussed in Refs. 1 and 2, the low-temper-

* Present address.
'N. Berk and J. R. SchrieGer, Phys. Rev. Letters 17, 433

(1966).
'S. Doniach and S. Kngelsberg, Phys. Rev. Letters 17, 750

(1966).
~ E. Bucher, W. F. Brinkman, J. Maita, and H. J. Williams,

Phys. Rev. Letters 18, 1125 (1967).

ature enhancement of the specific heat in a paramagnet
arises from the virtual scattering of electrons on the
Fermi surface via spin Quctuations. This specific-heat
change is thus viewed as an increase of the electron
eGective mass. The random-phase approximation
(RPA) with an effective interaction is used to obtain
the particle-hole correlation functions, which in turn
give the dynamics of the spin Quctuations, Even though
the excitations found are critically damped, they dras-
tically alter the thermodynamic properties of a system.
If one could completely determine the particle-hole
scattering matrices as a function of coupling constant,
the thermodynamic properties would be predictable.
Recently, Schrieffer and Berk4 and Doniach and Rice'
have given arguments, applicable to low temperatures,
as to why the effects which we might expect to alter
the results of the RPA cancel out in the momentum
and energy region where spin fluctuations are most
important. These arguments are applied for systems in
which the zero-temperature static spin susceptibility
is greatly enhanced above the Pauli value for a non-
interacting system. However, we know that the RPA
leads to a result in disagreement with experiment for
the static susceptibility in the region of the Curie tem-
perature. It is also true that in the temperature range
close to the critical temperature, the region of mo-
menta and energies which are probed extend far beyond
the region where the RPA is valid (see Sec. 3). Thus
it is not surprising that the RPA predictions for the
specific heat are in complete disagreement with ex-
periment at the Curie temperature. However, the region
of temperature about T, over which the RPA breaks
down is some fraction of T„so that in principle there
will always be a region of validity at low temperatures.
It is also true that there is currently no other approach
whereby the present results can be readily obtained.

4 J. R. SchrieGer and N. F. Berk, Phys. Letters 24A, 604
(1967).

5 S. Doniach and M. J. Rice, in Proceedings of Conference on
Theoretical Physics for R. E. Piereis s Sixtieth Birthday (un-
published)
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The effective particle-hole interaction discussed in
Sec. 2 is taken to depend only on the total momentum
of the particle-hole pair. The eGective interaction is
averaged over the other momenta involved. It is as-
sumed that this approximation gives a solution that
is qualitatively representative of the general equations
in which the full momentum dependence is incorpo-
rated. There are several experimental results which
indicate the importance of a momentum dependence
for the interaction function. The erst is that the com-
pressibility or velocity of zero sound in He is inde-
pendent of the susceptibility enhancement. In the zero-
range model, one parameter determines both. Second,
for Coulomb forces we obtain with this model the
plasma oscillations rather than finding only a zero-
sound mode as in the zero-range model. Third, the
large mass enhancements predicted by the zero-range
model are strongly reduced by a small but 6nite range,
in agreement with experiment. '' Fourth, Clogstons
has also given arguments for Pd which indicate the
importance of the range of the interaction in deter-
mining the induced magnetic moment about an Fe
impurity. The major disadvantage of the model is that
the types of interactions which can occur are more com-

plex than for zero range. The form of the interaction
is that standard in Fermi-liquid theory' and is chosen
to make transparent its spin symmetry. The infinite-
wavelength limit of the two functions introduced are
determined by the fermion contribution to the spin
susceptibility and compressibility. For a paramagnet,
the scattering matrices separate into spin-Quctuation
and density-Quctuation parts. In a ferromagnet, the
density fluctuations and the longitudinal spin Quctua-
tions are coupled. This coupling is discussed in Sec. 4.
With the solution obtained for the scattering matrices
the shift of thermodynamic potential is calculated in
Sec. 2. Ke believe that calculations of all the thermo-
dynamic properties are most simply and correctly made

by evaluating the thermodynamic potential as a func-
tion of temperature directly rather than evaluating

' In Sec. 5 we give the values of m~/m predicted for He' in the
zero-range RPA model and the range required to reduce the mass
enhancement to its observed value.' J. R. Schrieffer, Phys. Rev. Letters 19, 644 (1967).

8 A. M. Clogston, Phys. Rev. Letters 19, 583 (1967).
9 A. Abrikosov, L. Gor'kov, and I. Dzyaloshinski, in Methods of

Quantum Field Theory in Statistical Physics (Prentice-Hall, Inc. ,
Englewood Cliffs, N.J., 1963), p. 75.
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FIG. 1. (a) The basic particle-hole interaction; (b) and (c),
constituent parts.

fermion self-energy contributions. The direct approach
has been given by Brenig, Mikeska, and Riedel. ' How-
ever, a physical interpretation of the results is most
easily achieved from the expression derived for the
entropy shift in Sec. 2. It contains both a fermion con-
tribution written in terms of a self-energy, plus a boson-
like contribution coming from the spin fluctuations. "
The leading contribution to the specific heat of the
latter term is proportional to T'InT, so that at low
temperatures the specific heat is dominated by the
fermion term. However, both contributions play an
important role in the higher-order terms (Ts 1nT,p. . .)

In Sec. 3 we examine the specific heat in the vicinity
of the Curie temperature. As previously mentioned,
we do not expect a correct prediction for two reasons.
Even if we used an enhancement factor ~0' which would
give agreement with the measured static susceptibility,
rather than the RPA result ~0'~ 7—T„ the RPA does
not correctly account for the short-range correlations
near the Curie temperature and the predicted specific
heat would not be in agreement with experiment. Our
reason for considering the RPA model for spin Quctua-
tions is to find (a) the mechanism which is producing
the singularity at the Curie temperature and (b)
whether it is connected with the low-temperature mass
enhancements. In Sec. 3 we show that the effective
mass is not singular at the Curie tempera, ture T.
but that another term in the self-energy leads to a
(T T,) '" sing—ularity in the specific heat. This term
is essentially momentum- and energy-independent and
does not appear in the bosonlike contribution to the
entropy. The (T T,) 'i' type—of singularity is char-
acteristic of an Ornstein-Zernike or RPA and presum-
ably would be replaced by a logarithm in an exact
theory. However, from our analysis we would not expect
this singularity to come from an effective-mass en-
hancement.

If one calculated the dynamic susceptibility for a
ferromagnet in a fictitious paramagnetic phase, it would
show an unstable singularity in the particle-hole con-
tinuum. The system adjusts its magnetization to re-
move this singularity. However, in adjusting, not all
of the low-energy fluctuations that occur within the
continuum of particle-hole states are removed. This
is especially true for a system in which the Curie tem-
perature is much less than the Fermi energy. We call
such systems "weak itinerant ferromagnets. " Rh-Ni
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FIG. 2. Diagrammatic representation of the relation obeyed by
the scattering matrices.

"%. Brenig, H. Mikeska, and E. Riedel, Z. Physik (to be
published) ."E.Riedel, Z. Physik (to be published).
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alloys3 beyond the critical concentration, and possibly
ZrZn2, " are examples of weak ferromagnetism. The
low-energy spin Quctuations are apparent for these
systems from the measured enhancement of the longi-
tudinal susceptibility.

In Sec. 4 we consider the eGect of the low-lying spin
Quctuations on the electron effective mass in weak
itinerant ferromagnets. We demonstrate that the effec-
tive-mass enhancement shows the same e6ect in the
ferromagnetic phase as in the paramagnetic phase,
namely, that the mass enhancement goes to in6nity
symmetrically as the logarithm of the longitudinal
susceptibility.

We also discuss the temperature variation of the
specific heat for weak ferromagnets. The spin-wave
collective modes give only a small contribution to the
specific heat because they are valid excitations only
in a sma11 region of phase space in addition to the fact
that their contribution to the speci6c heat goes as T'~'.
The electron interactions with the well-de6ned spin
waves are also shown to lead to a negligible correction
to the speci6c heat. The resulting temperature de-
pendence is in agreement with the physically intuitive
result that as one changes the system, bringing it closer
to instability at zero temperature, the concurrent larger
effective mass is removed at a lower temperature. Part
of what one should see experimentally is shown in
Fig. 13.

Application of large magnetic 6elds overs at least
one way of testing the spin-Quctuation model. If the
speci6c-heat enhancement is due to an ordering of
local moments one would expect to quench the enhance-
ment with fields H E~/gp~ times the temperature
at which enhancement effects are seen. However, in
order to quench the spin-Quctuation enhancements
we need gp~II of the order of the characteristic spin-
Quctuation energy ~0'e&. If one could find a system for
which these energies are comparable, the speci6c heat
would decrease rapidly with increasing field, as shown
in Fig. 14.

In Sec. 5 the temperature dependence of the fermion
contribution to the speci6c heat is discussed for the

FIG. 3. General diagram in-
cluded in the calculation of the
shift in thermodymanic poten-
tial. The squares represent the
basic particle-hole interactions
shown in Fig. 1.

"S.Ogawa and N. Sakamoto, Phys. Letters 23, 199 (1966).
Recently, evidence has been presented that indicates that ZrZn&
may not be ferromagnetic in the pure states; see S. Foner, E. J.
McNiB, Jr., and V. Sudagopan, Phys. Rev. Letters 19, 1233
(1967).

(a) {b)

FIG. 4. Diagrams included in thermodynamic potential for the
special case of a zero-range interaction.

Our goal in this section is to give a somewhat gen-
eralized formulation of the RPA approximation from
which the specific heat can be calculated in both the
ferromagnetic and paramagnetic regime. The desire
here is to obtain the total speci6c heat due to the large
Quctuations in the magnetization that occur when the
system is near a magnetic instability. Since the energy
of these Quctuations goes to zero as such a system be-
comes unstable, virtual scattering of electrons by them
causes large energy shifts at zero temperature. In the
ferrnion system, the effect is a large change of the single-
particle density of states in the vicinity of the Fermi
surface.

In an itinerant system spin Quctuations are coherent
particle-hole excitations. In order to describe these ex-
citations one needs to consider the effective inter-
action between particle-hole pairs. This interaction
is most easily discussed in a spin-invariant fashion
similar to that outlined by Abrikosov, Gor'kov, and
Dzyaloshinski. ' The particle-hole interaction V p&„

(k, p; q) is the diGerence between the direct and ex-
change diagrams as shown in Fig. 1. Because of the
invariance of the interaction with respect to rotations
of the particle spins, the interaction can be written in
terms of two functions;

paramagnetic phase. The inclusion of a finite-range
interaction signi6cantly reduces the total effective mass
as was shown previously, ' ~ but in addition we 6nd a re-
duction in the temperature variation of C„/T versus T.
These results are discussed and compared with experi-
ments on He'. We conclude that spin Quctuations are
effective in a qualitative description of He . However,
the parametrization using a range is an oversimpli6ca-
tion for a quantitative description of He'. It is also
demonstrated that although T' lnT is the leading
temperature dependence beyond the mass-enhancement
term, this dependence is inadequate for describing the
temperature dependence within the RPA model except
at extremely low temperatures. In He' this region is
essentially below the lowest temperatures for which
measurements have been performed.

2. GENERAL FORMULATION
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Here 6 p are the matrix elements of the usual Pauli
matrices. This interaction will be considered here as an
effective scattering function which is the result of in-
cluding, for example, particle-particle scattering and in
the case of transition metals s-electron screening of the
d-electron interaction. " When viewed this way, the
form (2.1) must be considered as an assumption in a
ferromagnet since in this case the spin invariance has
been broken. There have been several papers discussing
the form of this function for transition metals. ~ ' In a
paramagnetic system, V, describes the density oscil-
lations. It characterizes zero-sound in liquid helium
and in a charged system describes the plasma oscilla-
tions so that V, (k, P, q)~47res/q' as q goes to zero.
For d electrons, however, if the s electrons effectively
screen the Coulomb forces, V, may remain finite as q
goes to zero. For this to be valid the ratio of the d
band mass to the s mass must be large. V charac-
terizes the spin Ructuations of the type of interest here.
However, since we are interested in the ferromagnetic
phase we shall need to keep both types of fluctuations
because the 0-, spin fluctuations couple to the density
Auctuations in this case. Before we go on to solve
this for the particle-hole scattering matrices, we note
the reduction of the scattering functions to the zero-
range model of Ref. 2;

2

V,= 2I. (2.2)

We now consider the particle-hole scattering matrices
which will enter our expressions for the shift in thermo-
dynamic potential. The general equation obeyed by the
scattering matrices is shown in Fig. 2. Kith the general

p, f

Fro. 5. Transverse-spin-fluctuation contribution to the se)f-energy.

form (2.1) these equations are quite impossible to solve
but we note that the solution would always involve
averages of V over k and p. We thus make the ap-
proximation of replacing V, and V by functions that
are averaged over these two variables, This enables
us to solve the equations and, we believe, retain most
of the relevant physics. Our conventions for the scatter-
ing matrices are

ttttt=ttt t

tt t k h tt $ ~

The Fermi functions f~, are given by

fr „Lexp(&ep.) +——1j—'
and

ep. ——p'/2m+ V, (0) (E,+X,)

(2.6)

are the Hartree single-particle energies measured rela-
tive to the chemical potential p. E, denotes the number
of particles with spin 0-. This choice of single-particle
energies is consistent with our averaged approximation
for the t matrices since the Hartree-Fock energies are
averages over k of the effective interaction.

Equation (2.4) may be solved algebraically for the
zero-spin scattering matrix ti i'(q);

t )& && (q, &e) =t'(q, o)), t& )i )(q, &) =t (q, —u).

(2 3)

The equations shown diagrammatically in Fig. 2 are
written as

ti t'(q) = (V+s V.)+(V+-'V )»'(q) tt t'(q)

+ ( V,—«V,)x )'(q) t
& t'(q) i

t »'(q) = (V.—l V.)+ (V —l V.)xi'(q) ti i'(q)

+(V.+-'V.)xt'(q) t ~~'(q) (2 4)

where the particle-hole propagators x,o are defined by

x'(q s) =2 (f~+o,.—f~;)/(s+ee. —e~+s.) (2 5)

V (q)+ :V.(q)-V.(q)—V.(q)xP(q)
1—LV.(q)+-:V.(q) jLx P(q)+xi'(q) 3+V (q) V.(q) x~'(q) x P(q)

' (2 g)

t'(q) =-:V-(q) /51 —-'V. (q) x'(q) l. (2.9)

» C. Herring, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. IV, Chap. 2.

The equation for t~~' is obtained by inverting the
arrows above.

The spin-1 scattering matrix t' may also be obtained
algebraically;

The spin-1 particle-hole propagator x'(q) is

x'(q, «) = 2 (f.+.. i f., )/(s+" ;+—. ) (2 1o)—
The expression for the shift in thermodynamic po-

tential is obtained from the general diagram shown in
Fig. 3. The squares of Fig. 3 represent the interaction
functions V. In the case of a zero-range interaction,
this shift results from the two distinct types of diagrams
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shown in Fig. 4. The shift of the thermodynamic potential from its Hartree-Pock value is

dX
( P) ' Z Z ~ { t t'(q tn, )xt'(q t're )+~t t'(q t're )x&'(q s )+2tn(q t' )x'(q ~ )

q m

—&LV.(q)+4V. (q)Xxt'(q sr'-)+xi (q set )3—&V.(q)x'(q t'nt-) j. (2 11)

Here et = (2ttt+ 1) trP and P= 1/Ea&.
To obtain the shift in thermodynamic potential from

our approximation to the scattering matrices, we have
multiplied the interaction functions by a coup1ing can-

stant ) and performed the indicated coupling-constant
integration. This procedure again assumes that the
detailed structure of the interaction functions are un-
important. Using (2.8) and (2.9) in (2.11) we obtain

~fl =P-' Z Z {s {in''1 —(V+ 4 V.) (x t '+x to) +V.V x t 'x i'+ (V.+4 V.) (x t '+x to) ]

lt should be pointed out that in Eq. (2.12) the
second-order diagram is counted twice. This diagram
couM be subtracted but since only in6nite-order col-
lective effects are of interest it will be neglected.

Equation (2.12) simplifies greatly in the paramag-
netic state where

Xt =Xt X,oi

leading to

~fl=p-' 7 Z {-;D (1--.'V.x')+-'V.x'j

(2.13)

+rsDn(1+Ixe) -Ixog j. (2.15)

+sDn(1 —2V.x')+2V.x'j j (2 14)

The first term represents the total spin-ffuctuation
contribution. The longitudinal spin ffuctuations were
omitted in the original work, "but have subsequently
been introduced. ' "'4 The eBeet of including longi-
tudinal spin ffuctuations is seen to multiply the shift
due to transverse spin Ructuations by the factor
The second term of (2.14) is the density-Ructuation
contribution.

Equation (2.14) represents the contribution of the
simpler diagrams in Fig. 4, when we use the 8-function
potential and the identities given in (2.2) .For this case

~fl=P-' Z Z {-;Dn(1—Ixo)+I,oj

Vfe break DQ into its longitudinal and transverse parts
before deriving an expression for the shift in entropy.
For the transverse part AQ~, the sum over integers may
be rewritten as a contour integral;

~fir = Z — . &(re) {»L1—s V.(q) x'(q, ~)g
2% $

+-, V-(q) "(q, -) j, (2 16)

where tt(co) is the Bose function

tt(re) =
j exp(p&) -11 '

and the contour encircles the real axis from —ao to
+ee in the clockwise direction, omitting the pole of
tt(re) at et= 0. Similarly, the longitudinal part &Qz,
is written

AQg=-,' Q . N(~)
q c 2XZ

&& {»{1-(V.(q)+!V.(q))(xt'(q, -)+x to(q, ))
+V.(q) V.(q)xt'(q, re)x t (q, re) j
+LV.(q)+4 V.(q) Xxt'(q, nt)+x to(q, re) jj.

(2.17)

The transverse contributi on to the shif t in entropy is

FIG. 6. Longitudinal contribution to the self-energy including
both spin and density fluctuations.

"D.Penn, Phys. Letters 25A, 269 (1967) ~

dre rttt(et)
Dn(1 ——,

' V,x') +-', V,x'j
q c 2m

dM 8—Z . tt(nt) —Dn(1 —sV x')+-'V.x'j.
q c 2' 2 (AT

(2.18)

Carrying out the temperature differentiation in the
second term and performing the contour integration,
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we obtain for this term

Z(-'I )' dM—e(o)) Imx +(q, id)

~fp t ~fr ai-+ (q~ gp t gp —g &)

~ ~&~f t ~fp gt'-t~

p k»» ~ (& gpt+gp g t)

—P (-,'V.)'m(gpt —...„) Reg-+

(2.19)

where we have defined

x-+(q, ~) =x'(q, ~)/I1 —
g I'-(q) x'(q, ~) I (2 2o)

and its real and imaginary parts are defined for &o+g0+.
YVe use the identity

"(&p t &p-g t) (~f t/~& ~fp g&/-»)
= —(~/») Ef, t (1—f,—.t) j

—( fp t
—f, , i) (&/&&) tt(gp t

—gp, t) (2.21)

to rewrite (2.19) . Doing the contour integration in the
first term in (2.18) and combining Eq. (2.21), (2.19)

&

and (2.18), we obtain

dM BB(0)) i gl axr (qy ~) 2I aX& (q~ '~p)
I

1 g VaxB (q~ 'pi) j
ASz = tan '

a2' 1—-', &.xa'(q, ~) [1—
g I'.xa'(q& ~)7+Lg I'.xr'(q ~)j'

"Rex,'(y, e, ,.) . (2.22)
pg 8T

gl' and y' are the real and imaginary parts of p' when
to= &a+i0+. We have introduced the fermion self-

energies

&t'(p "t)= —Z (gl'.)'
q

—'" ' ' "'"'L--(-)+l-f. ,a,
gpt+gp —g &

(2.23)
&t'(p gpss) =Z (gl'.)'

their result by a factor of «~. Brenig et a/. " have cal-
culated both contributions by using the expansion for p'
directly in the RPA expression for EQ (2.16) . The ex-
pression (2.22) shows that in this model the coherent
particle-hole excitations give rise to a significant con-
tribution to the entropy whenever the interactions
cause an appreciable shift in the energy of a particle-
hole excitation.

In the ferromagnetic case this boson term contains
the magnon contribution to the entropy, which can be
written as

L ( )+f,—.3
-m «—gp-at+gp&

~ i (gt g~ (~)
~~magnon g d(0

q o s(q)
(2.26)

to obtain

&t'(p po) =&t'(p, po)

= 2 (-:I.)
dM—Imx +(q, cg)

0 jl

fp a++(~) 1 fp —a—+'N(~)
X

po &p—g+~ po &p~ M

In the paramagnetic phase we can write

Imp —+(q, (p) = —Imp +(q, —(o)

(2.24) The magnon splits oB from the lower side of the particle-
hole continuum and gi(q) is the lower edge of this
continuum.

%e are primarily interested in the eGective-mass
enhancement and the qualitative temperature de-
pendence of C,/T. The bosonlike terms are at least of
order T' lnT or T' in C„/T and give quantitative cor-
rections to the temperature dependence of the fermion-
like contribution. We will ignore them in our subsequent
calculations.

The entropy contribution from dQr, given in (2.17)

This is the self-energy contribution considered in Refs.
1 and 2 corresponding to the diagram shown in Fig. 5.

The total entropy in (2.22) has a bosonlike term in
addition to the fermion self-energy contribution. For a
paramagnetic system at low temperatures, the boson
term has as its leading contribution a T' lnT temper-
ature dependence. The bosonlike contribution may be
incorporated into the T' lnT fermion contribution cal-
culated by Doniach and Kngelsberg by multiplying

p t p q pf

FIG. '7. Longitudinal contribution to the self-energy in the special
case of a zero-range model.
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can be derived in exactly the same way as hS&. If we de6ne

LV.(q)+-:V.(q)3—V.(q) V.(q)x.'(q, )
1—

I V.(q)+lV. (q)Xxi'(q, )+xP(q, )]+V.(q) V.(q)x~'(q, )xP(q, )

-LV, (q)+-:V.(q) j, (2.27)
we obtain

~ &N(~)
&

( Vs+ gVa) (x)r +x )r ) V&Va(x )r x )a +x fB x )r )
aSL, ———,

' tan '
&T 1—(V,+-', V.) (x )g'+x(g')+ V.V.(x &g'x)g' —x ~r'xtr')

—g LRex .+(V,+&Vo) jx.r' —g g ' ReZ,~(p, e, ,.), (2.28)

where

A-~,.+&(~) 1—f~-~;+(")
Z, p, e, ,. =-', Z, —Imx q, o&

' +
q —co 6p 0 6p q, g CO p g p—q,g

(2.29)

This self-energy is shown diagrammatically in Fig. 6. The squares of Fig. 6 are the zero-spin interaction functions
of (2.1). In the zero-range model, Fig. 6 reduces to Fig. 7. In the paramagnetic case the coeKcient of Be/BT of
(2.28) splits into two contributions, one that is identical to the first part of (2.22) but multiplied by 2 and another
contribution of the form

da& Bm((o), ( 2V,xro & 2V,xro(1 —2V.xg')
'

q -m ~ &T i1—2Vsxz'i (1—2VexB')'+(2VIxr')'
(2.30)

Contributions from any collective density fluctuations
such as zero sound or plasma oscillations are contained
in (2.30). Again, since we are primarily interested in
lowest-order eGects in temperature, we ignore these
contributions.

The shift in entropy will be calculated using the
fermionlike contributions given in Eqs. (2.22) and
(2.28) .

In this section we have developed a relation for the
shift in thermodynamic potential from terms most im-
portant in a fermion system close to a ferromagnetic
instability. From this relation we have derived an ex-
pression for the shift in entropy due to collective ex-
citations and the single-particle self-energy. In this
form the effect of interactions on the single-particle
spectrum and density of states is apparent and its con-
tribution to equilibrium properties is manifest.

3. SPECIFIC HEAT NEAR THE CURIE
TEMPERATURE

It is known that in a nearly ferromagnetic system,
spin Ructuations lead to large enhancements of the
effective mass measured by the slope of the low-tem-
perature specific heat. ' ' It has also been shown' that
the low-temperature behavior is changed qualitatively
from the expected linearity. The question to which we
address ourselves at this point is: For the itinerant
model we consider, does the effective-mass enhance-
ment which appeared at zero temperature for the nearly
ferromagnetic system become tied to the Curie temper-
ature, or do those enhancement terms remain at zero
temperature and a new type of singularity appear from

another mechanism? We will see that it is the latter
behavior which prevails.

For the ferromagnetic system I of Eq. (2.2) is such
that"

I=IE(0))1, — (3.1)

where 1V(0) is the density of states for a single spin at
the Fermi energy for the unstable paramagnetic phase.
The condition for ferromagnetism is that the enhanced
susceptibility becomes in6nite. Under this condition
the Curie temperature is determined by

8
j.= —I de e

86
—=I(T.). (3.2)

—,'x'I(0) (T,/T~') (T T,), for T & T,. (3—.4)

In the paramagnetic phase we consider only the
spin-fluctuation contribution of (2.14). We neglect
the e8ect of density fluctuations appearing in AQL, , since
they will not be affected as we approach the Curie
temperature from the paramagnetic phase. The self-

energy (2.25) is broken into two parts for this calcula-

"Since the spin fluctuations decouple from the density Auctua-
tions in the paramagnetic region, we will characterize the relevant
interaction qV (q) by the constant I in this section.

We consider T,(&Tp, that is, weak. itinerant ferro-
magnets, in which case

T,)2 (T )2 T,)4I(T)= 1+——'I 1—
I

—
I +o —'I (33)

12 TJj &T j Tpj

for parabolic bands. The quantity ~0'=1—I(T) may
be written
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tion: a fermion term

~ des
Z, (P, pp) = ;I' -Q —Imp-+(q, ~+ pB)

q

X + (3.5)
p q

Pp
—e(P —q)+~ Pp

—e(P—0) —~

and a boson term

~ Ao
Z. (p, P,) =-;I P —Im~-+(q, +ps)&( )

q 0

(3.6)
2LPo—(P—q) j

LP.—(P—q) j'—'

The reason for making this separation is twofold. In
a system where the collective excitation is an inde-
pendent entity, as phonons in a crystal, Z„depends
explicitly on the boson occupation numbers N(co). In
the present model the collective excitations arise from
coherent fermion excitations. However, the major
reason for the separation is that in a nearly ferrornag-
netic system all of the mass enhancement at low tem-
peratures comes from the fermion part Zf. The boson
part Z„contributes a leading term to the entropy which
is no more important than T'. We will find the situation
reversed near the Curie temperature. In this region the
low-frequency sharply delned spin-Buctuation modes
no longer contribute a singular term to the speci6c-heat
mass enhancement arising from Zf, but a new singular
term going as (T T,) '~' is contri—buted by Z„."

The term in Zf not including a fermi function has
no structure about pp

——0. Thus this term corresponds
essentially to a shift in chemical potential. We write
the other two terms of (3.5) as

&rLP e(P)j=lI'Zx "L% (P—q) —(P)3f.—. (37)
q

using the spectral relation for x +. We adopt the ana-
lytic approximation for x + given in Ref. 2.

If we use this form in (2.22), we obtain the shift in
entropy due to the fermion part of the self-energy.

3I'E(0) ep " Bf,Bf'
ASf = d» — de' —,(e—e')4' —oc ~& —co

=0
7 otherwise. (3.11)

Equation (3.10) may then be written as

9 KgN(0) epIPBSf=- dgg dx
16

x—x'
X dh'(x —x') tan ', (3.12)

—1

ns (e e') p
dgq~ tan ' . (3.10)

ep(«/+eel)

The low-temperature expansion given by Doniach
and Engelsberg' may be obtained from (3.10) for
temperatures much less than the characteristic spin-
Ructuation temperature T,.

T8= Kp ep/KB= «Tp.—
To show the relevant variations of the functions in the
integrand, we plot tan ' e/T, and Bf/B» —for T«T,
in Fig. 8. We see that for T«T, the arc tangent is slowly
varying and very small in the region where Bf/Be has
all its weight. Thus by using this fact and integrating on

q by parts the low-temperature expansion is achieved.
For temperature approaching the critical temper-

ature, Kp
—+0 and we find the opposite extreme, T,«T.

The behavior of the important functions in this limit
is shown in Fig. 9. In this case Bf/Be is almost constant
in the region where the arc tangent goes through its
entire variation from ——,'~ to + 'p~. This feature of the
functions involved in (3.10) suggests an approximation
which allows an analytic evaluation. The approxima-
tion we use is

Bf/Be= —1/6KgT, 3K' T&e&—3K' T

E(0) («'+n|l')
Rey +q, ~=

(«'+~@)'+ (V~/rI) ' '
where

6= (ep/y) («'g+ng'/3KgT) .
where

0= 9/P~

47t Iy

CO=CO 6p.

The x and x' integrals may now be performed by chang-
ing variables of integration. We neglect the g' terms in

This form for y + retains the large enhancements of
the susceptibility at &o «pg for Kp'~0. Integrating (3.7)
by parts and using (3.8), we obtain

3 iV(0)IPel Bfp p

2 &, Be(P—q)

„„,L (p-q) -e(p)]v
ep (Kp g+ exp )

' T. Izuyama and R. Kubo, J. Appl. Phys. 35, 1074 (1964).
FIG. 8. IHustration of the variation of the functions appearing

in the integrand of 3.10 for T«T, .
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2

FIG. 9. Illustration of the variation of the functions appearing
in the integrand of 3.10 for T))T,.

6 to obtain the leading contribution to the specific heat
for T,&&T;

3KsN(0) sppt' T.
DCy= —+0

T T) (3.13)

In taking a temperature derivative to obtain this re-
sult, we include the temperature dependence of Kp'.

Equation (3.13) shows that the mass enhancement has
not gone away but at the same time it is not singular
at T,.

We next consider the contribution of Z„, (3.6), to
the specific heat. This term was not included in the
low-temperature expansion of Doniach and Engelsberg. '
We will indicate brieQy why its contribution is neg-
ligible compared with the terms previously calculated
for T,))T. In the opposite regime T,«T, near the ferro-
magnetic Curie point, it is just this term which con-
tributes a singular term to the specific heat. Using the
same analytic approximation which gave (3.8), we

may write Z„as
~ lM

Z„Lp, e(p) j=3PE(0)y Q —N(cs)
q 0 7l

Ts

FIG. 11. Illustration of the variation of the functions appearing
in the integrand of 3.16 for T))T,.

due to the factor e(co). Since
~
e(p) —e(p —q) ~

is es-
sentially unbounded, we neglect oP compared to
Ls(p) —s(p —q) j' and obtain

~ Ckv

Z„gp, s(p)]=3lsE(0)y Q —e(cs)
q O

7f

The error in this approximation is of order (T/Ts)'.

2,0

l.5

Whether T«T, or T&&T„ the major contribution of the
integral above comes from the region where co«EgT, .5

-j.o—

l.o
q/k'F

2.0

Ts
CU

FIG. 10. Illustration of the variation of the functions appearing
in the integrand of 3.16 for T&&T,.

FIG. 12. The boundaries of the continuum for the transverse
susceptibility x (q, &o). The p& aud p„mark the limits of the
integration in Eq. (4.3) . At long wavelengths the low-frequency
spin wave splits off from the continuum.
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The major contribution of the q integration arises
for momenta q«pr. If we perform the angular integra-
tion in (3.15) and expand for q«pr, there results

3PN(0) yp»s
~-Lp, (p)3=- dg Q8''(e+e ) ep

heat;
2

Ko F101/2

bS„= sr (IsK-»rPps)
~

— — tan —'
&T~ 0.'" Ko

, (7rP—EJrpp') (T/Tp) '(Kp/rr'") . (3.20)

(Kp'q+rrg') '+ (y~) '

At this stage we must consider a specific temperature
regime to obtain the leading contributions of (3.16).
The physical situation is illustrated in Fig. 10 for T,))T.
In this temperature regime we may expand the de-
nominator of Imp + as a power series in pps/T, s. If we
keep only the leading term, we find

3PN(0) happ'(Err T) '
&~p, ep

16rr'(e+ ep) prep

1 1 tX, ,——,
~

dZ Zn. (Z), (3.17)
Kp +carpi Kp ]

where Z=rd/E~T.
The shift in entropy due to Z„(e) is then obtained

using (2.22) and expanding Z„(e) about e=0. For
Ko'—+0, this term gives as a dominant contribution

DC„= $3rr'N (0)I—'/4Kp' j(T/Tp) 'Krr T. (3.18)

Note that we find no T'lnT terms and the T' term
has as its coefficient 1/Kps, in contrast to the leading
contribution from Zr. As shown in Ref. 2, Zr con-
tributes a large mass enhancement, a T' lnT term and
a T' term with coeKcient 1/Kp'. The ratio of the T'
term from Z„ to that from Zr is approximately (T./Tr) '.
Thus the term Z„may be neglected for T«T, .

We now treat the opposite extreme, T,«T. Equa-
tion (3.16) is still valid, but now the situation is that
shown in Fig. 11. In this situation, Imp + has all of
its significant variation in the frequency region where
n(pt) KrrT/rp This appr.oximation, is adequate only
for the resulting singular terms, since it is a high-
temperature expansion, T»T, . After this replacement
for n(cp), (3.16) becomes

3PN(0) KrrTpp'

16rr'(e+ ep)

X
(Kp'q+rrq') '+ y'

Using (3.4) the specific heat can be written as

DC~/Cp= ~~v2 rr I(T /Tp) PT,/(T T,)—$'r (3.21)

where Cp=-'ss'N(0) Ea'T is the bare fermion specific
heat.

The bosonlike contribution to the entropy (2.22)
and (2.28) can be shown to be nonsingular by making
use of the same approximation for x as we used in
evaluating Z. The point we wish to emphasize is that
the Z„ term giving the singular specific heat is actually
going to zero as T goes to T..

As mentioned before, the singularity in C„has been
obtained previously by Izuyama and Kubo." It is a
rather general result of going one approximation stage
beyond the molecular-field approximation and is in-
correct. Experimentally the specific heat of itinerant
magnetic systems are described by a logarithmically
divergent temperature dependence. " The point we
wish to emphasize is that the low-temperature mass
enhancement and the singularity in the specific heat
at T, come from different contributions to the entropy.
This aspect of the theory may carry over to a more
exact theory.

4. SPECIFIC HEAT FAR BELOW THE CURIE
TEMPERATURE

In studying the specific heat for temperatures much
less than the Curie temperature, we will assume again
the weak itinerant-ferromagnetic condition that T, be
much less than the Fermi energy. The Hartree-Fock
single-particle energies are given by Eq. (2.7).

In a ferromagnet there are two Fermi surfaces with
characteristic momenta, ppt and pp t. It is convenient
to introduce the two alternative parameters rt and pp'

defined so that
ppt =pp'(1 ~)

p. t= p.'(1+.).
The equilibrium conditions are then

pp'= p» (1+3rp) "
(1+3'') Lsl' =(o)3'(.1+sr') '

3I'N(Q) KrrTpp' i& P
dg

16m'(e+ep) p Kp'+ tran'

(3.19)

where pp and frsV, (0)$ are the paramagnetic Fermi
momentum and dimensionless interaction, respectively.
In terms of g the magnetization per particle is

We perform the momentum integration and neglect a
term independent of Kp since it results in a negligible
effective mass shift. Use-of (2.22) now gives the term
in the entropy which will lead to a singular specific

s» n(3+v') /(1+3~') =s» 3n.

' Y. A. Kraftmakher and T. Y. Romashima, Fiz. Tverd. Tela
8, 1562 (1966) )English transl. :Soviet Phys. —Solid State 7, 2040
(1966);Y. A. Kraftrnakher, ibid. 8, 1306 (1966) /English transl. :
ibid. 8, 1048 (1966).
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Fro. 13. The transverse tiuctuation contribution to C„/C„' as
a function of temperature for three different values of the para-
magnetic I.

"T.Izuyama, D. J.Kim, and R. Kubo, J. Phys. Soc. Japan 18,
1025 (1963).

The response function y +(q, ot) has been discussed
extensively in the literature. "' It exhibits a real spin-
wave pole outside a continuum of single-particle excita-
tions as illustrated in Fig. 12. For the transverse case,

P& P& t P&t 2P& t

P~ PF 1+PFt 2P& .

The region of integration in ZJ is restricted to be within
the continuum. This region does not go to q=0 since
it involves the virtual excitation of a particle with
spin 0. to a state with spin —0 with zero energy change.
The analytic structure of p + is somewhat compli-
cated for both ~ and q small. However, we can obtain
an expression for the effective-mass enhancement by
determining x +(q, 0).

Expanding y'(q, 0) to second order in q, we obtain

x'(q, o)=&'(0)H1+ sn') —1'Qq" (1—sn') 3 (4 11)

Inserting this into the form of p + and using the equi-
librium condition gives

x '(q, )=&'(0) (1+-'~')/(I'( —~l')q") ( 1 )

Here q'= q/pt
' and X'(0) is the density of states at the

energy corresponding to the momentum PF'. The efiec-

tive-mass enhancement is then

(m*/m —1).= —Zr."
(1+,'rP) I-'

The mass enhancement of the specific heat from the
above terms is

(m*/m) r 1———6I'(1+-s'tt') /(1 —xttt') lnt1. (4.14)

If we write g in terms of the paramagnetic I, we obtain
to lowest order

n'= a(1—1)

and in the limit as tt—&0, the singular term in (4.14)
reduces to

(m*/m), =—3 in' 1—I i.

The calculation of C„(T) is complicated in this case
because it requires a detailed knowledge of the behavior
of x+ (q, o&) for q~2ps'tt and ot small. The real spin-
wave excitations come into the continuum in this region
so that the structure is nonanalytic. However, one can
surmise what the temperature dependence will be. For
most values of q, Rey +(q, at) will be large at or=0
and drop off symmetrically whenever

i
ot i~at, (q) . For

q near 2ttks however, Rey + (q, o&) is asymmetric
because of the buildup of the real spin-wave mode.
In this region, Rey +(q, ot) peaks for positive &u at ap-
proximately ot, (q) while for ot negative Rex +(q, ot)
decreases rapidly. This is reQected in the self-energy.
For positive frequencies

i
Z (c) i

increases until c is
equal to the frequency at which the real spin waves

M
CII
IZ
W

":7
I-

4O

Tlag lO

PIG. 14. The effect of an external field on the transverse
contribution to the specific-heat enhancement. To see such an
effect one needs a material with a low Fermi energy.
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enter the continuum (sr ris) e„,. For negative e,

I
Z'(e)

I
decreases continuously. In C„/T the increase

of Z' for positive frequencies at first cancels the de-
crease for negative frequencies. The effect is to give
C„/T a width at T=O of about AT~0.2 erf'Tr. The
0.2 is due to the fact that J(N) in (4.8) peaks at 1=5.
These properties are borne out by numerical calcula-
tions. In Fig. 13 we plot C„r/C, e versus temperature
for I=1.01, 1.02, and 1.05. For I=1.01, g=0.124, so
that on the scale plotted one cannot see a width to the
peak at low temperatures. However, for I= 1.02,
q=0.178 and —,'g'T~=0.003' and we see a width to
the peak at T=0 of about ~ of this temperature.

Before we go on to the longitudinal spin-Quctuation
terms, there are two other contributions from dQ~

to the specific heat that should be mentioned. The
first is the spin-wave contribution. lt is easily seen that
the total energy given in Eq. (2.26) is always at least
of the order q' because of the cutoff in phase space
2ripp' where the real spin-wave branch enters the con-
tinuum. Thus this term is completely negligible com-
pared to the effective-mass enhancement.

The second term of interest is the contribution of
the spin wave-electron interactions coming from Z„.
Using the same approximation that led to (3.15) and
picking up only the spin-wave poles in x—+(q, co), this
term is

~ Ao
(spin waves) Is P

(X l
—iVt) SP~—~, (q) g

I(Xl—Xt)
=~I Z &E~ (q) j.

By itself this term would give an erroneous T'~' de-
pendence of the self-energy. However it is exactly can-
celled by a term coming from the spin-wave renormali-
zation of the Hartree contribution,

—',1(X .—N.) =oI3I(T) =oI(—M(0) —Q +leo, (q) $).

This is a different cancellation from that obtained by
Izuyama and Kubo, ' who claim that Z„itself starts with
T'". Our result agrees with the decoupling approxima-
tions of Cornwall. "As far as our calculations are con-
cerned however, these terms are not important, be-
cause they give small contributions to the specific heat.

We now turn to the longitudinal spin-Ructuation
contribution. In this case, F(q, co) is given by Eq.
(2.27). The interesting feature is that the spin fluctu-
ations and the density Quctuations do not separate as
in the paramagnetic case. The actual enhancement of
the effective mass will depend only weakly on this
coupling because the low-frequency excitations are
still primarily of the spin-fluctuation type. For co/q

I J. F. Cornwell, Proc. Roy. Soc. (London) A284, 423 (1965).

o
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FIG. 15. Temperature dependence of the speci6c heat from
{4.8) for spin fluctuations. The two parameters which determine
the curves completely {ft0' and b) were obtained from the measured
susceptibility (Ref. 21) and the zero-temperature limit of C/T.
Experimental points are those given in Ref. 24 for He' under
high and low pressures.

small and q«pp,

&.'-X.(0) I 1—r'zq"+ l (z~) ~'/q'j

=&'(0)L(1- n) ——'P+l( ) '/q'j (4 15)

Here pz, is replaced by ps' in the q' term. This replace-
ment neglects a term of order g' in the mass enhance-
ment and leaves unchanged the most singular temper-
ature-dependent terms. Inserting (4.15) into our ex-
pression for g, (cl, co), (2.27), we find that there is a
low-lying pole at

-'/q'=-l'-(I/I')E(1-I')+~'I"/(I+I'P')+ —' I'q j
+0(rf') . (4.16)

We define

~o"= [(1 I') +rf'I"/(1+—I'/I ') g

The frequency dependence of the t matrix is essentially
described by keeping only the pole contribution of
(4.16);

-',I, 1 I
(1+1) 2 ( le+ r Z/-ls)+1 ' ll-I/

(4.17)
The quantity entering the self-energy is

1 Is%'(0) 4z-co'/q'

(
&2 r j& &2)2 (11& -&/ 1)2

' ( ' )-
This is exactly the form used by Doniach and Engels-
berg' in calculating these effects in the paramagnetic
case. The specific heat for the present case is simply
obtained from their Eq. (13) by using the new value
of Ko and multiplying the total contribution by ~.



430 W. F. 8RINKMAN ANDS. ENGELSB ERG j69

2
T/TF x IO

Fro. 16. The temperature dependence of C„/C'o for ~op=0.05.
(a) Computer calculation, (b) analytic formula Eq. (5.3), and
(c) curve obtained by changing coefBcient of T' to 6t the computer
results at low temperatures.

If we again write of'= po (I—1), we find that

.,' =-', (I—1)L1+3/(1+I/I, )3.

For I—1 very small, the total effective mass from both
types of spin Quctuation is

~*/m- ——', ln~ 1—I I.

Thus the singular term in m*/m is symmetric ap-
proaching the ferromagnetic instability from either
the paramagnetic or ferromagnetic phase. On the
ferromagnetic side, 1—I is proportional to the zero-
temperature magnetization, so that the mass enhance-
ment is proportional to the log of the magnetization.
This was previously reported in Ref. 3. In the experi-
ments on Rh-Ni alloys a singularity in the p value
was observed which goes as the log of x + for concen-
trations for which the alloy is paramagnetic. On the
ferromagnetic side the behavior is more complicated.
This may be due to the fact that the bare density of
states is varying rapidly in this region. The above
result contains only the singular terms. The nonsingular
terms depend on the equilibrium properties determined
by the density of states as a function of energy and on
the various effective interactions. For example, the
longitudinal spin Quctuations will be damped more
or less rapidly, depending on their coupling to the
density fluctuations, which in turn depend on V, (q).
If V, (q) goes as 4ore'/q', the spin fluctuations are es-
sentially restricted by the condition that they not be
accompanied by density Quctuations. The calculations
of the mass enhancement can then be performed using
a longitudinal susceptibility restricted by this condi-
tion. If the s electrons screen the d-electron interaction,
V, (g) will not diverge. In this case there is the possi-
bility of acoustic plasmons. In the ferromagnet it is

possible to couple to these modes with a magnetic field
parallel to the magnetization.

The inclusion of the momentum dependence of the
interaction reduces the total effective-mass enhance-
ment. Its effect on the temperature dependence of C,
in the paramagnetic phase is discussed in Sec. 5. The
effect is similar for the longitudinal Quctuations in the
ferromagnetic phase. For the transverse Quctuations,
however, the range of the interaction will increase the
spin-wave energy for a given value of q so that the width
of the peak at T=0 of C„~/T will extend to somewhat
higher temperatures.

The effect of an external Geld on C, can be included
by shifting the single particle energies by —,gp&H. The
new equilibrium condition is

4'(1 I) =II—(1+3rP)+rrIrlo+4rff1 (1+3r—P)'lof

In the paramagnetic regime the effective mass is re-
duced in the presence of a field because the cuto ff at
long wavelengths p~

——2ol~ o' due to the Zeeman splitting.
This cuto ft' eliminates the very-low-energy spin Quctu-
ations. This is readily included in the program to cal-
culate the transverse contribution to the specific heat.
In Fig. 14 we plot this contribution to the specific heat
for I=0.99 and for three values of the Geld. As can be
seen, the 6eld will suppress the mass enhancement if
H= gp~II/ep is of the order of 1 I. This is also—true
for the longitudinal Quctuations. It would be interest-
ing if one could find a system in which this condition
is achieved.

5. EFFECT OF FINITE RANGE,
COMPARISON WITH He'

It has been found experimentally that the RPA
model with zero-range interactions overestimates the
effective-mass enhancement for a given value of the
susceptibility enhancement Kp ~ It has been suggested
that this can be corrected by introducing a 6nite-range
interaction'. ~

I(rI) = I (0) —bq'.

We will consider the effect of a finite range on the
temperature dependence of the specilc heat given in
(4.8) and compare our results with the experimental
results for He'.

First we maintain a 8-function potential to describe
the two particle interactions. There are then no un-
determined parameters. The susceptibility measure
ments give us values for Kp as a function of pressure.
According to Wheatley, " at a pressure of 0.28 atm,
Tz ——5.0'K and Kp' ——0.11 and at high pressures P= 27

atm, Tp =6.2'K and Kp =0.05. Use of these values gives
a mass enhancement which is too large at both pres-

"J. C. Wheatley, in Quantum Ftuids, edited by D. R. Brewer
(North-Holland Publishing Co., Amsterdam, 1966), Table III,
p. 198 and Table EV, p. 205' Ko oEBT /(Poo/2m).
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sures. We find

(m*/m) o.28,a
——5.1,

(m*/m) ~27.g~ ——7.9.

The values of b were chosen for Fig. 15 by demanding
that the experimental values" of m*/m be given com-
pletely by the spin-fluctuation contribution. The values,
at 0.28 and 27 atm, respectively, are

m*/m =2.98,

m*/m= 5.65,

b=0.127,

6=0.06.

To give some feeling for these values of b, we com-
pare the term in g' which we have added to g + to the
term which appears in the analytic expansion (3.8),
namely, o,g~.

n= ~'~I =0.074,

=0.079,

for p=0.28 atm

for p=27 atm.

"W. R. Abel, A. C. Anderson, W. C. Black, and J.C. Wheatley,
Phys. Rev. 147, 111 I,'i966).

~ K, A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
(1958).

It is important to note that the range b also has an
appreciable effect on the temperature dependence of
C„/T. For example, in the high-pressure case, where
ro'= 0.05,

m* l~o/m* lb OO6 1=4.1

l C„(Tg)/T1 C„(T2)/T27 l~Q = 1.5.
CC (T~)/T~ —C.(T2)/T27 lt o«

We have used the temperature range from Tj.=
1X10 'e~ to T2=4X10 'eg, where C„/T is a fairly
linear function of temperature. The comparison with
experiment shown in Fig. 15 con6rms the fact that spin
Quctuations in He' are effective in leading to the ob-
served decrease in C„/T with increasing temperature.
There are several factors which indicate that our model
is too simplified to be the whole story. For one, the
experimental value of m*/m is certainly due in part
to other mechanisms, e.g., Hartree-Fock corrections
as calculated by Bruekner" and fermion-phonon inter-
actions. Thus the range used for spin Quctuations will

have to be increased further. As indicated above, an
increase in the range decreases the falloff in C/T.
Furthermore, we have not included the bosonlike con-
tribution to C/T. As was pointed out earlier, explicitly
for the T' InT terms, the bosonlike term also decreases
the falloff in C/T. Thus the real experimental situation
in He' appears more complicated than the simple
parametrization allows.

The computer calculations have given us an im-

portant fact about the low-temperature expansions
which include only T' lnT terms exactly. We find the
low-temperature expansion to be valid only for a very

small temperature range: The fallo6 of T' lnT is much
more rapid than the correct temperature dependence,
especially for very small zo'. In Figs. 16 we try to illus-
trate this fact by including the computer calculation
of C„/C„' for KO2=0.05 in the zero-range model l Fig.
16(a)7 along with the T'lnT and T' terms which
arise from the analytic approximation to the suscep-
tibility. The analytic approximation to Eq. (13) of
Ref. 2 leads to

C. m~ 3 I' t'T ' T=—+— —'s' —,l = ln +1.78
Ce m 2 &0 (Tp plTF

where
Tp (4mp'——/mI) Tl ..

(5 2)

We have included the factor & to account for longi-
tudinal spin fluctuations. The last T' term in the above
expression is the result of a numerical integration not
included in Ref. 1.We choose the cutoG p~= 1.6 so that
for ~o'=0.05, the mass enhancement given by the
analytic form, Eq. (10) of Ref. 1, agrees with the com-

puter calculation, namely, m*/m= 7.9. When the values
wo2=0. 05, pq

——1.6 are used, Eq. (5.2) is evaluated to be

C„ 0.0202= 7.9—7.2X10' —ln
C„' Tp T/TI

(5.3)

This equation is plotted in Fig. 16(b). By changing
the scale of temperature in the logarithm, that is, re-

placing 0.0202 by a parameter X, we change the T3 terms
of the specific heat. If we try to vary X in order to force
a T' lnT fit to the low-temperature part of the calcula-
tion in Fig. 16(a) we get the curve shown in Fig. 16(c)
corresponding to X=0.00546.

These curves show why Doniach and Engelsberg'
had to apply large renormalizations (roughly 100% at
high pressure) to ~o' in order to obtain a reasonable
agreement with experiment. The fact that the experi-
ments have not yet reached temperatures where

(T/T, )' ln(T/T, ) is a good approximation to the cal-
culated temperature dependence leads one to question
attempts at obtaining the observed specific heat from
a Fermi-liquid calculation of the coefficients of the
T' ln T term. '4

'4 D. J. Amit, J. W. Kane, and H. Wagner, Phys. Rev. Letters
&9, 425 (&967).
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