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small deviations from thermodynamic equilibrium
then the local equilibrium assumption of AT is un-

necessary.
We now compare our result for the BCS limit

Eqs. (7) and (8) with the result of AT." It is stated
there that AT Eq. (4.6) is valid when Q) 26 but this
is incorrect. An additional requirement is npq&Q,
where vtr is the Fermi velocity and 1/q is the char-
acteristic length of the spatial variation of the order
parameter. Our result for the SCS limit is for the case
Q)26, q=0. The expression of AT must be modified
in this case to include a term of order lV which they
have dropped in their kernel L(0, 0) . U this correction
is made, the results agree. The value for the relaxation
rate of AT as quoted by Lucas and Stephen' is there-

'7 Reference 4, Eq. (4.6).
"Reference 8, Eq. (38).

fore incorrect and should be replaced by the expression
1/..=4~.

We conclude by commenting on the result of AT in
the diGusion regime ~gq&h&Q. If we linearize their
Eq. (4.6) about equilibrium near T, we find

—M5= (ct/et/ DV—') 6, (12)
where

X= 14t'(3) dP/ z AT„D=7f(3)vF'/6m'kT, .
Since X/Dq'=12(h/veq)', we may neglect the left-
hand side of Eq. (12) . We then have a simple diffusion

equation with a constant diffusion coefficient and a
diffusion rate Q=Dq'. The range of validity is then
kT,&epq) 6)Dq'. There is no anomalous behavior
of D as T—+T, but it should be pointed out that the
maximum value of q for which the diffusion equation is
valid decreases to zero as the critical point is ap-
proached.
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The Ginzburg-Landau questions have been solved for an isolated magnetic fIux line enclosing a single
Rux quantum. The radial dependence of the magnetic Geld H, the order parameter e„the current density
J, and the resulting free energy per unit length F/L, are obtained for values of the Ginzberg-Landau
parameter e=20, 5, 1.0, 0.5, and 0.2. For e&5, the axial magnetic field If (0) is approximately given by
JI(0) =0.62e~ uVZP, b. The maximum value of the current density is approximately J=0.33v2Pob/X,
where H, b is the bulk critical Geld and X is the superconducting penetration depth.

I. INTRODUCTION

& iHE quantized Aux tube is central to the present..understanding of the behavior of type-II super-
conductors. ' ' The structure of the Bux tube was 6rst
treated by Abrikosov. ' He set up the Ginsburg-Landau'
(GI.) equations for the cylindrically symmetric case,
which corresponds to an iso1ated Aux tube. Analytic
solutions were then obtained for values of the GL
parameter x))1. If this condition is not met, numerical
analysis is required. Computer solutions have been ob-
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tained by Fink and Presson and by Doll and Graf' for a
Auxoid in a material for which I(. &1. However, these
solutions were for a Quxoid inside a wire of 6nite diam-
eter and therefore represent a diferent set of boundary
conditions than that for an isolated Aux tube.

We are presently investigating the behavior of thin,
type-I, superconducting films in the presence of a per-
pendicular magnetic Geld. In this situation a Aux tube
structure is also exhibited. ' "We have investigated the
behavior of the solutions of Abrikosov's equations for
the isolated Bux tube for several values of ~ in the range
from 0.2 to 20. We are primarily interested in the radial
behavior of the order parameter and of the magnetic
field for values of x(1/K2. However, we have also
determined the current density distribution and the free
energy per unit length of the isolated Qux tube. Harden
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TABLE I. Results of computer solutions.

h(0) f(0) )max KP h (1)/h (Ol h (2) /h (0)

0.2

0.5
1.0
5.0

1.22

0.813

0.617

0.307

0.274 72

0.475 21

0.777

3.06 0.54

0.377 1.71

0.331 1.25

0.321 0.92

0.323 0.31

8.0 1.60

4. 1 2.05

2.4 2.40

0.65 3.25

0.861

0.765

0.642

0.283

0.564

0.384

0 ' 240

0.077

20 0.138 11.7 0.042 0.325 0.090 0.18 3.60 0.157 0.048

and Arp" have calculated H, & of type-II superconduc-
tors, which is proportional to the free energy per unit
length, and their data have been used for comparison
purposes.

We are especially concerned with the details of the
model of the Qux tube which describes the central region
as a core of radius, X=)=X/K, surrounded by a region
of magnetic field with radius of order X. We will show
that the radial dependencies of the order parameter and
the magnetic field for different values of ~ do not scale
in such a simple fashion.

II. METHOD OF SOLUTION

Abrikosov' starts with the GL equations written in
the dimensionless reduced GL units in which length,
vector potential, magnetic field, current density, Qux,
and free energy per unit length are normalized respec-
tively as

(1a)

(1b)

(1c)

(1d)

(1e)

(1f)

and
f=+(r)/+( ) (2)

r= R/X,

a= A/V2H, bX,

h= H/%2H, b,

j= J/(%2H. b/X),

y= C/V2H, bX',

e= (F/L) /(H b2)%,'/4m)

where B',b is the bulk. critical 6eld. The GL parameter
a is dined by

z= (2V2e/Ac) H,bk = 27r (42H, bX'/df»), (1g)

where Co is the flux quantum hc/2e, and h, e, and c
have their usual meanings. In addition, Abrikosov
introduces the quantities

For the variables f and Q, the set of boundary conditions
defining the isolated Qux tube is

f(»~oo) =1, (6a)

Q(»~ao) =0, (6b)

f(0) =o (6c)

Q(»~0) = 1//dr (6d)

It is convenient for us to define a new variable

p=Q, (/)

which, when substituted in Eqs. (4) and (5), results in

f"="(j' f)+(—1/») L("p'fl») f'j-
p"= (p'/»)+pf' (9)

h= —p'/», (10)

j=pf'/»

where primes signify differentiation with respect to r.
Similarly, the boundary conditions become"

f(r~oo) =1, (12a)

p( (12b)

f(0) =o (12c)

p(0) = 1/~. (12d)

However, numerical integration requires the specifi-
cation both of the values of the variables f and p and
of their derivatives at r=0. Thus, f'(0) and p'(0) must
be chosen to satisfy the boundary conditions at inhnity.
Rather than specifying p'(0) we find it more convenient
to specify pp'/r j,~= —h(0) .

A good check on the accuracy of the solutions is
provided by the calculation of the Qux in the Qux tube.
This is defined by

d fd (r) 2rrdr. =
0

Substitution of Eqs. (5), (6b), and (6d) into Eq. (13)
gives

(13)

d =2rj (d/dr) (rg) dr = 2 /r
0

and (14)
d/drPr'd/dr(»Q) j=QP= d-h/dr =j. —

Q= )a—V&/. ~, (3)

where q is the phase of the wave function, 4=fe'&.
He shows that for a system enclosing a single quan-

tum of Qux, the GL equations may be written as

—(1/"») (dl«) («fl«)+Q'f=f f' (4)—

' J. L Harden and V. Arp, Cryogenics 3, 105 (1963).
"This condition follows if one requires that the Qux tube carry

a single quantum of flux; see Eq. (13).



169 CYLINDRICALLY SYMMETRIC SOLUTIONS

I.O
200

too

20 ~

to.

9 camputed values
c "- (2«IIr )gn~-p. psl)

6e 2 -I.6

2 0 2 4 6 6 4 2 0 2 4 6 2.

0.5

6 4 2 0 2 4 6

0.2,
O. t

0.O5 .

0.02 .
0.0 I ~

O. l 0.2 0.5 l 2 5 IO 20 50 IOO

Fro. 1. Radial cross section of j', f, h, and j for x=0.5.

Lwhich is equivalent to a single quantum of flux in the
reduced units of Eq. (1e)j.

The free energy per unit length of Qux line is given
by Abrikosov as

fh'+ '(1 f4) )2rrrd-r. —
0

The integrals (13) and (15) are easily evaluated during
the course of the numerical calculations required to
determine h(r) and f(r).

FIG. 3. Free energy per unit length e, versus a, with Abrikosov
approximation LEq. (16)j and small x approximation LEq. (18)j.

Equations (8) and (9) are solved by means of an
iterative numerical process. A fourth-order Runge-
Kutta method'4 is carried out on an IBM 360/40 com-
puter. The boundary conditions f'(0) and h(0) must
be assumed in order to perform the solution. The initial
approximation of these boundary conditions is made
with the help of an examination of the boundary con-
ditions corresponding to values of ~ for which the solu-

f 2. Ic=20

e computed values

h(o) = (kn - O. IB)/~

h(o)= 0.62~ -o 4&
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FIG. 4. Axial magnetic Geld h(0), versus a, with Abrikosov
approximation PEq. (17)) and small x approximation PEq. (19)].
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Fro. 2. Radial cross section of f', f, k, and j for x= 20.
4 J. B. Scarborough, Xgmerical Mathematical Analysis (Johns

Hopkins Press, Baltimore, 1964), 6th ed. , p. 363,
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tions have already been found. A suitable extrapolation
or interpolation procedure is then used to estimate the
approximate values of f'(0) and h(0) .

The accuracy of the values off and p at each point is
tested in the following manner: Initially, r is increased
by an amount 8ro and both po=p(r+8ro) and fo
f(r+Sro) are calculated. A set of closer approximations,
p„(r+bro) and f„(r+5rp), may be generated by first
carrying out e successive halvings of 8ro and then using
the resulting value 5r„=8ro/2" to perform 2" successive
Runge-Kutta calculations. The computer automatically
repeats this process for m= 1, 2, 3, etc., until both dif-
ferences p„—p„i and f„f„,a—re less than a specified
amount. The accuracy check then ends and the com-
puter uses f„and p„asstarting values for the next
interval. Equations (10) and (11) are used to calculate
h and j at each point. The integrals (13) and (15) are
evaluated by the trapezoidal method during the course
of the calculation.

IL'L. RESULTS

Solutions were obtained for values of ~=0.2, 0.5,
1.0, 5, and 20. The behavior of both f(r) and h(r) is
quite unstable. A very small change in either of the
boundary conditions f'(0) or h(0) (sometimes in the
fifth decimal place) can cause f(r) and/or h(r) to
diverge. An examination of Eq. (8) shows that the
leading term on the right changes sign when f exceeds
unity and, particularly in the case of large «, causes f"
to increase rapidly. This results in a rapid growth of
p", as seen in Eq. (9).

Because of the sensitivity of the solutions to the
values of f'(0) and h(0), it is costly to achieve a high
accuracy. Their values shown in Table I are accurate
to the three significant figures shown. The integrand
in Eq. (15), however, has a, signif'icant value at rather
large values of r. The term ,'(1 f') is par—ticu—larly
sensitive to small departures of f from unity. Thus, in
the case of the integration for e, the second signi6cant
figure may be in error by one unit. For our purposes,
this accuracy is sufhcient. The resulting values of h(0),
f'(0), &, j, , and r;, the radius corresponding toj,„,
are tabulated in Table I. Plots of f(r), f'(r) =I, (the
order parameter), j(r), and h(r) are shown in Figs. 1
and 2 for values of a=0.5 and ~= 20.

Abrikosov derived the following two expressions, for e

and the axial magnetic field h(0), valid for «))1:

6= (2«/«) (ln«+0.081) («&)1) (16)

w&10. For 10&~&0.2, a reasonable set of approxima-
tion formulas are

and
~~6 2~—1.6 (10&«& 0.2)

h(0) 0.62«~ " (10&«&0.2) . (19)

These equations are also plotted in Figs. 3 and 4,
respectively. The energy per unit length is proportional
to H,i.'

H.i= e«/47', (20)

and our plot in Fig. 4 is thus equivalent to a plot of
B,~ versus ~. A plot of the latter dependence has been
presented by Harden and Arp" and our results are in
good agreement with theirs, providing a good over-all
check.

The solutions for f(r) and h(r) indicate a scaling of
the Qux tube, which differs from the core model de-
scribed above. Defining the core radius as, for example,
p=r (f=0 95), w. e expect that this radius should be
proportional to 1/«. This is equivalent to «p=const.
%e find that this presumed proportionality does not
exist, as is shown by the tabulation of values of 1~:p

in Table I.
In a similar manner, the notion of a magnetic field

region with radius of order X=X (or r= 1) implies that
for all «, ratios like h(r= 1)/h(0) should be reasonably
constant. This would insure a structure with dimen-
sions that scale as X. We find, however, that the ratio
has a very strong ~ dependence, as shown in Table I.
Closer examination shows that h(1)/h(0) decreases
with increasing «, approximately as 1/ln «. Ratios of
the fields at two large radii, for example h(20)/h(10),
are more constant. However, this in itself is not sig-
nificant because the behavior at such large radii is of
little interest.

An interesting result of the numerical solutions for
j(r) is that j,~0.33 (J=0.33v2H, b/X in conventional
units) and is rather independent of «. The correspond-
ing values of r, however, are strongly ~-dependent.
Both j, and r; are tabulated in Table I.

In conclusion, we note that the use of the tabulated
values of f'(0) and h(0) greatly simplifies the trial and
error search required to find the boundary conditions
for values of z other than those used here. In the solu-
tions presented here, the most time was spent in nar-
rowing f'(0) and h(0) down to the first two significant
figures. For greater accuracy, linear interpolation
schemes become feasible.

and

h(0) = (ln« —0.18)/«(«)&1) ~ (17)
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