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JAMEs W. F. Woo AND EL,IHU ABRAHAMs

Department of Physics, Rutgers, The State University, New J3runsmick, New Jersey

(Received 27 December 1967)

We investigate the nonequilibrium behavior of a pure type-I superconductor and take into account the
eBects of the electron-phonon interaction. The formulation is based on KadanoG-Baym transport equations
suitably generalized to the case of superconductors. In order to investigate the relaxation behavior of the
order parameter due to real phonon transitions, we solve the transport equations in the spatially homo-
geneous case when there is a slow time variation of the energy-gap function. We solve the transport equations
treating the real phonon transitions in the weakest possible way, much in the spirit of the Bardeen-
Rickayzen-Tewordt (BRT) transport equation used in the treatment of thermal conductivity. We discuss
in detail, however, why the BRT equation fails in this case, and in general when there is a time variation
of the order parameter. For weak-coupling materials, we 6nd that for 0.9& T/T. &0.99, the gap relaxation
rate (10s-10' sec ') is about an order of magnitude slower than the quasiparticle decay rate, but that
very close to T, it disappears as T—T,,

I. INTRODUCTION

ECKNTLY there has been some interest in the
nonequilibrium behavior of the order parameter

or energy-gap function in superconductors' 7 in con-
ditions of slow time and space variation. In the refer-
ences cited, the eGect of lattice vibrations on the
motion of the order parameter has been ignored. For
example, in AT it was assumed that the distribution
functions of the superconductor have only a gentle
variation in time and space about a state of local
equilibrium in which the quasiparticle distribution
function is of equilibrium form but with the instan-
taneous local value of the energy gap. For this to be
true, it would be necessary for the quasiparticle-phonon
interaction to be more rapid than the variation of the
gap. In addition, the assumptions of the previous
works make it impossible to treat the direct coupling
of the gap to the lattice vibrations through processes
which are known to be of some importance in transport
properties such as the absorption of a phonon ac-
companied by the creation of two quasiparticles. It
has been suggested by Lucas and Stephen' that near
the transition temperature such processes give the
largest contribution to the relaxation of the order
parameter.

In this paper, we present a method which extends
previous work to include the significant effects of the

* Work supported in part by the National Science Foundation,
the Once of Naval Research, and the Rutgers Research Council.
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lattice vibrations on the motion of the order param-
eter.

We may remark here that the transport equation for
the quasiparticle distribution function of Bardeen,
Rickayzen, and Tewordt (BRT)' has been used to
discuss similar problems. ' We shall show that it is
not valid for the present problem in which the energy
gap is time-dependent and local equilibrium between
the quasiparticles and energy gap does not obtain.
It is because of this point that our results differ from
those of Ref. 8.

We shall use the technique of thermodynamic
Green's functions" and include the effect of lattice
vibrations by means of the standard theory of strong-
coupling superconductors. " The problem is essentially
one of deriving transport equations for the super-
conductor in the presence of the electron-phonon
interaction. There are several ways of doing this. For
example, the methods of Refs. 2—4 and 7 consist, in
effect, of expanding in wave number and frequency the
susceptibilities for the linear response of the system to
variations of the energy-gap function and external
fields. A second method is that of Kadanoff and
Baym"; it has been used for superconductors by several
authors. ' "In this technique, the approximation of slow
variation is made at the outset in the original equations
of motion for the nonequilibrium Green's functions.
We choose the second method here because in the
derivation of the transport equations, the collision
terms arising from the various scattering mechanisms
are always clearly identifiable and separated from the

' J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113,
982 (1959), referred to henceforth as BTR.

' J. R. SchrieGer and D. M. Ginsberg, Phys. Rev. Letters 8,
207 (1962)."L.P. Kadanoff and G. Baym, Quantunt Stats'stecal 3fechant'cs
(W. A. Benjamin, Inc. , New York, 1962)."J.R. SchrieGer, D. J. Scalapino, and J. Wilkins, Phys. Rev.
Letters 10, 336 (1963).

"James W. F. Woo, thesis, Cornell University, 1966 (un-
published) .
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driving terms. The latter include, in addition to ex-
ternal fields, the driving effect (on the distribution
functions) of the deviations of the quasiparticle self-
energies from equilibrium. '4

The separation of collision and driving terms is
useful in the present problem: Instead of carrying along
the full machinery of strong-coupling superconductivity
theory, we recognize that in the weak. -coupling case,
the important effects of phonons are contained entirely
in the collision terms and all the self-energy (driving)
terms may be treated in the usual weak-coupling
approximation of Bardeen, Cooper, and SchrieRer"
(BCS). Thus we shall define the energy-gap function
as in the usual weak-coupling theory. 4 The essential
feature of this approximation is then that we have a
weak-coupling superconductor in which the excitations
are independent quasiparticles which are scattered
weakly by the lattice vibrations.

We may summarize the method as follows: We begin
with Kadanoff-Baym transport equations written for
a strong-coupling superconductor" and solve them for
the motion of the order parameter keeping only the
lowest-order electron-phonon terms, namely the elec-
tron-phonon scattering. The transport equations de-
scribe the evolution of the nonequilibrium state from an
equilibrium one in the indnite past due to an adi-
abatically switched-on perturbation of the self-con-
sistent pair potential or energy-gap function in exactly
the same manner as that discussed in Sec. II of AT.'
We shall restrict ourselves for simplicity to the spatially
homogeneous case and shall find, for temperatures
which are not too low, that the order parameter ap-
proaches equilibrium in a manner characterized by a
temperature-dependent relaxation time which becomes
infinite only in a very narrow temperature region near
Tg.

In Sec. II of this paper, we write down the KandanoR-
Baym equations for the thermodynamic nonequilibrium
real time Green's functions of the superconductor for
slowly varying disturbances. We then show how they
simplify for the case of a pure spatially homogeneous
weak-coupling superconductor near equilibrium in
the presence of weak phonon scattering. In Sec. III,
we solve the equations and obtain the relaxation be-
havior of the order parameter near T,. Section IV is
devoted to a discussion of the results and comparison
with previous work.

IL TRANSPORT EQUATIONS

KandanoR and Baym" have derived transport
equations for the real time Green's function in a

"For an example of how the two approaches treat the same
problem, compare Ref. 11, Chap. 11 and J. M. Luttinger and
P. Nozikres, Phys. Rev. 12'7, 1423 (1962); 12'7, 1431 (1962).

'~ J. Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957), henceforth referred to as BCS.

'6 These were erst set down by J. W. F. Woo, Ref. 13.

normal metal. Their equations are valid when the
perturbations vary slowly with respect to the mean free
path and lifetime (or 1jkT if it is smaller) of a quasi-
particle. In an analogous fashion, we can obtain
similar equations for a superconductor. '" Instead of
two equations as in a normal metal we now have eight,
and the coherence length and 1/kT, are the measure
of slowness of space and time variations4 if they are
smaller than the mean free path and lifetime. The
transport equations are for the elements of the matrix
Green's function G;;(ri, 1i, rs, ts), where

G,;(1, 2) =-i(~,(1)+ (2)),
and

f A(1))
+(1)=I

kA'(1))

ij=1 2

In the BCS theory we see that 2& =0, which is proper
since they are related to scattering eRects.

In equilibrium, all quantities are functions of the
difference variables 1-2 only. In the following we shall
Fourier-transform these; k, cv are the corresponding
wave vector and frequency (measured with respect to
the chemical potential). The equilibrium self-energy
in the general case of pairing due to virtual phonon
exchange is given by

Z(s„) = g D(q, s.—s. ) rsG(k —q, s;)rs,

Z(s) =sL1—Z(s) jr,+Z(s) A(s) r„
where s is the imaginary discrete Matsubara frequency,
s is the complex frequency which is eventually con-
tinued to the real axis s~&iB, and Z(s), A(s) are
complex functions which are determined by the self-
consistent Kliashberg equations. "' We have not
written the v3 component of Z which is interpretable

"Y. Nambu, Phys. Rev. 117, 648 (1960).
~ G. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 38, 960 (1960)

L'Engiish transl. : Soviet Phys. —JETP 9, 1585 (1959)j.

is the two-component field operator of Nambu. "
In what follows the self-energy matrix will be denoted
by Z;;, and the spectral weight function for G;; by
2;;.We shall also write G„ for the r„(r,=Pauli matrices,
i/0; re=1) component of the matrix G. The elements

G&~ and G2~ will be written as F and F~, respectively.
We define G and G by

G,;(12) =G;,~(12),

=Gg+(12), t, (~s.

We define the quantities Z„, A„, and Z& in similar
fashion. Thus, in the BCS theory, for example, the
self-energy is given by
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as a renormalization of the chemical potential. "It can
be shown' that the self-energy is, to good approxima-
tion, a function of frequency only. We shall assume
that this is true also in the nonequilibrium case for
slowly varying disturbances. "The equilibrium Nambu
matrix Green's function in the absence of superQuid
Bow is then given by

sZ(s) +e (k) rp+Z (s) 2 (s) ri
ssZs (s) —es (k) —Zs (s) Qs (s)

where e(k) is the kinetic energy measured with respect
to the chemical potential. We shall write

Z(s) =Z, (s) +iZs(s),

a(s) =a, (s) +is, (s),

where all subscripted quantities are real. The quasi-
particle lifetime I' ' for excitation frequency co is then
given by"

~Z,r =2Z, (~P—a, ) —2a,a,Z„ (1)

where Z, 6 are evaluated at s=tp+i8. For weak-
coupling materials, it is a good approximation to set
Zg=1 and ~2=0.

The nonequilibrium matrix Green's function
G;;(1, 2) satisfies the Nambu"-Eliashberg" equation of
motion. We follow Kadanoff and Baym" and transform
to center-of-mass (c.m. ) variables (r, t) = st (1+2)
and difference variables (R, T) =1—2. We assume a
slow variation in the c.m. variables and expand with
respect to it keeping only the first-order terms. After a
Fourier transformation of the difference variables we
find the equation of motion satisfied by G,;(k, tp; r, t):
sr) (Gpr p+ Girt+ Gsrs+Gsrp) /r)1 —

2 e (GtTs+Gsrt)

+(ik V'r/rN) (Gprp+Gprp) —Q (r 7, r„r )—
XL(ReZ„)G„&+Z„&ReG„j+is g I (PReZ„, G„&$

—LReG„~. 3)(:.+ ',)+-'(L&;, G.'j
—LZ„&, G„&j)(r„r„r„r„)I =-', g (Z„&G—„&—Z„&G„&)

)tt, V

X (r„r„+r„r„), (2)
where the bracket

t x, yg = (t)x/t)tp) (r)y/r)t) —(r)x/r)t) (r)y/r)(o)

—V't, x.V',y+V', x Vzy

and the sums on Greek indices run from 0 to 3. The left-
hand side of Eq. (2) contains the driving terms which
include the usual BCS terms as well as correction
terms arising because the quasiparticles do not propa-
gate as BCS quasiparticles between collisions. These

corrections involve either mass renormalization effects
(ReZ„) or lifetime effects (Z&). For weak-coupling
materials, mass renormalization effects are negligible.
In the quasiparticle limit, the lifetime effects are also
small; they arise mainly from off-energy-shell contribu-
tions as in fReG„, Z„&j or else are of the form LZ&, G j
and are smaller than the scattering terms of the right-
hand side of Eq. (2) by a factor 0/kT, where 0 is a
characteristic c.m. frequency. We shall see that near
the transition temperature T„Q/kT, «1.The scattering
terms are on the right-hand side; they lead, in Born
approximation, to the usual Golden rule result for
transition rates. They are, of course, zero in equilibrium.

We now discuss the approximations we shall make to
simplify and solve the transport equations, Eq. (2).
We shall apply the transport equations to the case of a
pure weak-coupling superconductor with the assump-
tion that the phonons are always in equilibrium. We
therefore take 6 to be frequency-independent and
given by the BCS self-consistency condition

where X is the BCS-Gor'kov" coupling constant. We
also neglect the imaginary part of 6 which is related to
relaxation processes. This term is very small even for
strong-coupling materials near T„22 and should be
completely negligible in the weak-coupling case. In
accordance with our remarks following Eq. (2), we
make the quasiparticle approximation for the driving
terms and retain only the BCS contributions. In fact,
we shall go to an extreme quasiparticle limit and
evaluate all quantities at co= E&, whereE& is the location
of the peak of the BCS spectral function for wave
number k. Thus lifetime effects will appear only in the
scattering terms and here, as previously remarked in
connection with Eq. (1), we take Zi ——1 and As=0.
It is evident that our approach amounts to separating
the part of the electron-phonon interaction giving rise
to real transitions from that part responsible for
superconductive pairing. We treat the latter as in
BCS and the former appears only in the collision
terms. Thus the effects of the real transition part are
treated in the weakest possible way. These approxi-
mations lead to the ordinary Boltzmann equation in
the case of a normal metal. " The approach is in the
spirit of BRT' in their treatment of thermal conduc-
tivity. When local equilibrium obtains, our anal
equations are equivalent to the BRT transport equa-
tions. As we shall explain in Sec. IV, the BRT equations
are not valid in the general time-dependent case.

Before reducing the transport equations on the basis
of the approximations we have discussed, we mention

"The same approximation for the normal state is made by
R. K. Prange and L. P. Kadanoff, Phys. Rev. 134, A566 (1964).

sP I,. Tewordt, Phys. Rev. 128, 12 (1962),

2'L. P. Gor'kov, Zh. Eksperim. i Teor. Fix. 34, 735 (1958)
LEnglish transl. : Soviet Phys. —JETP 7, 505 (1958)g."J.Swihart, D. J. Scalapino, and V, %ada, Phys. Rev. Letters
14t 106 (1965).



J. W. I'. WOO AND E. ABRAHAM S 169

g&(1) =Mf g&(l) — z(z(1 f )

Since fp is the equilibrium Fermi function, we see that
g"~ does not contribute to the linearized scattering
terms. It will be recalled that the lower case quantities
are functions of k, co, t in the spatially homogeneous
case. We Fourier-transform Eq. (2) with respect to the
c.rn. time t, expand to the erst order in the c.m. fre-
quency Q, and equate iQ with 8/Bt Fin—ally w.e only
consider changes in the magnitude of A. With this
notation, and making all the approximations we have
discussed, the transport equations, Eq. (2), are re-
duced to the following set (with the scattering-in
terms omitted, cf. Sec. IV):

Qgo&(1)+ gr f&(1) ft&(1)j—0

Qgo(z)+gP f(2) ft(z) 1— 2zZzcog (z)

(Q —2p) f«')+2Gp&()+2gp&("6+iQ()foc)Ao/c)co =0,

(Q+2p) fz (') 2Gp&5 —2go ("d+—iQb fpBAp/Bo)=0)

(Q —2c) f(z)+2go(o)5+iQbAoclfo/Bo)= 2zTZpo)f()—
—b.Zpgo(') g,

(Q+2c)f1(') —2g ("6+iQSAp8fo/Bo) = 2zIZzo)f t(')—

Zzgo(z) j
Qgo(o)+iQ5A18fp/c)o) = —2ir Z,o)go") DZzzp (f")—

+fZ(z)) ] (3)

several further simpliications. Since we want to isolate
that part of the relaxation of the energy-gap function
which is caused by real phonon transitions we shall
restrict ourselves to the case of spatial homogeneity in
the c.m. variable. This eliminates the diffusion behavior
previously discussed by AT near T,.4 We shall neglect
scattering-in terms in the calculation of the relaxation
and postpone a discussion of their effect to Sec. IV.
We shall, furthermore, only consider small deviations
of all quantities from thermodynamic equilibrium and
we shall linearize the transport equations with respect
to these deviations.

We now reduce the transport equations in terms of
the following notation: Capital letters henceforth
denote equilibrium quantities and lower case letters
denote (small) deviations from equilibrium. We shall
separate each of the matrices g~ and g» into two parts.
Let

g) —(g) g&) (1 f )+g)(z)=g)(1)+g&(o)

g& — (g& g&)fo+g&(P) =g&(1)+g&(z)

where fp is the Fermi function of co. It follows then that
g~"~=g ~')—=g~" which is interpretable as the change in
distribution function. Since G —6 = —iA, we see
that g") is related to u, the deviation of the matrix
spectral function from equilibrium. Thus

f"'= tV(D+ ~)/—(D+D ~') I»
f'"'= Iv(D —~)/(D+D ~') I&,

where

D~ ——Q~2o+2iZzco —2A'(1 —Zzz) /(Q+2iZzco) )

(1=2A'(1+Zoo) /(Q+2iZzco),

y = —iQAofo'LQ+21Zzco(1+5'/co') j/(Q+2iZzo)) )

E'= p'+4'

(4)

(5)

In the above, primes denote derivatives with respect to
co, and 8 is the deviation of the gap from equilibrium
given by

(6)

We remark that while 5 and p are real, f(z)Aft(z) but

~prd~ Lf"' —f'")3=0.

We shall proceed by discussing Eqs. (4)—(6) in the
no-scattering BCS limit Z2—+0 and in the scattering
limit

I
Q

I
((Zz~.

A. BCS Limit Z~—+0

We let Zz~0 everywhere in Eqs. (4) and (5). We
insert the result for Eq. (4) into Eq. (6) and use the
BCS expressions for Ao and Q3 ..

Ap ——zrP(co+E), )+B(co—Eo) $,

Gp& ——iA pf()p/co.

After some algebra we find, near T„an equation of
relaxation form

M8 = —i1l)'QI)+l)+0 (Q/k T ) ')I

M = —(gÃoh'/2) E ' tanh(E/2kT, )do)

1V =~XÃ,/8kT. , Q& a
(8)

where Xo is the density of states of one spin at the
Fermi surface in the normal metal. The relaxation rate
of the gap is then given by 3f/1V which is approxi-
mately 4d near T,. This result will be compared with
that of AT" in the next section.

~' g.eference 4, Sec. IP g,

IIL SOLUTION OF TRANSPORT EQUATIONS

The solution of Eqs. (3) is straightforward and we
give only the results for the oG-diagonal components
of the matrix g».

f«') = I (Q 2—p+zz)) 'f 2—Gp&p'/Eo

—iA p'fp (Q —2bPp/E') ) I h
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B. Scattering Limit Q&(Z24

Here we consider the limit of small Q. When the
inequality Q((Z26 is satis6ed we may expand the
right-hand side of Eqs. (4) and (5) to the first power
of Q. We insert the result into Eq. (6) and use Eq.
(7). The result has the same relaxation form as Eq.
(4). In the present case, however, the second-order
term is O(Q/Z&A)' and M, E are given by

M = —(XX 5'/2) E-' jtanh(E/2kT)

—(E/2kT) sech'(E/2kT) ]de,

Aog= —Ãp de —p'Ap 12'

I"= 2Z2 (cv' —LV) /o~. (9)

The relaxation rate is again given by M/iV.
We now point out some features of our result. If we

increase the amount of scattering, Z2 increases and E
decreases so that the relaxation time shortens. When
Z2—+0, E goes to infinity and there is no relaxation. At
zero temperature E is zero but as the temperature is
lowered we must go to higher order in our expansion
in Q. Near T„however, the second-order contribution
is smaller than the 6rst by Q/Z26((1. The dominant
temperature dependence of the relaxation rate is con-
tained in M through the factor lV. It is not hard to
show that near T,

&

M~ —XÃo7f(3) 6'/(2 rk7T,)' where

t is the Riemann zeta function, while iV depends only
weakly on temperature. Therefore the relaxation time
is proportional to (T,—T) ' just below the transition
point. This result differs from that of t.ucas and
Stephen~ who found the behavior Lln(1 —T/T. ) )'.
We shall discuss their work in the next section.

We close this section with a numerical estimate of the
relaxation time. We have evaluated MjiV for tin for
the two temperatures T/T, =0.99 and 0.90. It may be
shown that 3f is related to the temperature-dependent
penetration depth by M = —XNoA. (0) /A (T) .'4 Values
of h. (0)/A(T) are available from the review of Bardeen
and Schrieffer. " We have evaluated E numerically
using the jellium model of Tewordt" to obtain the
quasiparticle damping I'(o~) . Equation (9) relates
r(cu) to Z2(oi).

In order of magnitude, we find for the relaxation rate

'4 N. R. Werthamer, Phys. Rev. 132, 663 (1963)."J.Bardeen and J.R.Schrieffer, in P rogress irl, Low Temperature
Physics, edited by C. J. Gorter (North-Holland Publishing Co.,
nstegdam, 1961),Pol. III„

Z2M+LV/Z2M

~2+ (oi2 Q2) Q2/oi2+ P2oi2/4(M2 Q2)

where, from Eq. (1), I', the quasiparticle decay rate,
is given by

Q= M/1V:
T/T, =0.99,

T/T, =0.90,

0 ~0s sec

0 10' sec '.

The ratio Q/I'(6) is of some interest. We find

T/T, =0.99, Q/r=0. 08,

T/T, =0.90, Q/I' 0.6.

We discuss the results further in the following section.

IV. DISCUSSIOH

A. Scattering-In Terms

We vill argue that the scattering-in terms are un-
important near T, for phonon scattering. In general,
scattering-out terms tell us how to calculate the life-
time of a particle with wave vector k when all the
other particles are in equilibrium. Scattering-in terms
tell us how to change the lifetime to take into account
the deviations from equilibrium of all the other parti-
cles. Thus, if we write the collision term of Eq. (2) in
the notation of Sec. II (upper case quantities are
equilibrium values and lower case ones are departures
therefrom),

Z G —Z G'-+g&'&(Z —Z )+o G~ —o G', (10)

then the first term is scattering-out and the rest is
scattering-in. The scattering-in terms may be taken
into account by altering the density of final states in
the calculation of the lifetime. If the change in dis-
tribution function is such that the density of 6nal
states is appreciably altered then scattering-in terms
will be important. Thus for electrical conductivity,
the displacement of the distribution in the 6eld direc-
tion appreciably alters the density of states, the small-
angle scattering is inhibited while the large-angle
scattering is enhanced. In this case the scattering-in
terms must be included in order to obtain the correct
transport lifetime. For thermal conductivity, on the
other hand, neither small- nor large-scale scattering is
signi6cantly changed so that the scattering-in terms
are unimportant.

Let us consider the present problem near T,. We
pointed out in Sec. II that only g~'& enters into the
scattering terms. It is therefore unnecessary to con-
sider g&'& in this discussion. We need to examine the
scattering-in terms of Eq. (10), o G —o. O'. The
nonequilibrium part of the self-energy matrix cr~ is
given by integrals over the kinetic energy and fre-
quency of g&" (the change in distribution function)
multiplied by an equilibrium phonon propagator. 'P

Since the transport equations (3) decoupled to order
6' near T„we need only examine the o8-diagonal
part of the matrix o& which depends on f&" if we
want to investigate the scattering-in contribution to
the motion of the energy-gap function. We shall use the
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result for f&@ in the absence of scattering-in terms to
give an iterative discussion. From Eqs. (4) and (5),
we find that near T„f&'& is given by

/&+= —( /kT&lf( —E& (sech'( /2kT&

where $=(1—lV/oP). The term Q(cv, e) is odd in e

and even in co so it makes no contribution to o-& after
the integral over e. The remaining part of f&'& contains
the product of two peaked functions of co, the first is
of width kT„while the other in square brackets is
narrower and becomes more so as T, is approached.
For example, at T/T, =0.99 we find for tin that

f ' (&T,)/f "(A)~1/40. Now, the important frequen-

cies which appear in the integrand for 0& are of order
kT, since this is the typical phonon frequency. Thus
phonon emission or absorption moves a quasiparticle
away from the Fermi surface by about kT, . We see
that this state lies at a frequency for which the change
in distribution function f&'& is very small. Then 0& is

small and we may safely neglect the scattering-in
terms. That is, the final states are not appreciably
altered by the departure from equilibrium repre-
sented by f"&.LThe argument is not so good for T/T, =
0.9, where 6/kT, is of order 1.j

For impurity scattering, the situation is quite
different. Since the scattering is elastic, all scatterings
are inhibited and scattering-in terms become quite
important. In fact, as was shown in AT," the scatter-
ing-in terms just cancel the scattering-out terms for
the impurity scattering case and there is no relaxation
in the absence of spatial inhomogeneity.

Below T„ the situation is much more complicated
since all the equations are coupled. If we look at the
change in distribution function g~2& (a&) we can see that
besides the peaked function at co =0, there is a part com-

ing from the 7-0 component of g"' which is odd in co

and of width kT. This is also a description of the dis-

tribution function in the problem of thermal con-

ductivity where scattering-in terms may be neglected.
We therefore suggest that they are negligible for the
present problem as well, although we have not in-

vestigated this point in detail for general temper-
atures.

B. Comparison with BRT

In 1959, BRT ' gave a transport equation for a weak-

coupling superconductor. It has been used, recently by
t.ucas and Stephen to discuss the relaxation of the
order parameter. We shall comment on its applicability
to this case.

I Reference 4, Sec. VI. In this formu1ation, the scattering-in
terms appear in the vertex corrections.

The BRT equation is a generalized Boltzmann
equation for the quasiparticle distribution function.
The approximations concerning the driving terms are
the same as those made in the present paper. There is
an important difference, however, in that the BRT
equation concerns only the quasiparticles and the
superQuid is assumed to be in local equilibrium with
the lattice vibrations so that its transport equation is
not needed. That is to say, the energy gap is taken to
be constant at its equilibrium value for the local
temperature. To obtain the scattering term of BRT it
is necessary to assume that the spectral function is the
local equilibrium one and furthermore that the change
in distribution function is the same for all components
of the Green's function. "

From the solution we have derived in Sec. III, it is
clear that even the assumption of local equilibrium
of the condensate is invalid for the present problem.
The different matrix components of the spectral
function are not related as they would be if local
equilibrium obtained. Furthermore, the distribution
function is different for each component of the matrix
Green's function. We conclude that the BRT equation
cannot be applied to this problem. Its validity will be
doubtful whenever the characteristic time in a problem
becomes short enough to be comparable to the re-
laxation time we have calculated in Sec. III.

C. Comparison with AT

In the work of AT ' it was assumed that the quasi-
particles maintained a state of local equilibrium with
respect to the instantaneous energy gap due to the
fast quasiparticle-phonon relaxation rate F. It is of
interest to discuss the extent to which this is true.
The results presented at the end of Sec. III indicate
that the gap relaxes more slowly than the quasiparticle
lifetime which would make it appear that the quasi-
particles can achieve local equilibrium at a rate faster
than that of the relaxation of the gap. However, the
discussion of the scattering-in. terms in Sec. IV A shows
that in a narrow region near the gap edge, the quasi-
particle distribution function is appreciably different
from equilibrium. An examination of the terms entering
the quasiparticle decay rate'0 shows that the contri-
bution of terms involving another quasiparticle and
the condensate (recombination and excitation of
pairs) give contributions just as large as single quasi-
particle scattering from phonons. Therefore if none of
the components of the matrix distribution function
g") have the equilibrium form near the gap edge, we do
not expect that the fast recombination-excitation
processes will drive the quasiparticles to local equilib-
rium but rather to a distribution determined by the
details of g~') itself. ,We conclude that near T„ the
assumption of AT concerning local equilibrium of the
quasiparticles is not very good near the gap edge and
probably is not good anywhere at lower temperatures.
We may remark, however, that if one is satisfied. with
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small deviations from thermodynamic equilibrium
then the local equilibrium assumption of AT is un-

necessary.
We now compare our result for the BCS limit

Eqs. (7) and (8) with the result of AT." It is stated
there that AT Eq. (4.6) is valid when Q) 26 but this
is incorrect. An additional requirement is npq&Q,
where vtr is the Fermi velocity and 1/q is the char-
acteristic length of the spatial variation of the order
parameter. Our result for the SCS limit is for the case
Q)26, q=0. The expression of AT must be modified
in this case to include a term of order lV which they
have dropped in their kernel L(0, 0) . U this correction
is made, the results agree. The value for the relaxation
rate of AT as quoted by Lucas and Stephen' is there-

'7 Reference 4, Eq. (4.6).
"Reference 8, Eq. (38).

fore incorrect and should be replaced by the expression
1/..=4~.

We conclude by commenting on the result of AT in
the diGusion regime ~gq&h&Q. If we linearize their
Eq. (4.6) about equilibrium near T, we find

—M5= (ct/et/ DV—') 6, (12)
where

X= 14t'(3) dP/ z AT„D=7f(3)vF'/6m'kT, .
Since X/Dq'=12(h/veq)', we may neglect the left-
hand side of Eq. (12) . We then have a simple diffusion

equation with a constant diffusion coefficient and a
diffusion rate Q=Dq'. The range of validity is then
kT,&epq) 6)Dq'. There is no anomalous behavior
of D as T—+T, but it should be pointed out that the
maximum value of q for which the diffusion equation is
valid decreases to zero as the critical point is ap-
proached.
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The Ginzburg-Landau questions have been solved for an isolated magnetic fIux line enclosing a single
Rux quantum. The radial dependence of the magnetic Geld H, the order parameter e„ the current density
J, and the resulting free energy per unit length F/L, are obtained for values of the Ginzberg-Landau
parameter e=20, 5, 1.0, 0.5, and 0.2. For e&5, the axial magnetic field If (0) is approximately given by
JI(0) =0.62e~ uVZP, b. The maximum value of the current density is approximately J=0.33v2Pob/X,
where H, b is the bulk critical Geld and X is the superconducting penetration depth.

I. INTRODUCTION

& iHE quantized Aux tube is central to the present..understanding of the behavior of type-II super-
conductors. ' ' The structure of the Bux tube was 6rst
treated by Abrikosov. ' He set up the Ginsburg-Landau'
(GI.) equations for the cylindrically symmetric case,
which corresponds to an iso1ated Aux tube. Analytic
solutions were then obtained for values of the GL
parameter x))1. If this condition is not met, numerical
analysis is required. Computer solutions have been ob-
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tained by Fink and Presson and by Doll and Graf' for a
Auxoid in a material for which I(. &1. However, these
solutions were for a Quxoid inside a wire of 6nite diam-
eter and therefore represent a diferent set of boundary
conditions than that for an isolated Aux tube.

We are presently investigating the behavior of thin,
type-I, superconducting films in the presence of a per-
pendicular magnetic Geld. In this situation a Aux tube
structure is also exhibited. ' "We have investigated the
behavior of the solutions of Abrikosov's equations for
the isolated Bux tube for several values of ~ in the range
from 0.2 to 20. We are primarily interested in the radial
behavior of the order parameter and of the magnetic
field for values of x(1/K2. However, we have also
determined the current density distribution and the free
energy per unit length of the isolated Qux tube. Harden
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