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Resistive States in High-Field Type-II Superconductors
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Restricting ourselves to high-field region, we calculate the longitudinal electrical current and the transverse
heat current in the resistive states of the high-Geld type-II superconductors (i.e., type-II superconductors
with a large Pauli paramagnetism). It is suggested that the measurements of the longitudinal resistivity
together with magnetization data allows one to decompose the magnetization into components due to dia-
magnetic and paramagnetic currents.

I. INTRODUCTION

NUMBER of theoretical and experimental works
.k have been published recently on the resistive

states of type-II superconductors. ' In a previous
paper, ' referred to hereafter as CM, Caroli and Maki
discussed the longitudinal resistivity and transverse
heat transport in type-II superconductors for the high
magnetic field region in the presence of an electric field.
This was done within the framework of the current
microscopic theory without referring to any phenom-
enological concepts such as the two-Quids model. In
particular we established that the order parameter
d (r, 1) moves, when it is small, Li.e., ~

A(r, t)
~
((s T.s,

where T,o is the transition temperature in the absence
of the magnetic fieldj with a uniform velocity —u=

A/H in the —direction perpendicular to both the
external electric field E and the magnetic Geld B.

In contrast to the ordinary type-II superconductors
exhibiting only negligible Pauli paramagnetism, there
exists a large number of superconductors with a strong
Pauli paramagnetism, ' and consequently it is of great
interest to examine the resistive states of these so-

called "high-field superconductors. "The purpose of the
present paper is to extend the previous theory of the
resistive states of the type-II superconductors to those
with a large Pauli paramagnetic eGect.

From recent theoretical work~' we know that in
the absence of electric Geld, for superconductors with a
large Pauli paramagnetism, the order parameter in the
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mixed state in the high-field region is still given in
terms of the Abrikosov solution;

( ke 'i'
A(r, 1) = P c„e'""sexp eHi x—— i, (1)

2eII]

where k and the c„'s are constant and e is an integer.
Here we choose the static magnetic field B applied
along the s axis. In Sec. II, we shall see that in the
presence of an electric field E applied in the x direction
the appropriate solution is

A(r, J) = g c„expr ike(y+Nt)]

( kN iN
&&exp —eH~ x- —,(2)

2eH 4eHD

where N=E/H and D=sfv, f is the electronic mean
free path, and e is the Fermi velocity. The order
parameter moves, as in the ordinary type-II super-
conductors, in the directions of the y axis with a con-
stant velocity —u = —E/H.

In Sec. III, following the prescription given in CM,
we calculate the transport currents (i.e., electric and
thermal currents) in the presence of the moving order
parameter. It is worthwhile pointing out that the
longitudinal resistivity as well as the transverse heat
current have the contributions from the diamagnetic
current terms only, since the paramagnetic current is
always divergence-free. This eSect results in sig-
niGcantly different expressions for the resistivity and
the Ettingshausen coe%.cient in high-Geld type-II
superconductors from those in the usual type-II
superconductors. Therefore, making use of the re-
sistive data in the mixed state, we can decompose the
magnetization of the mixed state into two components:
one due to the diamagnetic and one to the paramagnetic
current, respectively.

II. TIME-DEPENDENT ORDER PARAMETER

Vile shall consider the following geometrical situation:
A magnetic Geld H slightly smaller than H,2 is applied
along the s axis, and an electric Geld E in the x direction.
In order to describe the time-dependent order param-
eter we start with the following self-consistent equa-

38i



382 KAZUMI MAKI

tion2:

st(r, t)= —lgl xp z se&(t') dt' e~(r, t)

Here ([%'t, @])„,p is the Fourier transform of the
retarded product and is given by

Xexp —i Kl t" Ck" (3)

Xi(t) =e n(r, t)(t)(r, t) d'r

where ( ) means the average taken over the Gibbs
ensemble of the normal state. The interaction Hamil-
tonian Xr(t) is given by

Xr i-*'+r-)+l,&-,, , „,)S(-*'+r.) -2t(-'*) ( )

P(z) is the digamma function and

t+ = (1/2~T) [p (i—~)+ (~+ (b' —I') "')]
a=(1/3r )+,'Dq', -b=(1/3r, ), I=tI,H (9)

and

where

and

+f (6(r, r)%r(r, p+kr(r, r)p(r, r})t}rr, (4)

N(r, t) = g P.t(r, t) P.(r, t),

+(r, t) =A(r, t)A(r, t),

+'(r, t) =A'(r, t) 6'(r, t). (5)

D= ', (li)) . -
Here N(0) is the density of states of electrons and r.o

the spin-Qip lifetime due to the spin-orbit scattering of
impurities. In the derivation of the above equation we
have made use of the renormalization procedure ap-
propriate to the present situation as developed by
Werthamer, Helfand, and Hohenberg' and by the
present author. '

In the presence of H and E we understand co and q
in Eq. (8) tobe

~'(r, t) = —il g I
dt' d'r' % t r, t , 4 r', t'

Xa(r', t'). (6)

Here the retarded product i([@t(r, t), @(r', t')])X
8(t—t') has to be evaluated in the presence of both the
magnetic field H and the electric fieM E. In the follow-

ing we restrict ourselves to the dirty limit (i.e., l«Pp,
where l is the electronic mean free path and $p is the
BCS coherence distance), since in the usual high-field
superconductors this condition is amply satisfied. In
this limit the e8ects of the magnetic and electric fields
are tak.en into account by a simple transformation of
differential operators [i.e.,

8/Bt~B/Bt&2ie(t)(r), V~V&2ieA(r),

where A and (t are the vector and scalar potentials,
respectively. Two signs refer to the operation on
A(r, t) and ht(r, t), respectively). In the absence of
H and E, the integral equation is converted into a dif-
ferential equation as in CM, and we find

(1—
la I ([+' K)-..)~(q, ) =o. (7)

The first term in Eq. (4) describes the perturbation due
to a finite electric fmld, and (t)(r) = Ex is the sca—lar
potential. The second term is simply the pairing inter-
action term in the generalized Hartree-Fock approxi-
mation, which is sufhcient for the present purpose.
Because we are now interested in the behavior of the
order parameter in the high-Geld region, where (t (r, t)
is small [i.e., l A(r, t) l

«z.T.p], we can reduce Eq. (3)
to

III. TRANSPORT PROPERTIES

The transport currents in the resistive states of the
mixed state are obtained following the procedure
described in CM. A physical observable Q(r, t) in the
resistive state is calculated by

t

Q(rt) = exp i BCr(t')dt' Q(r, t)

t

Xexp i Kr (t")dt"—(12)

p) =ia/at 2ey(r)—

q= (1/i) V—2eA(r). (1o)

It is then not dificult to show that h(r, t) given in (2)
satisles Eq. (7) [or Eq. (6)]. This follows because

6(r, t) given by (2) is the solution of the differential
equation

( ip)+Dq') t( (—r, t) =pph(r, t),

ep =2Dt!H,2.

Here we neglect a small shift of H,2 due to the electric
field E.

Therefore, we conclude that the order parameter
moves with a constant velocity —u= E/H in the y-
direction as is the case in the ordinary type-II super-
conductors. Furthermore, the (imaginary) polarization
in the direction of the electric field is controlled by
D= p (lv) (the diffusion constant) which is independent
of the Pauli term.
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Q(r, «) =Q, (r, «)+Q, (r, t), (13)

In the high-field region where the order parameter the relation
A(r, t) is small, we can simplify Eq. (12) as

( so—)i+Dais) A(1) =eel(1),

( ~—,pe, s) t),t(2) =;At(2). (2O)

Q, (r, t) = —/e dk' d'r'

and
t

Q, (r, «) = ——
CO

X&I Q(r, «), ~(",t')3)V(", «), (14)

d'mf(I LQ(r, «),

Substituting the explicit form of A(r, t) given in
Eq. (2), it is easy to see that the current has an oscillat-
ing part with harmonics of a basic frequency o)s =k

I
I I,

where I=—E/H and k is of the order P(T)
(2eH.s(t) )'".This type of ac current is associated with
the local variation of A(r, t) due to the motion of the
order parameter and has been previously pointed out by
Kulik. r Making the space average of Eq. (18) we obtain

XV(ii«1) g+ (mr«sf)+ (LLQ (r, t), +'(mi«2) jP( 1«1)j)I (j )— 1+. p(» (i+p )4rrmT D 2 (b' —I ) '/

XAt(liti) «I((mits). (15)
b

The first term in Eq. (13) is the expectation value of
Q (r, t) in the normal state, while the second term is the
lowest-order correction to Q(r, t) in «)((r, t) for the
mixed state. In the following we shall calculate the
electric and heat currents in the presence of a finite
electric field E, t'i.e., we put (/l)(r) = —E r= —Exp.

A. Electric Current

The current operator is given by

= —M~/D,

(js„)=0,
where we have defined M~ as

ert N 1 b

4 mr 2
'

(bs —Is)i/s

(21)

(22)

ie
Q (v v' —2ieA—(r, t))

2m
J(r «) =—

M=(M, —M ) =Ms+Ms, (24)
ji,(r, t) =Err/(1+r/s),

j.(r «) = En/(1+v'—)

where M„ is the contribution due to the reduction of the
Pauli paramagnetism in the mixed state and given' by(17)

M& is physically the diamagnetic contribution to the
Xp,t(r' «)p. (r, «) I. .. (16) magnetization in the mixed state, which in the high

field superconductors is written as
Substituting this in Eq. (14) we have

where a=e'rN/m, the condu. ctivity of the metal in the
normal state, r/=re), and o), =eH/2m. From Eq. (15)
js(r, t) is evaluated (see APPendix) and we have

erg 1 b
js(r, t) =

4 Z (qi —qs)
2

+,Z I,)„,&'»(s+p-)
4xmT

1 b+ — 1— iP(»(-'+p+) d, (1)At(2) Ii s (, ,),
(bs 12) 1/2

(18)
where p+ is now given by

p~
—(1/2rr2') Les+ b~ (bs —Is) i/s j (19)

Here in the derivation of Eq. (18) we have made use of

p,,g I
4rrmt)22' (bs 12) 1/2

b

(b2 Is) 1/2

b
Xi«'"(s+p ) —— 1— )I ')('+p+)-

(bs 12)1/s

+2 b, I, B(s+p-) —4(s+p+)j (I A I'& (25)
2m Tb

Here p, is the Bohr magneton and e the I'"ermi velocity.
Making use of the relation'

4 M= —(H —H)/I 2 '(«) G/3, «J =—1 16, (26)

where ss(t) is the second Ginzburg-Landau parameter,
Eq. (21) can be rewritten as

(1—H/H, r)
2as' t —1

'I. O. Knlik, Zh. Eksperim. i Teor. Fiz. 50, 1617 (1966) LEnglish transl. : Soviet Phys. —JETP 23, 1077 {1966)).

(27)
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where

(b2 12) 1/2 2 (b2 I2) 1/s e (bs 12) //2 2 (bs 12) i/2

1 6 0) ~
27';Tb

I, „, /"'(l+n+)+, , LP(l+I I /( '+-—t+I3-) (2~)

We also note here that Eq. (22) implies that, in the
present approximation, there is no correction to the
Hall current to the second order ( ~

A ~'). Since the
Hall current is smaller than the longitudinal current by
a factor at most 7.T p and as our approximation con-
sistently neglects terms of this order, a more delicate
treatment of both the electric and magnetic fields in

Eq. (7) is necessary for a calculation of the Hali
current.

From Eqs. (17) and (21), we obtain the bulk re-

sistivity in the mixed state;

4.95~' ( lIR„c2/(ss(t) —1j (, Hn

or

sistivity together with that of the magnetization M
allow one to deduce A (t) (i.e., the ratio of the diamag-
netic contribution to M in high-6eld type-II super-
conductors) . As we shall see, the temperature depend-
ence of A (t) is milder than that of as(t), and we expect
that the slope given in Eq. (30) increases by a factor

10 at low temperatures, compared with the one
close to T=T,o. In fact, this kind of behavior has
already been observed in the experiment by Kim et al. ,

'
although they did not study the temperature variation
of the slope in detail.

It may be of some interest to study the temperature
dependence of A(t). Since the general expressions are
extremely complicated, we shall consider here only two
limiting cases.

H BR, 4.951(."
A t.

E„c/H L2/(ss(t) —11
II=H, 2

(30)
1. Absence of Spin Orbit Sca-ttering

Substituting b=(3r,.) '=0 in Eq. (28) we have

Here s. =/(s(1) .
The above result is a generalization of the one due

to Schmid' and CM.

R a"'('-+p(1+ ))
A(t) =

ReL(1+in) (P('& (-'+p(1+ in) )j ' (31)

In high-field type-II superconductors the temperature
dependence of the resistivity in the mixed state is de-

termined by two factors: the temperature dependence
of /(s(t) and A(t). Therefore measurement of the re-

p=es/4rrT =re'eH, s(t)/6rrT, n =/i/eD.

The following asyrnptotics may be useful:

A (t) = 1—n'pI I 28$(3) /ss) —pL2s' —(784/s4) f's(3) (1—ns) j}, for T~T,s

=L1/(1+ns) ]}1+ st'ns/(1+ns) sj(4sT/ )se}s, for T((T,s.

(32)

(33)

Z. Strong Spin Orbit Scatteri-ng Limit (b))1)

In this limit Eq. (28) reduces to

/ 2ls —' r„/s'H. s(t)
A(t) =i 1+— = 1+ (34)

~o& eT'v

We can see from these calculations that in either limit the temperature dependence of /(s(t) is much stronger than

that of A (t), and generally gives rise to a steep slope of resistivity at low temperatures in fields close to H, (t)s.

B. Heat Current

We shall be concerned here only with the additional heat current in the mixed state. The heat current is obtained

by substituting Q(r, t) in Eq. (15) by the heat-current operator

j"(r, t) = —(2m) ' P f (V ieA) ((8/Bt—') —ie(t/)+(V'+ieA) ((8/Bt)+ieP)}it, t(r', t')iP, (r, t) ~;=,,;,. (35)

' A. Schmid, Physik. Kondensierten Materie 5, 302 (1966).
' Y. B. Kim, C. F. Hempstead, and A. R. Striiad, Phys. Rev. 139, A1163 (1965).
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From the evaluation of a triangular diagram, the following expression of j emerges (see Appendix A):

j"(r, t) =(q&—qp) (cop —
a&z) (rN/87rrNT) I

—(1+(b/(b —I ) )g(P (p+p )+pp lP (p+p ))
+pl:I—(b/(b' —I') "')l(4'"(p+p+)+p p+0"'(p+ p+) )}A(1)A'(2) l~=p=(. ,e (36)

=3ffdL(t) E,

The space average of Eq. (36) results in

(i~")=o

&j y")= —( N/2 T) I-'LI+(b/(b' —I')"')3(0'"(l+p-)+lp-4' ( +p ))—
+lD —(b/(b' —I')"')3(4'"(l+p+)+ pA'"(l+p+) )}(IA I') ~

(37)

-'t I+b/(b' —I') "'jp-0"'(-*+p-)+-'L1 —b/(b' —I') '"jp+0"'( '+p+)-
L,(t)= 2+ '

-', [I+b/(b' —I') '"j0'"(-'+p-)+kLI —b/(b' —I') '"30"'('+ p )- (38)

1 1—30.' 4xTI~= 1+ — — ~, for T(&T,p.
6 (1+a') pp j ' (42)

p. Strong Spil Orbit Scattering L-imit (b)1)
I.(t) =I2+Lp y ('+. )8 (!+-p )j}, (43)-

where

The above expression is a simple generalization of
the one obtained by CM. It is interesting to note that
both the electric and the heat currents have simple
expressions in terms of Me (rather than M, the total
magnetization). This can be understood physically
from the fact that the paramagnetic contribution to the
current induced by the motion of the order parameter
gives rise to rotational currents only, and neither
contributes to the average electrical nor to the heat
current.

It might be useful to extract from Eq. (37) the en-

tropy carried by each Aux (S);

L(t) A (t). (39)
4eT $2~pP (t) —if'

%e conclude this section with a brief examination of
the temperature dependence of I.(t).

1. No Spin Orbit Scatteril-g (b=O)

In this case L(t) in Eq. (38) reduces to

, R.Lp(1+'-)~ (-,+p(1+ -))3
R4'" (-'+p(1+~) )

28' (3), , 784t P(3)
p+ 2x'(1 —a') + p',

7r2

IU. CONCLUDING REMARKS

Extending the previous treatment by Caroli and
Maki to the high-field type-II superconductors, we
obtain the expressions of the electric and thermal
currents in the resistive state for the high-Geld region
(H~H, p). If Ate, the diamagnetic part of the total
magnetization M, is substituted in place of M, we obtain
an almost equivalent expression for the resistivity in
the mixed state so that for normal type-II super-
conductors without any paramagnetic eR'ect. The
steep slope of the resistivity at B~B,2 at low temper-
atures in the high-Geld type-II superconductors results
from z&(t) being signi6cantly smaller at low temper-
atures than I~:. Therefore we can explain qualitatively
in terms of the present theory, the experimental result
of Rim et al. ,' although more detailed analysis is needed
to draw a definite conclusion.

(u~ppa2iey(r), q +qa2ieA—, (A1)
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APPENDIX A: CALCULATION OP ELECTRIC AND
HEAT CURRENTS

Since, in the dirty limit, the effect of both the electric
and the magnetic fields is introduced into the theory by
the transformation

p (2~T)—I-', +-',prp(pH, p(t) )'}.
Asymptotic behaviors are

L(t) =2—L28$(3)/nPjp, for T~T,p

=1+p(p ) ', for T((T,p.

(44)

(45)

depending on whether co and q act on 6 or 6+, it is
sufEcient to evaluate j(q, ~) and j&"&(g, co) in the ab-
sence of field. We then make use of the transformation
and let q and co tend to zero to get the averaged current.

Following exactly the same procedure as used in CM
we Grst calculate the relevant thermal products, theo



the retarded product is obtained by an analytic con-
tinuation thereof.

The electric current j2 is given from (15) by

j,(r, M,+M,) = —(1/22m) fie(V' —V) —2e2A(r) j
xr g g f ~»z'~

)& (G„, „'(r, 1)G„„-'(m,1)G, „(m, r') );

&&a.„,(l) a „,t(m) ~,=,. (A2)

( ); stands for the average over random impurity con-

6gurations;

= (212+ 1)7l T M1 2Bgl T M2 = 2Ã2&T

where rs is any integer and e& and m2 are positive integers.
The above integral can be represented with a triangular
diagram.

As usual, the eGect of impurity scattering is taken
into account by means of the following renormalization:

1. In each Green's function co has to be replaced by
M =My„=M(1+1/2r

~
M

~ ), where r is the total collision
lifetime of the electron.

2. Each vertex corresponding to h~(q, 0) or 5+t(q,
0) introduces a factor

where

a„t(q, n) =~~, .at(q, n),

((M —2n) g. »2o+iI)(M —-', nail+ a+b)
(M 20+a—) 2 O2+ 12—

1f M(M —0) (0,

(A3)

=(3 -) '+-',(,) 'g', b=(3 ..)-'. (A4)

Furthermore, a renormalization factor has to be multiplied on the vertex associated to the current operators. How-
ever, in the present calculation this modi6cation gives rise to no eKect on the final result and we shall neglect th&s,

After these preliminaries it is easy to evaluate (A2) and we obtain

j2(q, »+M2) = («&/4212T) (q1—q2) ~ (M1+M2+Dg2 Dgl )

b / t'1 +2 )+
(b, 12)»2 l(4 1(2+P +

4 T )I
—

41&2+P +
4 Til)l

1 b f f 1 M2+2Mli Goy l
(b, I,)„, l(kl(2+P++ 4 T )I

0' 2+P1++4 T&l
I'

1 b (1 M2 )—(»+M2+Dg12 —Dq2') '
2

1+, , , „, I O'I 2+p2-+

and

1 b ( t'1 M2 5 1 2M2+M1)

(O2 —12)»2 ~ ~ ~ 2+"++4 T&
2+'++ 4 T j ' i' (" )

p1,2~ ——(1/22rT) I-'2Dq1, 2'+OW (O' —I') "'I
Here q=q1+q, . In the limit M1+M2((2rT, p. (AS) reduces to

'
~

j2(q, M1+M2)=- (q1—q2)
2

+,b, I,)„, I
4"'(2+P )+

g T
4"'(2

1 b f (M1+M2)+ — 1-
I 4"'(2+P+)+

2 (O' —P)'" I 82rT )
0'"(2+p+) I

'~(q1 M1) A'(v2 M2) (A6)

where

p~ = 1/22r T{e+ (O' —12) 'I'
I and. a =b+ 2ep. -
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Here we have made use of the relations

(a)g+DqP) 6(1)=&oh(1),

(~,+Dq, ') a (2) =;~ (2).
Calculation of the heat current can be carried out in a parallel fashion. Starting from

8 8, +~
),(")(r,M,+'~2) = (2')-' —V+ —V' T Q8$' 8$

(A7)

we arrive at

X(G„, „'(r, 1)G „(m, 1)G, „„'(m, r'))A,„,(1)g .„,t(m), r=r', t=t' (A8)

M2

4m

(d2 Dqp —1 b ( 1 2C0$+(d2 I 1 My

~i+~2 —D(q)' —qP) 2 (»—I')'" ( 2 4 T j 2
'

4 TjI I

b i ( 1 2(p))+(p)2) ( 1 Q)y+, (»»)„, I 4 1&2+'"+ 4 T jI
—t 1&2+'~++ 4 T7r r

+Dq' 1 b i $1 2 + ) 1

~i+~s+D(qP —q22) 2 (b' —I')"' ( & 2 4 T j 2
'

4~T
r 'l~

+
2

—
b, I„„,I 41 2++++ 4 T

' —0 I 2+t)2++ 4
'

I I (A9)
4~Tj)

In the limit co&+cv2—+0, the above expression reduces to dinary type-II superconductor can be easily extended
to the one in the high-6eld type-I I superconductors.
We shall not go into details here, since it is a trivial
repetition of the calculation done by Caroli and Cyrot. "
The final expression can be written as

X
2

1+
b, »)„, (P("(~+P )+~P-4"'(2+t)-))

+2 & — (p-, „, (4'"( '*+p+)+ pr'"'(k+p-r))}

X&(q, (o') At(ql, ~2) . (A10)

As can be seen from the above expressions, the relevant
currents can always be expressed as a sum of two terms,
each having an equivalent expression to one in the type-
II superconductor without the Pauli term, except
that now p=eo/4~T is replaced by p~ and a weighting
factor ~~P1+b/(b~ —»)'lmj [or ~2/1 —b/(b' —»)'I'g] is
applied.

APPENDIX 3: THERMAL CONDUCTIVITY IN
HIGH-FIELD SUPERCOÃDUCTORS

z,
K 2(AT)' 2 (b' —I')"

1 bX (P—Q"' (-'+P-) +P-P&"(-'+P-) )+2 1—

X(pr'iP'( ', +pr)+prP'( ,'+pr))-}, (Bl)-
which can be compared with

E„2(n.T) 2

"
ft'V"'(k+t') +pl' (5+p) I (H2)

3( I
~ I')-

in the type-II superconductors without Pauli paramag-
netism.

Th method s d n th calculat' n f the electron' Ic c«0~; »d M. Cyrot, physi/ Kongensierten Materie 4,contribution to the thermal conductivity in the or- 28$ (1965).


