
PHYSICAL REVIEW VOLUME 169, NUMBER 2 10 MAY j968

Pressure Broadening Effects on the Output of a Gas Laser*t
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(Received 2 October 1967; revised manuscript received 27 December 1967)

A model for a laser oscillator in which the atoms of the active medium do not collide during their radiative
lifetimes has been used by Lamb. His theory predicts that as the cavity frequency is tuned through atomic
resonance, there can be a dip in the intensity of the laser radiation. In the present work this model is gen-
eralized by allowing the atoms to collide while they radiate. The general formulation of the collision problem
is presented for thermally moving neutral atoms interacting with a standing-wave cavity mode, and it is
then applied to the calculation of the intensity profile for some simple collision models. It is found that as
the pressure increases, not only is the "dip" broadened and made less deep, but it is also shifted and becomes
asymmetric. Some observations by Cordover on pressure eGects are found to be in satisfactory accord with
this theory.

I. INTRODUCTION

t iHE model for a laser oscillator used recently by..Lamb' consisted of an optical cavity of the Fabry-
Perot type containing an active atomic medium. The
atoms of this medium were assumed to have only two
levels a and b concerned in the laser action. Radiative
decay to lower states was described phenomenologically
by two damping constants p, and y&. An assumed classi-
cal optical field in the cavity induced a polarization in
the medium. The amplitudes and frequencies of the
diferent modes of oscillation were determined by
requiring that this polarization should be the source
for the field in accordance with the macroscopic Max-
well equations. The atoms were allowed to move without
collisions and to have a thermal equilibrium velocity
distribution. Motion of the radiating atoms played an
important role in the theory because they could move
through several wavelengths of the optical field before
they decayed.

In many qualitative respects, the above theory gave a
very satisfactory account of observed gas laser be-
havior. In practice, however, the gas pressure was too
high for the neglect of collisions to be a good approxima-
tion. For example, in the case where only a single mode
was excited, the theory predicted that for a sufEciently
high power level the intensity should go through a
"dip" as the cavity was tuned through resonance with
the atomic transition frequency. Such behavior was, in
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fact, subsequently observed by various workers, ' ' but
the magnitude and shape of the dip was found to be a
sensitive function of pressure. The purpose of the
present paper is to treat a generalized model for a gas
laser which takes into account the collisions experienced
by the active atoms during their lifetimes. The end
result is a theoretical expression L'Eq. (118)j for the
pressure dependence of the intensity versus cavity
tuning curve.

The calculations are similar to those found in dis-
cussions of pressure broadening of emission or absorp-
tion lines. There are, however, a number of differences:
(1) Nonlinear properties of the active dielectric medium
play an essential role in our case, but they are not
usually considered in pressure-broadening theory. (2)
YVe are here concerned with the theory of a self-sus-
tained oscillator. The collisional effects of interest to
us do not produce a finite linewidth of the laser radiation
but rather aGect the laser output and its dependence on
cavity tuning. In usual pressure-broadening theory, the
spectral lines already have a Doppler width much larger
than their natural radiative width. As a result, an addi-
tional broadening or an asymmetry can only be seen
experimentally at perturbing gas pressures which are
rather high, and the desirable assumption that binary
collisions play a dominant role may not be well justified.
On the other hand, in the case of a gas laser, the intrinsic
width of the tuning dip is of the order of the radiative
linewidth. Collisional effects can then be studied at
much lower pressures. (3) A further very important
difference is that in a Fabry-Perot laser we are con-
cerned with a standing-wave electromagnetic field. A
radiating atom can move an appreciable number of
optical wavelengths during its lifetime, interacting at
each point with a field of different amplitude. If the

2 R. A. McFarlane, W. R. Bennett, Jr., and %. E. Lamb, Jr.,
Appl. Phys. Letters 2, 189 (1963).' A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963).
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motion of the atom is disturbed by collisions, the history
of its interactions is changed, the atom sees a Geld
which is amplitude modulated in an irregular fashion,
and its contribution to the state of laser oscillation
is modiGed. If one were concerned with a traveling
electromagnetic wave as is the case in pressure-broaden-
ing theories, the effect of the atomic motion would be a
phase modulation and not an amplitude modulation.

II. TYPES OF COLLISIONS

Theories of collision broadening can be quite com-
plicated and it is therefore useful to make some pre-
liminary remarks about different kinds of collisions
and their relative importance.

A He-Ne laser oscillating at 0.63 p, wavelength might
have a partial pressure at room temperature of 2 Torr
of helium and 0.2 Torr of neon. Under these conditions,
a typical active atom of neon would be about 2.34)&
10 ' cm away from its nearest neighbor. If we take
»= 10' cm/sec as the effective atomic speed, a collision
with a distance of closest approach of b=10 cm lasts
about b/v = 10 "sec, and may be regarded as reasonably
adiabatic with respect to the mixing of levels a and b

whose frequency separation is 6)(10"Hz for the laser
under consideration. The rate of such close collisions
b(10 cm experienced by an active atom is 2.44)&
10' sec '. More distant encounters would satisfy the
condition for adiabaticity even better.

In a real laser, the atomic levels u and b may have
magnetic sublevels. Since our present calculations are
limited to the case of two-level atoms, we are not going
to give an explicit treatment of the effect of inelastic
transitions between magnetic sublevels in this paper.
However, they should be important only in the closest
encounters. For these, and any other inelastic collisions,
the atomic state is drastically changed due to electrical
interactions and there will be little correlation between
the radiation emj. tted before and after the impact. It
seems very plausible to allow for inelastic collisions
and magnetic reorientation by simply adding quantities
G,P and Q,P, proportional to pressure, to the radiative
damping constants y, and y~. For the purposes of this
paper we will also ignore the possibility that resonant
interactions are important. In such collisions an ex-
change of excitation would take place between the
active atom and an atom of the same kind in a state of
different excitation. It is planned to deal with this
problem on a later occasion. In the present treatment,
we consider all the perturbers to be helium atoms.

We see from the above discussion that except for the
closest encounters which are described by pressure-
dependent damping constants, the effect of a perturber
on a radiating atom can largely be regarded as a van der
Waals interaction. As the perturbers move around with
respect to the active atom, the atomic transition fre-
quency co between the levels a and b can be considered

to change adiabatically with time, becoming a function
co(t) . There will also be forces on the active atom which

cause it to follow a zig-zag path of some complexity. Let
this be denoted by r(t), with velocity v(t) =dr/dt and
let v(t) be the component of this velocity vector along
the laser axis.

In Sec. III we are going to generalize the discussion
of Ref. 1 by taking into account the time dependence
of a&(t) and e(t). The dipole moment acquired by an
atom having a particular history will be calculated and
then the polarization of the medium as a whole will be
obtained by summing up the contributions of the atoms
in which all possible histories are properly taken into
account. We will obtain a quite general expression for
the single-mode intensity versus tuning frequency
PEq. (30)7 and the following sections, IV—VI, will be
devoted to making suitable simplifying approximations
so that the expression can be evaluated in reasonably
simple algebraic form.

III. FORMAL CALCULATION OF THE
INTENSITY PROFILE

We assume that for single-mode operation the cavity
Geld and the polarization induced by it in the active
medium have the following general form:

E(z, t) =E(t) cos f vt+q (t) I sinE»,

P(», t) =PC(t) cosfvt+y(t) I

+S(t) sin[vt+rp(t) I 7 sinÃz, (2)

where E(t), C(t), S(t), and p(t) are slowly varying
functions of time. It was shown in Ref. 1 that the self-
consistency requirement, namely that E(», t) and

P(z, t) satisfy the macroscopic Maxwell equations,
leads to the following set of differential equations:

(+&—a)E= —-,'(/o)C,

&+2 (v/Q) E= —-'(v/eo) S

where 0 is the cavity frequency and Q represents the
losses of the cavity. The quantities C(t) and S(t) are
functionals of the slowly varying amplitude E(t) and
phase y(t). In order to determine these functional
relations we must Gnd the quantum-mechanical density
matrix which describes the time evolution of each atom
while it interacts with the cavity field E(z, t), compute
the corresponding dipole moment, then the macroscopic
polarization P(z, t), and finally determine C(t) and
S(t) according to Kq. (2).

The equation of motion for the density matrix which
describes an excited atom moving with uniform velocity
v and interacting with the electric field E(z, t) was
derived in Ref. 1. In order to make these equations
applicable to the present case we have merely to replace
v by z(t) and co by co(t) and to write an expression for
the perturbation V(t) which properly recognizes the
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whose imaginary parts are 5;(td) and 5+(tdi, tdm), respec-
tively. The steady-state solution of Eq. (23) is

~'= ( )/(&) (29)

which, in terms of a dimensionless intensity I, tak.es the
form

1(~ —.) —= (P Z /5 ~.~,) = 16+;(u) —m-'S, (~.,)]

where we have assumed that the velocity distribution
of the radiating atoms is Maxwellian. Since in a colli-
sionless theory there are no frequency variations, the
quantities I'+(t', t) and I'+(t"', t", t', t) are here equal
to unity. In the large Doppler velocity limit (p,(,/Eu((
1), but not making the "()-function approximation, "
Eq. (30) may be reduced by a series of simple integra-
tions to the form

Xpe (ut i )+~e+(ut u*) 3 ' (30) I((o—v) =8L1—K ' exp{ (o&—v)'/(Eu)'}]
This expression for the intensity profile is a very general
one and involves no other major approximations than
the ones implied by the use of perturbation theory,
assumption of the Doppler limit, and our idealization of
the collision process. The rest of the paper will be
devoted to the evaluation of Eq. (30) in more explicit
terms employing various approximations, and compar-
ing the results with experiments.

IV. AVERAGING OVER THE HISTORIES OF v(t)

As a first step in evaluation of the functions G(p, )
and 3+(td» t(d2) we shall develop a formalism which
allows us to calculate the characteristic functions
de6ned by Eqs. (15) and (16).

(a) General Forrlulatiom of the df veragimg Procedure

If we describe the position and velocity of an atom
by vectors r and v, respectively, the characteristic
function defined by Eq. (15) may be written as

with the Lorentzian function

X{1+2(co—v) J ', (34)

&(~—v) =V~'LV.~'+(~—v)'3 ' (34')

This expression for I(s&—v), which is somewhat more
accurate than Eq. (96) of Ref. 1, also implies a dip in
intensity as the cavity frequency 0 v passes through
resonance, provided one is sufficiently far above
threshold.

In order to treat the case where some of the atoms
undergo collisions during the interval (t', t) let us
introduce the conditional probability density P(v',
r', t'

} v, r, t) that if an atom were at the phase-space
point v', r', at the time t' it would be in the volume
element d'~ d'r located at v, r at time t. For simplicity,
we will assume that all conditional probability densities,
such as P(v', r', t'

~
v, r, t), are the same irrespective

of the state of the active atom. We may now write the
characteristic functions A+(t', t) in the following form:

A+(t', t) =
t

xp ~iE dt's t
gl

tre(t', t) = d'v' d'v d'r' f Pfrzz

exp d=zX dtvft)}
gf

= &e p{+K Lr(t) —r(t') 3}) (31)

where the vector K points along the laser tube (+s
axis) and has a magnitude E given by

XP(v', r', t'
~
v, r'+Sr, t) P(v', r', t')

Xexp{&iK Ar}, (35)

where P(v', r', t') is the distribution function of the
radiating atoms at t',

E=0/c= 2xu/I. , (31')
Ar=r —r', (36)

where e is the mode number and L is the length of the
cavity.

It may be worthwhile to show how our equations
reduce to those of Ref. 1 in the case where the atoms
do not suGer collisions. In that case we may set

r(t) r(t') =v(t —t'—). (32)

Since each atom follows a de6nite path, completely
de6ned by its initial position and velocity, the averaging
over all the radiating atoms may be carried out trivially,
and we have

and the space integrations are over the volume of the
laser cavity.

Let us further introduce Fourier transforms G„(v',
r', t'

} v, t) defined by the following relations':

f:.(v', r', t') v, t) fd'dr P(v', r', t fv, r='+ar, t)'

Xexp{iKK Ar}, (37)

where the parameter t( may take on the values +1,
—1, 0. Clearly, once the functions Gt((v', r', t'

~
v, t)

are known, the characteristic functions tt+(t', t) can be

tze(t', t) = '"e 'f de exp(d=dtp (t t ) —v'/ve')— '

= exp {—-',E'u'(t —t') '}, (33)

These quantities are often referred to as Wiener integrals;
see, for example, K. W. Montroll, Eendiconti della Scgola Inter-
nationale de Fisica Enrico Fermi (Nicola Zanichelli-Editore,
Bologna, 1959),X Corso.
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calculated from

6+(t', t) = d'v' d'v d'r' P(v', r', t')

)&G~I(v', r', t'
~
v, t). (38)

where

P(V, I', t ) = V IPv (V')

It is doubtful whether the dilute gaseous active
medium in gas lasers is in thermodynamic equilibrium
with respect to atomic velocities. Nevertheless, for
reasons of mathematical convenience, we will assume
that the distribution P(v', r', t') is just a steady-state
Maxwell distribution for some temperature, i.e.,

whose collision kernel W(v
~

v') has the property that
W(v

~

v') d'v' is the probability per unit time that an
atom changes its velocity from v to the velocity range
(v', v'+dv'). Consequently, the integral of W(v

~

v')
over all final velocities v' (with exclusion of a small

region about v) is the probability per unit time that an
atom of velocity v will experience a collision and hence
we write

(T(v)) '= dav'W(v
i
v'), (45)

whose T(v) is the average collision time for an atom of
velocity v. Equation (44) may then be written in the
following simplified form:

Po(v') =v.-'"I,-' expI —
~

v' ['/I'}
(8/Bt)f(v, r, t) = vlf(v—, r, t) —(T(v) )-'f(v, r, t)

(39)

and furthermore conjecture that the transition prob-
ability density P(v', r', t'

~
v, r'+cLr, t) depends on the

relative position vector hr, but not on the location
of the point r' in the laser volume V. %e then define

f(v', t'
~
v, Lr, t) = P(v', r', t'

~
v, r'+d. r, t) (40)

+ d'v" W(v"
~
v)f(v", r, t) . (46)

Since we want the ensemble to be concentrated in the
volume element d'e' d'r' at the phase-space point v', r'
at time t' we should solve Eq. (46) with the normalized
initial condition

f(v', r', t'
~
v, r, t') = t')(r r') b(v v—'). —(47)

G„(v',t'
~
v, t) =G„(v',r', t'

~
v, t),

so that we may write in place of Eq. (37),

G(v', f~v, t) fdrarfjv=', t')v, kr, t)

&&exp fiKK cLr}. (42)

The characteristic function t).+(t', t) may now be calcu-
lated as

Clearly such a solution will be just the transition prob-
ability density f(v', t'

~
v, d,r, t) which we seek to calcu-

late since f(v', r', t'
~
v, r, t) is properly normalized to

unity.
Instead of trying to solve Eq. (46) as it stands,

we multiply both sides by the exponential factor
expIigK. Lr} and integrate them over the position
variables Ar. This leads to integro-differential equa-
tions for the quantities G„(v',t'

~
v, t),

(g/Bt) G„(v',t'
~
v, t) = (i~K v —L"T(v) j ')

Ke must now find a method for determining the
transition probability f(v', t'

~
v, Lr, t) of Eq. (40). To

this end let us consider a radiating atom at the phase-
space point r', v' at the time t' and introduce a repre-
sentative ensemble for that atom which describes all
of its possible future motions. It can easily be shown
that the phase-space density f(v, r, t) of such an ensem-
ble must be a solution of the following Soltzmann
equation:

(~/@)f( vr, t) = v. Vf(v, r, t)—
d'v' W(v

~

v')f(v, r, t)

+ d'v" W(v"
~
v)f(v", r, t), (44)

&&G„(v',t' i v, t)+ d'v" W(v"
i v)

&(G„(v',t'
i
v", t), (48)

where we have made use of the definition (42) .We must
solve this equation with a 8-function initial condition

G„(v',t'
i v, t') = t)(v —v') .

For any given interaction potential the collision
kernel W(v'

~
v) is well defined and thus we have

reduced the problem of finding G„(v', t'
~
v, t), and

tllel efol e tile chal actel lstlc fllllctlolls 6+(t t ) wlllcll
are related to G+I(v', t'

~
v, t) by Eqs. (43), to the solu-

tion of an integro-diGerential equation.
Before attempting to solve Eq. (48) let us turn to

the calculation of the higher-order characteristic func-
tions which are defined by Eqs. (16). Proceeding along
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The function 3(p,) is given exactly by Eq. (64) so we
have obtained an exact solution for 5+(pq, p2) also,
subject only to the assumption that Eq. (55) gives the
correct collision kernel.

To make a proper test of our theory it will be neces-
sary to work with numerically evaluated values of the
plasma dispersion function Z(u) . For the present paper,
however, we merely assess the qualitative effects of our
model collisions on the intensity profile by expanding
Eqs. (65) and (73') in the high Doppler limit where the
plasma dispersion function is approximated by

Z(a)~is.~l exp {—(o)—v) ~/(Itu) ~I (62')

Terms which can give corrections of first order in e

are kept, but in them the Gaussian exponential factor
and the relative excitation X are not distinguished from
unity. The intensity (30) then becomes

I(~ r) —gli ~—1 exp{ (»0 r) 2/(gu) 2J j

a time is close enough to produce a significant time-
dependent contribution to Ace and that the other more
distant background perturbers produce a very slowly
varying modulation of the atomic transit~on frequency.
For the latter contribution we replace the time averag-
ing by a statistical average L'see Sec. V(c)j.

If we approximate the relative motion of the nearest
perturber by a straight line, the time-dependent modu-
lation of the transition frequency may be written as

g&o(t) =LV, (t) —V»(t) jf»
—'=g(h2+e'P) ', (77)

where e is the speed of the perturber in the rest frame
of the radiating atom, b is the distance of closest ap-
proach (impact parameter), and I3=8, I3» is th—e
difference of the two van der Waals constants. The
"duration" of a collision 7; may be defined as the
solution of the algebraic equation

-', Aced(0) =Aced(r, ), (78)

and

XL1+2'(co—v) +2s ~ (p.»'/Zu)

X {(7~y.'y»') /(y~'Y. y») —1)$ ', (74)

~ = 8{ (V.'7»')/(v. v») j(1+2~'"e) ' (75a)

~(-- ) =(.-) /{:(~ ) +(-- ) j. (75b)

which is r,= 0512(b /e). The average number of en-
counters per unit time with a range db of impact param-
eters b is given by 2mbdbp8, where p is the density of
perturbers and 8 is their mean speed.

The modulation of h~ due to such a close collision
are short-lasting and infrequent, so that the integral

When Eq. (74) is compared to the collisionless intensity
profile given by Eq. (34) it is seen that the main effect
of changing atomic velocities during collisions is to
contribute an additive term in the denominator, and to
add a term (1/2') to the width parameter y~ of the
Lorentzian function in the denominator.

Before attempting to compare the above result with
experiments we turn to the calculation of the charac-
teristic functions I'+(t', t) and I'*(t"', t", t', t). This is
done in order to determine the e8ects on the intensity
function I(co v) of adiabat—ic variations of transition
frequency A&a(t) during a collision.

V (r) =M /r', (76)

where r is the distance of a perturber from the radiating
atom and 8 is the van der Waals coeflicient correspond-
ing to the nth state of the radiating atom. It should be a
good approximation to assume that the combined effect
of all perturbers is a sum of such expressions V =
g; V (r;). Because the perturbers are moving, the
V will be functions of time V (t) and will produce
adiabatic changes her(t) =5 'L V, (t) —V»(t) j in the
resonant frequency. At the low densities of interest to
us, it will sufBce to consider that only one perturber at

V. AVERAGING OVER THE HISTORIES OF 5»0 (t)

(a) Genera/ Remarks

In this discussion we assume that the interaction
potential between two colliding atoms is a van der
Waals potential,

di A(o(t)

r+(r') =r+(&', t) =I'P(r') I'P(r'). (80)

Hence, we may proceed to calculate I'P(r') and I'P(r'),
separately.

(h) Interruption Theory Limit

As mentioned above, in this limit we replace integrals

may be replaced by a sum of all the individual phase
shifts due to different collisions in the interval (t, t).
The approximation is characteristic of interruption
theories of pressure broadening.

In effect, for the purpose of the calculation, we assume
the existence of a critical impact parameter b* and
treat all collisions with b&b* in the interruption theory
limit and all other collisions in the statistical limit.
Such a separation of close and distant encounters is
rather artificial and thus the value of b* is somewhat
arbitrary. However, it turns out that the results of
our calculation depend only slightly on b* and hence
an uncertainty about its value is of little importance.

We now write h~ in the form

(79)

where d~, is the modulation due to the close collisions
and d~z is the frequency shift due to the disturb colli-
sions. It is reasonable to assume that two such markedly
diGerent types of collision events act independently,
and write (17) in factored form
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Since it was assumed that

P(t, v, b) db dv= 2m pbdb ( v ) W(v) dv,

we have

for distant collisions Fg(t', t) reduces to an average
over a single-particle phase space in the following92aj manner:

F.+(r') = (exp f Air' g Br; })= (lI exp {~ir'Br, —6})8= 2xp db dv b
i

v
i

W'(v) t'1 —cosx(b, v)],

(92b) =g (exp{air'Br;—'})
6= 2xp db dv b

~
~

~
W(v) sinx(b, v). (92c) = (1—(1—exp{Air'Br —'}))~. (95)

Y'(r') = dr r'(1—exp f &iBr er'}), (96)

Because of our assumption that the phase shifts z(v, b) By defining the quantity
are independent, we can now trivially calculate the
other relevant characteristic functions (18) as follows:

t

F,+(P', t", t', t) = exp i —dt
t/

the characteristic function can be written in the form

&(geo(t) ~i dt A(o(t)
Fg+(r') = { 1—V '(AY+�(r').)j~. (97)

exp —i di trait) jtf

Let us now consider the limit where the volume of the
cavity V and the number of perturbers E go to infinity,
but the density p=E/V remains finite, and write

xp +i dik (t)j
gf/I

=F;(i', &) F,+(O', P). (93)

FP(r') = lim L'1 —4vp Y+(r')E—'$i

= exp{—4v.p Y+(r') }, (98)

where Y+(r') may be evaluated as

dr r'(1—exp f+ir'Br 6})

As we shall see later, b is an additive term to the decay
constant y~, while 6 is a shift in the transition fre-

Y+Y+r' =
quency co.

(c) Statistical Theory Limit —+L (Br~) I/2 dg (g 'I sing —ig '~2 cosg)
In this section we shall consider the eGects of the

distant collisions whose duration is long compared to
T.' We assume here that all of the perturbers are
stationary with respect to the radiating atom for times
comparable to 1/y~ and, instead of averaging

t

exp ~i dt Duo t
t/

over time histories, perform an ensemble average over
all possible static configurations of the perturbers. For
a particular con6guration the eGect of the perturbers
on the transition frequency is

= —,'(2m Br') '12(1—i) (99)

and Y (r') may be obtained from Y (r') = (Y+(r') )".
To avoid ambiguities, we have assumed B&0 and
r &Q. By taking the lower limit of the r integration to
be zero and not b* we have included some configurations
which have already been treated in the interruption
theory limit. Let us defer the discussion of this ap-
proximation for the time being, and write the single
time characteristic function for the distant collisions
in the form

N
DM= g Brr (94)

Fe+(r') = exp{ tv p(2v.B—r') (1 i) }, —v') 0.

(100)

where A is the total number of perturbers in a large
volume V and r; is the distance of the jth perturber
from the radiating atom. For a nearly ideal gas, the
atomic positions are uncorrelated, and the ensemble
average in the definition of the characteristic functions

'This treatment is adapted from P. W. Anderson and J. D.
Talman, Bell Telephone System, Tech. Publ. , Monographs 3117.

As opposed to the case encountered in the interrup-
tion theory limit where the changes of the phase at
diGerent times were statistically independent and we
could factor the three-time characteristic function, we
must now regard the phase changes at two different
times as absolutely correlated because of our assumption
of stationary perturbers and write FP(r'", r", r') in
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the form

F~+(r"', r", r') = exp di ho)(i)

g/ I I

dt kv(i) j0

= (exp( —ih(o(r'Wr'") })
= Fg

—(r"'Wr') . (101)

VI. CALCULATION OF THE INTENSITY PROFILE

To sum up the discussion we now turn to the calcula-
tion of the intensity profile I(o&—v) from Eq. (30),
taking into account both the variations of atomic
velocity and the modulation of the transition frequency.
For that purpose, we must evaluate the following
integrals:

Since P(Au) is the Fourier transform of a charac-
teristic function, it is a probability distribution and
hence Eqs. (106) and (107) may be interpreted as
averaging the functions Sd(p, ), Sq+(pq, p2) over changes
in the transition frequency according to the distribution
P(A&a) .

With the help of Eqs. (91) and (93) we now rewrite
Gq(p) and 3~+(p~, p2) in the forms

3&(p) =iEu dr' expI pr —
}A(r'), (110)

Sg+(IM~, p2) =iEuy.y, g dr' dr"
a=a, b 0 0 0

Xexp I p~r' —yr" —p2+r'"—}

XZ (r"', r", ,'), (111)

3(p) =iEu
0-

dr' exp I
—pr'} A(r') F, (r') F~ (r'),

where

p =p+ 8+id =y,t+8+ i((o—v+3,),

3+(u~, p2) =iEuy y(, g dr'
e=a, b 0 0

Xexp f
—pgr' —y.r"—p2r"'}

(102)

Fg+(r') = ddt) expIid(dr'}P(d(u) (104)

with Fourier transform

P(AM) = (2n-) ' dr' expt ih(ur'} Fg+(r')—, (105)

where Fz+( r') = (Fz+(+r—') )* for r') 0. By making
use of Eqs. (101) and (104), Eqs. (102) and (103)
may be rewritten as

G(p) = dAo& '3d(IJ, +zh~) P(Ao&), (106)

5+(py& Jtlm)
= deco Gd (py+zkM& p2&zd(0) P(dco)

&

(107)

where Gd (p) and JP(pq, p2) are defined by the equations

X~("",." .') F.+(.'",.",.')
XFP(r"', r", r'). (103)

It is useful to make a Fourier analysis of the charac-
teristic function Fq+(r') in the form

Pi= pi+~+&~t

p2 =+2+B&zd. (112)

We note that the 3q functions (110) and (111)can very
easily be calculated by repeating the derivation in
Sec. IV(b) with p replaced by p, p& by p&, and p2 by
p2+. Then, with the approximations made in the deriva-
tion of Eq. (74),

ImDg(p+ idler) =n'12(exp I
—(co v+6+6—(o) '/(Eu) '}

+g~12gj, (113)

Im3g (p+ih&o, @+i'(o)

= 2~"'I (vd'7 vi) /(v~'7'7~') 3j~l(&—v+~+~M)

XLexp f
—(&—v+~+~~) '/(Eu) '}+2~"~j

+ "'(v '/E )I (v v.'v')/(v. 'v.v)-13} (114)

Im5g+(y+iAcv, p*—ih(0)

=&~"'r(v~'7.7~) /(~~'7'7~') j
X (I'exp f

—(co—v+6+ Aa)) '/(Eu) '}+2m'"el

+ "'(v '/E )L(v. v-'7')/(~ '~.v ) 13&, (115)—
where y, ', yt, ', and y~' are given by Eq. (72),

3&(u) =iKu dr' expI —pr }h(r ) I', (r'), (108)
and

(116)

dT dT
0

Xh( '", r", r') I'.+(r"', r", r'). (109)

5g (pgt p2) = zEu'rtt'r(t Q dr
+=a, b 0 0

Xexp I p,r' yr" pgr"'}— — —

Zq (co—v+ 6+ha&)

= 8.~')'t.'(v.~')'+(~ —v+~+~~)'] '. (117)

The intensity profile (30) can be written approxi-
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mately as

l(et )=A—exp((e —+A)'/(lCe)') j dA P(d )

Xj exp{—((o—v+6+&~)'/(Eu)'j —& '5

X dk(A) P(5(d) {1+By(G& V+6+AGl)

+2m'"(vu'/Eu)

=0
for h(o) 0

for ho&(0 (120)

I'= -', m p(2s 8) '12. (120')

The maximum of this unsymmetric distribution is at

(A(d ) =-'I"= (8/27) n'p'B. (121)

We note that Sp'8 is just the interaction energy of the
radiating atom with a nearest neighbor whose separa-
tion is p '~'. Hence, the most likely configuration is
that whose total eGect may be replaced by the inter-
action of a single atom at a distance slightly less than
p'~'. Since a typical value of p'8 at the pressures usually
encountered in experiments (1 or 2 Torr) is about
10 kHz (much less than v~) we are assured that the
integration over d,o& in Kq. (118) will change the func-
tion I((0—v) only slightly. In fact the smallness of
h(0 /v~ warrants the expansion9 of the integrals

where

~ = 8L(v~v'v~') /(v~'v. vb) 5(1+2~"") (119)

To complete the discussion we must evaluate the
distribution P(her). By taking the Fourier transform
of Kq. (100) we are led to the expression

P (ho)) = (2m)-'I'I'(ho)) —@' exp{—-', I'/Aa) },

and

~ (a, v) =v'(v'+a') '—-'~'"(I'/v)'"

XRet'(1 —i) {v(v ia) '}'('5 . (123')

I((d—v) =A exp{ (a)—v+6)2}l ig(co —v+6, ICu) —x '5

X} 1+i2(co—v+6, v~') +2s'I'(v~'/Eu)

X {(v~v'v~')/(v~'v-v~) 1—}5 ' (124)

It is clear that the "dip" shape is a function of pressure
because it depends on the pressure-dependent param-
eters T ', 8, 6, and F. An attempt to compare Eq.
(124) with experiment will be made in the next section.

VII. COMPARISON WITH EXPERIMENTS

Experimental studies of a pressure-dependent in-
tensity pro61e for the case of single-mode oscillation
have been carried out by Szoke and Javan, a Smith, '0

and Cordover. " Similar observations for two-mode
oscillation have been made by Fork and Pollack, "but
our theory has not yet been developed to handle this
case, and we mill therefore discuss only the case of
single-mode operation.

The intensity curves of Szoke and Javan and of
Cordover show some signs of asymmetry. However, the
asymmetry is small, and they have fitted their experi-
mental tracings with a nearly symmetric intensity
function I(o&—v). In our theory, an asymmetry can
only come from the effects of distant collisions, and
accordingly we dispense with averaging over the asym-
rnetric distribution P(her) in Kq. (118).This approxi-
mation not only simplifies our expression for the in-
tensity proile but also corresponds to the fact that
these eGects are indeed small as we shall show later.
The intensity function I(co—v) can be written in a form
equivalent to that used 6rst by Szoke and Javan,

I(+ v) ~&t.1 + exp{ ((e) v+~) /(Eu) }5
Xl 1+(viv)~ ( —+~)5-', (»5)

where

( )= ( ) { (+ )/( ) } g l-(- )/( )5( / )(+2 )
(122) (126)

i2(a, v~) = deco P(d co) Z, (a+A(d) (123)

in powers of (I')/(v~)'I' and (I')/(Eu)'I', respec-
tively. We And

i, (a, Eu) = exp{—a'/(Eu)'}

—(1.23) (2)'~2(m) "'(I'/Eu)"'

vl vah vah+Ga)xP+ 2 +8q

vs= v.~'(1+~) ',
where

0=2~"'(v~'/Eu) {I (v~v. 'v~')/(va'v. v~) 5—1}-',

(128a)

Xl 1+1.479(a/Eu) 5 (122')

'A method for carrying out such an expansion is given in
Appendix III.

P. W. Smith, J. Appl. Phys. 3V, 2089 (1966).
R. H. Cordover, thesis, M.I.T., 1967 (unpublished). We are

indebted to Dr. Cordover and Professor Javan for making this
material available to us before publication."R. L. Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965).
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with

and

&l(~ -~+~) =71't vl'+(~ —~+~)'j ' (129)

yJ =7,+G,P+T ',

vt'=7~+GsP+2 ',

Tab vab+GabP+ 2 (130)

(134)

where It, and s are supposed to describe "hard" and
"soft" collisions, respectively. In their terminology the
"soft" collisions are the ones which give the radiating
atom a zig-zag path due to a number of small-angle
collisions, and "hard" collisions result in a sudden and
complete interruption of the radiation process. It can
be seen by comparing Eqs. (133), (134) and Eqs,
(127), (128) that our theory is more explicit about the
expressions for y& and y2, and in addition predicts that
there could be a nonlinear dependence of p2 on pressure,

The parameters b, d, , T are defined by Eqs. (92b)
and (92c) and Eq. (55), and the constants G„Gq,
G,~ are introduced for reasons mentioned in Sec. II.

Equation (125) for the intensity profile looks very
similar to that obtained in the collisionless theory
)see Eq. (34)$. Apart from a different multiplicative
factor A& (which would be very hard to detect experi-
mentally) there are three main differences: (1) The
curve I(co—v) is shifted in frequency by an amount 6
associated with the phase shifting (close) collisions of
Sec. IV; (2) the Lorentzian term in the denominator
has an increased width parameter p~,

' and (3) the size
of the Lorentzian term is reduced through multiplica-
tion by a factor (p&/y&). The immediately noticable
consequence of changes (2) and (3) is that the central
tuning dip becomes less pronounced.

It is interesting to consider the condition under
which I(ru v) sho—uld have a central tuning dip. By
expanding (125) in a Taylor series in powers of
(a&—p+6) we obtain the condition on the relative
excitation

&&1+(vi/KN) 'L1+ (v /7 ) j, (131)

in contrast to the prediction of the collisionless theory
which gives

K) 1+2(y~/KN) '. (132)

Since y& and y2 are increasing functions of pressure, we

see that as the pressure increases the dip will be found

only at higher excitation.
Szoke and Javan and Cordover analyzed their data

by a semiempirical equation of the same form as Eq.
(125) and 3,=0. They have taken the damping con-
stants y~ and y2 to be linear functions of pressure, writ-

ing in effect

(133)

although the importance of the departure from linearity
remains to be determined.

By comparing Eqs. (127) and (128) with Eqs.
(133) and (134), we see that h+s could be identified
with the quantity 8+(1/T), while the contribution
of soft collisions might be taken to be s=tIy2, where
&2 and 0 are given by (128a) and (128b) . In view of the
peculiar form and nonlinear pressure dependence of
this expression, it does not seem to us that the division
of collisions into the hard and soft categories is particu-
larly signidcant.

Cordover" worked with He—Ne lasers at 0.6328@,
(3s2—2p4), having a He —Ne mixtures of 8:1 and 5:1.
We will only consider the fitting of his data for the
8:1 ratio for which the total pressure I' ranged between
0.9 and 2.0 Torr. He found that y~ and y2 in MHz were
given by"

vi=13+giP, (135)

'Y2= 13+g2P) (136)

where go=58 MHz Torr ' and g2=22 MHz Torr '.
In order to test our theory we need to have values

for such quantities as p, p&, p~, T, 8, EN and various
G's which enter into Eq. (125) . Unfortunately, some of
these are not very well known, but as will be seen below
we will manage to make a fairly plausible assignment
of their values. For the Doppler width parameter we
take the value Eu=855 MHz which is wavelength
scaled from the value 470 MHz used earlier by Szoke
and Javan. The radiative decay constants should be
determined from measured lifetimes. It appears, how-
ever, that the lifetime of the upper laser level has not
been measured. Therefore, we take the extrapolated
value y~ ——13 MHz from the experiment of Cordover,
and by using Bennett and Kindlmann's measurement"
of decay rate p&

——8.30 MHz for the lower level, we infer
that

7,=2' yb= 17.—7 MHz. (137)

We note in passing that the partial decay rate of the
3s2 state to one of the 2p states is only a small fraction
of the total decay rate p, obtained above. It seems that
the dominant mode of decay from the state 3s2 is the
optical transition to the ground state. The phenomenon
of resonance trapping therefore plays an important
role in a measurement of the partial decay rate to the
ground state, and would reduce the apparent value of
7,. However, in our model, if an excited atom A decays
to the ground state by emitting radiation (not at the
laser frequency), it is discarded. If a distant atom 8
absorbs this radiation, we consider the process as
contributing to the excitation rate of 8, and neglect
the small correlations between the decay of A and the

"It should be remembered that following the convention in
Ref. 1, a numerical value stated as y=10 MHz really means
y =27|-&(10' sec '.

4 W. R. Bennett, Jr., and P. J. Kindlmann, Phys. Rev. 149, 38
(&966).
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excitation of B.Hence the parameter y, which has been
determined in (137) should be the decay rate of an
isolated atom, which unfortunately has not yet been
measured.

As mentioned in Sec. II we are postponing discussion
of nonradiative resonant interchanges of excitation
which lead to an r ' van der Waals interaction. In some
approximation, the effect of these could be described
by adding further terms of the form G I' to each of the
decay constants p . We will first try to fit the experi-
mental data of Cordover without including any such
terms in our formulas.

We now turn to the determination of the parameters
T and 8. Unfortunately, the calculation of their values
from first principles would be rather dificult since it
would involve the determination of the van der Waals
coefficients for the excited states of Ne. It is clear,
however, from their definitions, Eqs. (92b) and (55),
that 3 and (1/2') are linear functions of pressure.
Hence, we may attempt to fit the experimental points
of Cordover by writing

l50

l20

90

60

30

00
I

P (Terr )

T '=grI'H. ,

~=gree

(138)

(139)

Since our expression for yr in Eq. (127) is now exactly
of the form displayed by Eq. (135) we may conclude
that the combination

Fro. 1. Plot of damping constants y1 and y2 against pressure
based on Eqs. (127) and (128).The required numerical values of
gr [Eq. (138)]and gs [Eq.(139)] are determined from data of
Cordover (Ref. 11) for a helium-neon laser operating at 0.63'.
The experimental points are indicated by solid and open circles.
Also shown (dashed line) is the linear relation for y2 of the Szolte-
Javan theory.

gs+gr ——58.0 MHz Torr-'. (140) pendent of the van der Waals coefFicient, and is given
by

We now have to determine 2 ' and 5 separately from
the knowledge of ys. However, unless Eq. (128) can be
linearized in the pressure region where the experimental
points are taken, a direct comparison between Eq.
(128) and Eq. (136) is not possible. On the other hand
one may try to 6t experimental points to Eq. (128). In
doing that, we determine T by demanding that Eq.
(128) give an approximate fit to experimentally ob-
served values of p2 at pressures near 2 Torr. Accordingly,
we 6nd

go=17.0 MHz Torr ',

gq
——41.0 MHz Torr '.

Plots of y~ and y2 as functions of pressure are shown in
Fig. I. Within the limits of experimental errors, our
nonlinear expression Eq. (128) fits the experimental
points as well as a straight line. Clearly, more experi-
ments with wider ranges of pressure would be helpful
in an attempt to observe the more strongly nonlinear
portions of the y2-versus-pressure curve. It is interesting
to note that in the present theory pm depends on the
Doppler linewidth Eu, hence experiments on other Ne
transitions should be used to further test the theory.

Having obtained 8 as a function of pressure, we may
now predict a shift for the center of the intensity profile.
It has been shown by Foley7 that for a r ' interaction
potential, the ratio of shift 6 to broadening b is inde-

(142)

Consequently, in an experiment like that of Szoke and
Javan one should expect a shift 6 of

6/I'=29. 8 MHz Torr '. (143)

This is a sizeable shift and should be readily detect-
able."If no shift is found or the observed shift is much
less than 29.8 MHz Torr ', we must conclude that the
increase of p& with increasing pressure cannot entirely
be caused by collisions which are described by 4+ (1/T),
but rather, at least in part, it should be attributed to
the inelastic collisions described by the phenomeno-
logical constants G„Gs,G~. We can then always assign
values to these G's which will reduce the shift to the
desired size. A further test of the theory should involve
an independent experimental check of the cross sections
corresponding to the values of the G's obtained above.

Having decided on a value for b, one is able to calcu-
late the most likely shift caused by distant collisions. If
one carries out the averaging procedure indicated in
Eq. (92a), the broadening 3 may be written as

8=4.25 (NH. )"s(8) 'isp. (144)
'~ Shifts of this order of magnitude have recently been observed

[e.g. , A. L. Bloom and D. L. Wright, Appl. Opt. 5, 1528 (1966)
and A. D. White, Appl. Phys. Letters 10, 24 (1967)] but the
experimental situation is still somewhat confused. The sign of our
frequency shift 6 depends on the unknown sign of the van der
Waals coefhcient B.
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Solving Eq. (144) for the van der Waals coefhcient 8
under the assumptions 8=41.0X(2m) X106 sec ', p=
2.59X10" cm ' (pressure=1 Torr and T=373'K.),
NH, ——1.208)&10' cm sec ', one 6nds 8=6.32)(10 "
cme sec '. The corresponding most probable frequency
shift then becomes A~ =3.89X10' sec ' or 6.2 kHz in
ordinary frequency units. This is the basis for our
earlier statement about her which led to the expansion
(124) of (118) in powers of (I'/y~'I').

As mentioned before, the intensity curves of Cordover
do show some asymmetry. The only source of asym-
metry in our theory is to be found in the statistical-
theory limit of Sec. V(c) . One may note that there is a
connection between the frequency shift 6 of Sec. V(b)
and the asymmetry of Sec. V(c). It is unfortunate
that we do not know the value of 6 more directly from
the observation of a beat note frequency, as well as the
value rather ind. irectly inferred from the analysis of
Eqs. (133) and (136). (Note: Our 6 should not be
confused with the 6 symbol used by Cordover. )

With the numerical values for the various parameters
as determined in the text, the two peaks of the tuning
curve can differ in height by a few percent at pressure
1 Torr. The asymmetry terms vary as the square of the
pressure.

The asymmetry e6ects increase rapidly as one goes
into the wings of the atomic response functions n and
P. In the studies of Fork and Pollack" on the effects of
pressure on two-mode operation there was definite
evidence for asymmetry, and it is quite possible that an
extended theory could 6t their data with our value for
the van der Waals constant 8.

Should a larger asymmetry be found there would be a
further indication of the need for an extension of our
theory to include resonant interactions.

VIII. DISCUSSION

IA general expression for the effect of collisions on the
single-mode intensity of a gas laser was given in Eq.
(30). A similar general expression for the frequency
could easily be written down by working from Eq. (3)
instead of Eq. (4). These general expressions were
evaluated in an approximate but plausible manner. We
took into account two types of interactions (a) short-
range nonadiabatic collisions which are described by
adding terms G I' to the radiative damping constants
y, and (b) longer-range interactions of van der Waals
type. The latter produced three distinct e8ects which
were discussed in Secs. IV—VI. The first of these in-
volved the deQections experienced by an active atom
which lead to an irregular amplitude modulation of the
optical 6eld seen by it, and eventually caused a modi-
6cation in the output of the laser. A full discussion of
this eGect would require the solution of an integral
Eq. (48) for a realistic collision kernel. We have con-
tented ourselves with a solution using the simplest
form of collision kernel, Eq. (55), which leads to expres-

sions dependent on one parameter T, the collision
time.

The second eGect of the van der Waals interaction is
produced by the frequency modulation Are(t) in binary
collisions. Here again the general expressions, Eqs.
(17) and (18), are available, but we have evaluated
them using the approximation that each collision leads
to a phase shift y(v, b), and that such collisions occur
in a random manner. In addition to the collision time
T, we find two parameters, b and 6, related to each
other by Eq. (142), entering the equations. The first
leads to a broadening and the second to a displacement
in frequency of the intensity curve I(&v —0) .

The third effect of the van der Waals interaction is
due to the combined action of many distant atoms and
was treated in a static statistical approximation in
Sec. VI. Here we found an asymmetrical broadening
of the intensity prolle which is most noticeable in the
wings of the curve.

As an illustration of our theory, in Sec. VII we have
analyzed some measurement of Cordover. "The agree-
ment was quite satisfactory in view (1) of the simplify-
ing approximations of our theory, (2) the uncertain
experimental values for y, and Yi„and (3) the fact that
we did not make use of the extra degrees of freedom
afforded by the possible terms G I' which could be
added to the radiative decay constants p .

The investigation of pressure effects on laser opera-
tion can provide a powerful technique for the study of
atomic interactions. In the past, studies of collision-
broadened spectral lines could only be carried out at
high pressures, where the pressure-dependent distortions
were not masked by Doppler broadening, or else one
was restricted to the study of line shapes far out in the
wings where a Lorentzian dependence prevailed. We
hope that this paper will stimulate more experimental
work in this interesting and heretofore inaccessible low-
pressure range. This would be desirable not only for the
increased technical possibilities for laser development
but also for the insight which it affords into the inter-
actions of the atoms concerned in the laser action.

In later papers, it is planned to extend the theory of
pressure eAects by considering the deQecting collisions
more realistically and by allowing resonant interactions.
The cases of Zeeman and ring lasers, as well as of multi-
mode operations, are also being treated.
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APPENDIX I

A derivation of Eq. (52) is given in this Appendix.
It follows from elementary probability theory that the
conditional probability density of Eq. (52) obeys the
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equation

P(v"' r"', t'"
~

v" r" t" v' r' t'v r t)

=P(vl'I rill till
~

vll rll tll. vl r' tf

We see from (57) that this equation is to be solved
subject to the (initial) condition at r'=0:

X„„.(v"', v; r"', 0) =G„(v"',0
i v, "'). (II3)

Formal integration of (II2) then givesXP(v"' r"' t'" v" r" t" v' r' t'
~
v r t) (I1)

using a notation where P (a
~

b; c; d) is the probability
that state a implies subsequent states b, c, and d while
P(/z; t/; c

~
d) gives the probability that states a, b,

and c taken together imply a later state d. If the scatter-
ing process is Markofhan with respect to variables r
and v, it follows that the second I' function on the
right-hand side of (144) depends only on v', r', t' but
not on the earlier values v"', r"', t"' and v", r", t"
and may be written as P(v', r', t'

~
v, r, t) . Application

of similar arguments to the erst I' function on the
right-hand side of (145) gives

P(v'" r"' t"'
~

v" r" t" v' r' t')

P(vill rfll tiff
~

vl/ rf/ tll)

XP(vll/ rill till. vll rll tll
~

vl rl tl)

= P(v"', r"' t"'
~

v", r", t")P (v", r", t"
)
v', r' t')

(I2)

The desired result (52) follows by combining (145)
and (146).

APPENDIX II

(vill v. II/ /)

=e xp{(i 'KE v T')r'—}G„(v"',0
~

v, T'")

+(zr"zuT) ' exp{—(v/u)'}

Xexpf(zK Ev —T 1) (T —t) j
X dH X„v"',8; 7."', t . II4

R. (T"', r') = (zr'"u) -' dv" exp{ —(v"'/u)'}

dv exp ia'Ev —T ' 7-'

rl

XG„(v"',0
i v, r"')+(1/T) dt

0

Xexp {——,'LK'Eu (r' —t) $'

—(T'—t) 1 '}D„(r'",t) . ( II5)

Inserting this into (69), we get an equation for
D.„(r"',r'),

D- ( "', r') = (w"'w) ' f dv"' exp[ —(a"'/m)']X„„(v"',v; r"', r')

For evaluation of the first term of (68) we must deal We then substitute (57) into (II5) to obtain
with integrals of the form

dv" G„(v"',0
i
v", r")G„.(v", 0 i v, r'). (69')

This can be done most readily using the Boltzmann
Eq. (56) which, assuming stationarity, becomes

(a/ar')G„.(v", 0
( v, T') =(z"E.—T-i)G„.("', 0

) v, r')

Xexpj' —(r'+r"') T—'
g

/ll

+zEv"'(K'T'+KT'") j+(x"'uT) ' dr-
0

X de exp —v I, '

+(TT"'uT) ' exp{—(v/u)'} dv G„.(v", 0
~

v, r') . +zEv(K T +KT KT) (r +r —T) T—ij—
It follows from this that the r' dependence of (69') is
determined by the differential equation

(8/Br') X„;(v"',v; r"', r')

= (zK'Ev —T ') X .(v'", v; r"', r')

X (zT"'u) ' dv"' expL —(v'«/u)zj

OO rl
dv G.(v'", 0

~
v, T) + (1/T) dT—CO 0

Xexp{ ——,'{K'Ev(r' -T) }'
—(T' T) TgD„„,(r"', r-). (II6)

+(zr"'uT) ' exp{ —(v/u)'} t' t'&I - . &I&"(v I v' r T ) ~ Noting that from (43) it follows that the expression
in the curly brackets in the second term of (II6) may

(II2) be replaced by the single time correlation function
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6"(r), we obtain an integral equation for D„„.(r"', r'), as in Eq. (63). The second term is

D„„(r"',r') = exp/ —(r'+r'") T '——,'(Eu) '
Tii i

X (~'r'+IIr"')'j+(1/T)

Xexp) ~ (Eu) i(z'r'+mr"' r&
—
r)

i

—(.+'"—.) T Il~.-(r)+(1/T)

di exp/ ——,
' (II'Eu) '(r' —t) '

alii

Szr=iEuT ' dr' dv'" dt
0 0 0

Xexp( —p,,'r' —pir"' —(r"'—t) T'-
'—(E—u) '(r"' —t—r') ']g(t) . (1116)

An interchange of the order of the v'" and t integrations
/see Eq. (35) of Ref. 1j and the introduction of a new
variable of integration ~=v'"—t instead of r" gives

—(r'-t) T '3D- (r"'~ t) i (II7) Sgg=iEuT '
0

dt A(t) exp] —pitj dr' dh
0 0

+(1/T) dt

which is a generalization of (60) .
For II=II'=~1, Eq. (II7) becomes, after a change of

integration variable,

D„,,(r r ) =exp/ —(r'+r'") T ' ,'IEu—(r—+r ) I

Xexp/ —pI'r' —p&'r ——,
' (Eu) '(r' —r) '$, (II17)

and by (27) and (II14) we find

SII= (iEuT) 'O(pi) tpI'+pi'] 'pZ-(pI')+Z(p, ') 5

(II18)
The third integral is

XexpL ——,'(Eut)' —iT Ijh+(r'+r" t)—SIII—iEuT-I d."' dr' exp) —p,r' —p,r"'j
0 0

+(1/T) dt expt' ——,'(Eut)' —tl 'j
dt expj"—(r' i) T' '—(Eu)-'—-

XDgIpI(r", r' —t) . (II8)

It follows easily from Eq. (60) that

Dy y I(rIr ):b+(r +r )

is a solution of (II7) .
It is more diKcult to determine the solution of

(II7) when a= —1, z'=+1. We denote this by

D+(r
&
r )=D I+I(r &

r —) =D+I I(r &
r ). (II10)

Fortunately, to evaluate (28) we do not need (70")
directly, but rather its double Laplace transform

Suz=iEul ' d&"' dt d]
0 0 0

XexpL —p, (t+i) —pir"' —(t/T) ——,'(Eut) ']D+(r"', i) .

Using (62) and (II11), this gives
(II20)

X (r' —t) '$D+(r", t) . (II19)
Making an interchange of the r' and t integrations, and
replacing the variable r' by t= r' t, we find—

SIII——(iEuT) 'Z(pI') S(pI, pi). (II21)
S(p, , p,) =iEu dr'

In all, the desired quantity S(pI, pi) obeys the equation

Xr 1+(iEuT)—Is(pi) g+(iEuT) 'Z(p, ') S(pI, pg),

S( )=Pp'+p g 'PZ(p )+Z(p') j
Corresponding to the three terms of (II7), we may write
(II11) in the form

We then have

Sz = iEu

S(ply p2) SI+SII+SIII~

dr"' exp[ —(pI+ T')r'-(II12)
which may be solved to yield

S(pi p&) =LpI+pi j 'LZ(pI )+Z(p, ') j

(II22)

X/1+(iEuT) 'g(p, ) j/1— (iEuT)——IZ(p, ) g
—I

(II23)

~(pu) =Z(pi') t 1—(iEuT)-'Z(p, ') j-', (II24)

we 6nd the relationwhere

0 0

—(pa+ T ') r"'——,'(Eu) '(r' —r"') 'j. (II13)

Such integrals can be evaluated by introducing new Using Eq. (64) in the form
variables of integration in the v', v"' plane, giving

SI=LpI +pi j tZ(pI') +Z(pg') j, (II14)

pI =pI+T pa =pa+T (II15) 1+(iEu T) Ig (pi) =L1—(iEuT) IZ(pi') $
—I— (II25)
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dD(o E(ho)) exp I
—(a+tI((o) '/(K'u) '}

When this is substituted in (II23) we finally obtain and (124) we obtain
the desired expression

S(ttit tts) = [tt '+tt 'j—'3(tt ) 3(tt ) ii(a, Eu) —=

&& IÃ(~ ') 3-'+l.~(t.')?'} (»26)

as stated in the text.

APPENDIX III

=-'~-»AN2 dt exp f
—(1—i) I'trt'+i at

—-'(Eu) 't'}+c.c.,

To carry out the expansion leading to Eq. (124) we i2(a, y) —=

consider integral representations for the functions
I'(t(to&), g(a+A(o) t and exp( —(a+Do))'/(Eu) }

'

dAo& E(A(o)Z(t(o)) =-,'T dt
0

&&exp[ —y ~
t (+iat (1——i) I't' (2}+ cc.

p(tee)=(2 ) 'f steep( —tk t— (ptt)rt')+cc. ,

z(a+A(o) =-2'y dt exp I
—7 ~

t ~+i(a+A(o) t},

exp{—(a+a(o)'/(Eu)'} = '2r '(2Ku -dt

&& exp I +i (a+t(((o) t Ar (Ku—) 't'}.

By substituting the above expressions into Eqs. (123)

We now expand is(a, y) to first order in I'7 't' and
obtain

2 (a 7) =e)t2(+2+a2) —1 1%1/2(Ie2/7)1/2

&&«E(1—i) lvh —ia) '}"'j (123')

A similar expansion of ii(a, Ku) under the assumption

(~ a ~/Eu) &&1 gives

ii(a, Eu) = exp(( —a'/(Eu)'}
—(1.23) (2) '"(2r) '"(I"/Eu) "'$1+1.4'/9(a/Eu) $.

(122')
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The paramagnetic resonance of the 'S state of Fe'+ has been studied in the monoclinic C& symmetry
which arises from Fe'+ associated with a monovalent metal impurity (Cu+, Ag+, or Li+) in ZnS, ZnSe,
ZnTe, CdTe, and ZnO. The Fe'+ and (Cu, Ag, or Li}+ impurities are substitutional for the metal ions at
one of the nearest possible sites. The zero-field splitting due to the crystalline electric fields is frequently
large compared to the Zeeman interaction. It is observed that no specific ratio of the two quadratic fine-

structure terms in the spin Hamiltonian occurs. This suggests that in many cases the observation of nearly
isotropic lines near g=4.3 results from a fortuitous set of values for these fine-structure terms, supporting
the view that a pure "rhombic" term need not follow from the symmetry of the environment.

I. INTRODUCTION

T 1HZ role of copper in the luminescent behavior of
~ . the zinc and cadmium chalcogenides has been the

subject of considerable investigation for several dec-
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ades. ' Recently, the technique of electron paramagnetic
resonance (EPR) has been applied to the study of these
materials. ' Although some measure of understanding
has been achieved for a variety of impurity centers,

For an excellent review see Physics and Chemistry of II—IV
Compounds, edited by A. Aven and J. S. Prener (John Wiley R
Sons, Inc. , New York, 1967). See Chap. 6 by R. S. Title for spin
resonance and Chap. 9 by D. Curie and J. S. Prener for lumi-
nescence.


