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A model for a laser oscillator in which the atoms of the active medium do not collide during their radiative
lifetimes has been used by Lamb. His theory predicts that as the cavity frequency is tuned through atomic
resonance, there can be a dip in the intensity of the laser radiation. In the present work this model is gen-
eralized by allowing the atoms to collide while they radiate. The general formulation of the collision problem
is presented for thermally moving neutral atoms interacting with a standing-wave cavity mode, and it is
then applied to the calculation of the intensity profile for some simple collision models. It is found that as
the pressure increases, not only is the “dip” broadened and made less deep, but it is also shifted and becomes
asymmetric. Some observations by Cordover on pressure effects are found to be in satisfactory accord with

this theory.

I. INTRODUCTION

HE model for a laser oscillator used recently by

Lamb! consisted of an optical cavity of the Fabry-
Perot type containing an active atomic medium. The
atoms of this medium were assumed to have only two
levels @ and & concerned in the laser action. Radiative
decay to lower states was described phenomenologically
by two damping constants v, and v,. An assumed classi-
cal optical field in the cavity induced a polarization in
the medium. The amplitudes and frequencies of the
different modes of oscillation were determined by
requiring that this polarization should be the source
for the field in accordance with the macroscopic Max-
well equations. The atoms were allowed to move without
collisions and to have a thermal equilibrium velocity
distribution. Motion of the radiating atoms played an
important role in the theory because they could move
through several wavelengths of the optical field before
they decayed.

In many qualitative respects, the above theory gave a
very satisfactory account of observed gas laser be-
havior. In practice, however, the gas pressure was too
high for the neglect of collisions to be a good approxima-
tion. For example, in the case where only a single mode
was excited, the theory predicted that for a sufficiently
high power level the intensity should go through a
“dip” as the cavity was tuned through resonance with
the atomic transition frequency. Such behavior was, in
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fact, subsequently observed by various workers,23 but
the magnitude and shape of the dip was found to be a
sensitive function of pressure. The purpose of the
present paper is to treat a generalized model for a gas
laser which takes into account the collisions experienced
by the active atoms during their lifetimes. The end
result is a theoretical expression [Eq. (118)] for the
pressure dependence of the intensity versus cavity
tuning curve.

The calculations are similar to those found in dis-
cussions of pressure broadening of emission or absorp-
tion lines.* There are, however, a number of differences:
(1) Nonlinear properties of the active dielectric medium
play an essential role in our case, but they are not
usually considered in pressure-broadening theory. (2)
We are here concerned with the theory of a self-sus-
tained oscillator. The collisional effects of interest to
us do not produce a finite linewidth of the laser radiation
but rather affect the laser output and its dependence on
cavity tuning. In usual pressure-broadening theory, the
spectral lines already have a Doppler width much larger
than their natural radiative width. As a result, an addi-
tional broadening or an asymmetry can only be seen
experimentally at perturbing gas pressures which are
rather high, and the desirable assumption that binary
collisions play a dominant role may not be well justified.
On the other hand, in the case of a gas laser, the intrinsic
width of the tuning dip is of the order of the radiative
linewidth. Collisional effects can then be studied at
much lower pressures. (3) A further very important
difference is that in a Fabry-Perot laser we are con-
cerned with a standing-wave electromagnetic field. A
radiating atom can move an appreciable number of
optical wavelengths during its lifetime, interacting at
each point with a field of different amplitude. If the

2R. A. McFarlane, W. R. Bennett, Jr., and W. E. Lamb, Jr.,
Appl. Phys. Letters 2, 189 (1963).

3 A. Szoke and A. Javan, Phys. Rev. Letters 10, 521 (1963).

4R. G. Breene, Jr., The Shift and Shape of Spevtml Lines
(Pergamon Press Inc., New York, 1961).
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motion of the atom is disturbed by collisions, the history
of its interactions is changed, the atom sees a field
which is amplitude modulated in an irregular fashion,
and its contribution to the state of laser oscillation
is modified. If one were concerned with a traveling
electromagnetic wave as is the case in pressure-broaden-
ing theories, the effect of the atomic motion would be a
phase modulation and not an amplitude modulation.

II. TYPES OF COLLISIONS

Theories of collision broadening can be quite com-
plicated and it is therefore useful to make some pre-
liminary remarks about different kinds of collisions
and their relative importance.

A He-Ne laser oscillating at 0.63 u wavelength might
have a partial pressure at room temperature of 2 Torr
of helium and 0.2 Torr of neon. Under these conditions,
a typical active atom of neon would be about 2.34X
1078 cm away from its nearest neighbor. If we take
2=10° cm/sec as the effective atomic speed, a collision
with a distance of closest approach of =107 cm lasts
about b/v=10"1 sec, and may be regarded as reasonably
adiabatic with respect to the mixing of levels @ and &
whose frequency separation is 6)X10“ Hz for the laser
under consideration. The rate of such close collisions
b<1078 cm experienced by an active atom is 2.44X
10® sec™l. More distant encounters would satisfy the
condition for adiabaticity even better.

In a real laser, the atomic levels ¢ and & may have
magnetic sublevels. Since our present calculations are
limited to the case of two-level atoms, we are not going
to give an explicit treatment of the effect of inelastic
transitions between magnetic sublevels in this paper.
However, they should be important only in the closest
encounters. For these, and any other inelastic collisions,
the atomic state is drastically changed due to electrical
interactions and there will be little correlation between
the radiation emitted before and after the impact. It
seems very plausible to allow for inelastic collisions
and magnetic reorientation by simply adding quantities
G, P and G, P, proportional to pressure, to the radiative
damping constants vy, and «;. For the purposes of this
paper we will also ignore the possibility that resonant
interactions are important. In such collisions an ex-
change of excitation would take place between the
active atom and an atom of the same kind in a state of
different excitation. It is planned to deal with this
problem on a later occasion. In the present treatment,
we consider all the perturbers to be helium atoms.

We see from the above discussion that except for the
closest encounters which are described by pressure-
dependent damping constants, the effect of a perturber
on a radiating atom can largely be regarded as a van der
Waals interaction. As the perturbers move around with
respect to the active atom, the atomic transition fre-
quency o between the levels ¢ and & can be considered
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to change adiabatically with time, becoming a function
o(%). There will also be forces on the active atom which
cause it to follow a zig-zag path of some complexity. Let
this be denoted by r(¢), with velocity v(¢) =dr/dt and
let 2(£) be the component of this velocity vector along
the laser axis.

In Sec. IIT we are going to generalize the discussion
of Ref. 1 by taking into account the time dependence
of w(f) and v(#). The dipole moment acquired by an
atom having a particular history will be calculated and
then the polarization of the medium as a whole will be
obtained by summing up the contributions of the atoms
in which all possible histories are properly taken into
account. We will obtain a quite general expression for
the single-mode intensity versus tuning frequency
[Eq. (30)] and the following sections, IV-VI, will be
devoted to making suitable simplifying approximations
so that the expression can be evaluated in reasonably
simple algebraic form.

III. FORMAL CALCULATION OF THE
INTENSITY PROFILE

We assume that for single-mode operation the cavity
field and the polarization induced by it in the active
medium have the following general form:

E(z,t) = E({) cos{vi+¢(¢)} sinKz,
P(z,1)=[C(t) cos{vito(t)}
+S(2) sin{rit+¢(2)} ]sinKz, (2)

where E(f), C(¢), S(¢), and ¢(¢) are slowly varying
functions of time. It was shown in Ref. 1 that the self-
consistency requirement, namely that E(z, ) and
P(z, t) satisfy the macroscopic Maxwell equations,
leads to the following set of differential equations:

(r+¢—Q) E=—%(v/e)C, 3)
E+3(/Q) E=~3(/a) S, 4)

where Q is the cavity frequency and Q represents the
losses of the cavity. The quantities C(Z) and S(¢) are
functionals of the slowly varying amplitude E(¢) and
phase ¢(¢). In order to determine these functional
relations we must find the quantum-mechanical density
matrix which describes the time evolution of each atom
while it interacts with the cavity field E(z, ¢), compute
the corresponding dipole moment, then the macroscopic
polarization P(z, {), and finally determine C(#) and
S(t) according to Eq. (2).

The equation of motion for the density matrix which
describes an excited atom moving with uniform velocity
v and interacting with the electric field E(z, ¢) was
derived in Ref. 1. In order to make these equations
applicable to the present case we have merely to replace
v by 2(f) and by «(¢) and to write an expression for
the perturbation V(#) which properly recognizes the

(1)
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instantaneous location of the atom in question. We have
bap=—1(£) pas—"Yavpas+1iV () (Paa—pw0) ,
Paa=—"YaPaa+1V (t) (pab— pra),
o= —"spsp— 4V (£) (pab— pa) ,

Pba= pab*: (5)
where
Yav=73(Ya+v5) (6a)
and
V()= —@iE((sot [ dio(d)}, 5,  (6b)

with ¢ denoting the dipole matrix element between
the states ¢ and .

From here on the calculation proceeds in exactly the
same manner as in Ref. 1 except now, when the macro-
scopic polarization P(z, ) is obtained, it must be
averaged over all possible histories of the variables
2(¢) and w(¢) before the Fourier components C(#) and
S(#) are substituted in Egs. (3) and (4).

Asin Ref. 1, we sum up the individual dipole moments
with all possible initial conditions, weighted according
to the rate of production of atoms with such initial
conditions. We write

t L 00
P(Z, t) = @ Z f dto f dZo / d‘vg )\3(20, o, to)
— 0 —

o=a,b

XEPab(a, 20, Yo, tO; t) +Pba(a7 2, Vo, tﬂ; l)]
¢
X8 (z—zo— dffv(f)), ©)
to

where A\, (20, %, &) is the rate at which atoms appear in
state a=a, b in the phase-space volume element dz,dvy
at the phase-space point 2, 7 at time #. As in Ref. 1
we assume that the rate A\.(%, v, f) may be factored
as follows:

Ae(20, %0, o) = Aa(20, f0) Po(mo), (8)

where Py(7) is the initial velocity distribution.
We must solve Eq. (5) by iteration to third order in
the electric field amplitude, once with the initial condi-

tion
10
p= ) (92)
00
and again with the initial condition
0 0
p= . (9b)
0 1

The expression for p(a, 2, %, %) are then inserted into
Eq. (7) in order to calculate the polarization P(z, ¢).
We assume that the excitation rates A,(zo, f) are
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slowly varying functions of 2 and f and may be re-
placed by A.(z). The following expression for the
induced atomic polarization is then obtained:

P(z,8) = PO (2, 1)+ P9 (3, 1), (10)

where, for atoms with a symmetric velocity distribution
Py(v9) = Po(—),

PO (3, 1) = — 31l 'N (2) E(2) exp{—i(vit+o)}

o0 t
X/ dvy Po() / dt’ exp {~—'y,,b(t—t’,

t t
-1 df[w(i)—v]} cos {K/ div(i)}
o &t
XsinKz+c.c.,, (10)
and in the “Doppler limit” of Ref. 1,

P® (3, t) =559 3N (2) E(2)3 exp{ —i(vt+¢) }

o t t
X/ d’l)(] Po('l)o) Z f dt,/ s’

oa=a,b

o t
X / a” [CXP { —vya(i—t)—i | di
- ,
X[w(@) —v]—valt'—t") —yas (' —1"")

g

—i /t | dife(® —v]}+exp { (1)
—i [ dLa®=T-ra(t 1)

(=) i /t ‘ &) _,]”

i

X cos {—I—K/tdiv(z?)—K dfv(i)}
t!

XsinKz+c.c.,

(10”)
where N (2) is given by
N (2)=[Aa(2) /ve]l—[As(2) /5] (11)

In order to average the polarization over the histories
of the functions w(¢) and »(¢), one must evaluate the
following expectation values:

<exp {:i:iK / t div@) -1 / t dZAw(i)}>, (12)
<exp {:l:iK [/t div(i)—/w dzv(i)]—i /t dt Ao ()
" di Aw(f)}>, (13)

i
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where Aw(?) is defined by the relation

o(f) =0+Au(?), (14)
and the bracket {---) indicates an averaging over all
possible histories »(#) and Aw(f) during the appropriate
time intervals. The ordering of the different times
appearing as limits of the integrals in (12) and (13) is
given by ¢/’ <t <t <t. The above averages are rather
complicated and difficult to evaluate, and it would be
very desirable to be able to assume that the changes in
v and Aw are uncorrelated. Since in a specific collision
the integrated values of Aw and the change in the
velocity vector are interrelated, it is clear that the
above assumption cannot be strictly valid. However,
the function »(¢) is only one Cartesian component of the
velocity vector and thus the assumption is not so
unreasonable, though its validity is hard to check.’

By assuming that Aw and v are uncorrelated it is
possible to average over v and over Aw separately and
the quantities to be evaluated are

ALY, 1) =<exp {:l:iK f ") }> (15)

A:[:(tlll’ t”, tl, t)

=<exp {:tiK[/t o dzv(Z)]}>, (16)
T£(#, ) =< exp {:l:i ft di Aw (%) }>, 17

I‘i(tlll’ t”, t,, t)

=<exp{—iftdew(i):!:i WdZAw(f)}>. (18)

Generalizing a nomenclature used in pressure-broaden-
ing theories we shall call these quantities characteristic
functions. As is apparent from the previous discussion,
the first two of these functions allow for the fact that
the collisions change the amplitude modulation of the
effective field seen by the emitting atom, and the second
two describe the effect of the frequency modulation
which occurs while an atom undergoes a collision.
Before discussing the method of calculating these
characteristic functions, we proceed, at least formally,
to solve for the intensity profile. We first write the
spatial Fourier projection of the average polarization
on the cavity mode in terms of the characteristic

5S. Rautian and I. Sobe’man [J. Quantum Electron. 2, 446
(1966) ] consider the v and Aw correlations to be the cause of any
asymmetry of the tuning dip curve. In contrast, our explanation
of this phenomenon as given in Sec. V(¢) involves a statistical
distribution of van der Waals interactions. See Eq. (124)
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functions

(PO (8) Y= —3i "N E(1) exp{—i(vite)}
X[ at expl~rartito—n)16-0))

XA, HT~(¥, t)+c.c.,
(P®(2) Y=o 3N E(1)? exp{ —i(vt+¢) }

, v o
Xaga‘fbf_mdt,f_wdt"/_m "
X[exp{—[va+i(w—»)] (=) —va(¥'—1")
—[vat+i(w—v) (" —1"")}

XA ¢, )T 1,1, 1)
“+exp{—[ya+i(w—v) J(t—1) —va(¥'—1")
—[Ya—i(w—») J@"" ") AW, ", 1, £)

(19)

XTI+ ¢, Y, t) Hc.c., (20)
where
A=3(At+47) (21)
and
_ L
N=1I-1 / &z N (2). (22)
0
The amplitude equation (4) now becomes
dE/di= (a)E— (8)E>. (23)

The coefficients (@) and {8) are generalizations of the
constants & and 8 in Ref. 1 and may be written as

(@)=[3/Q)/3:(va) JLIBi() = Bi(y) ] (24)

and
(BY=55 N (Yarvs) HL (v/Q) /3i(vas) LI (s, 1)
+0:F(u, w*) ], (25)
where
9N=N/Nr (22")

is the relative excitation of Ref. 1, Eq. (84); and the
complex quantity u is given by

p=va+i(0—v). (26)
The functions 3(u), 3£ (1, ue) are defined by the follow-
ing relations:

5(n) =iKu f " d expl—u(t—t)} AW, OT(, 1) (27)

and
. o o
5% (g, ) =i Kuvays 32 f ar / a [ arm
a=a,b Y —o — —
Xexp{—pm(t—t) —va(t'—1")
_l-‘2(t”_t/") }A(t"'7 ¢, t,’ t)
X Fi(t,,,’ tl,’ tl’ t) b (28)
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whose imaginary parts are 3;(u) and 3;%(u, uz), respec-
tively. The steady-state solution of Eq. (23) is

E*={(a)/{8) (29)

which, in terms of a dimensionless intensity 7, takes the
form

I(w -v) = (§2E*/Fvays) = 16[3: (1) — 915 (ya) ]
X8 (i, 1) +3F (u, w*) T2 (30)

This expression for the intensity profile is a very general
one and involves no other major approximations than
the ones implied by the use of perturbation theory,
assumption of the Doppler limit, and our idealization of
the collision process. The rest of the paper will be
devoted to the evaluation of Eq. (30) in more explicit
terms employing various approximations, and compar-
ing the results with experiments.

IV. AVERAGING OVER THE HISTORIES OF v(¢)

As a first step in evaluation of the functions J(u)
and 3t(u;, we) we shall develop a formalism which
allows us to calculate the characteristic functions
defined by Egs. (15) and (16).

(a) General Formulation of the Averaging Procedure

If we describe the position and velocity of an atom
by vectors r and v, respectively, the characteristic
function defined by Eq. (15) may be written as

AxE(, 1) =< exp {:I:iK ft dio(3) }>
=<exp {:i:iK- t div(i) }>

= (exp{=x=iK-[r()—r(¥)]}), (31

where the vector K points along the laser tube (-3
axis) and has a magnitude K given by

K=Q/c=2rn/L, (31"

where # is the mode number and L is the length of the
cavity.

It may be worthwhile to show how our equations
reduce to those of Ref. 1 in the case where the atoms
do not suffer collisions. In that case we may set

() —r(¢)=v(-1). (32)

Since each atom follows a definite path, completely
defined by its initial position and velocity, the averaging
over all the radiating atoms may be carried out trivially,
and we have

AX(Y, ) =72yt /w dv exp{=£iKv(i—1') —1*/u?}

=exp{— K’ (1—1)%}, (33)
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where we have assumed that the velocity distribution
of the radiating atoms is Maxwellian. Since in a colli-
sionless theory there are no frequency variations, the
quantities T'=(#, {) and T=(¢”, ¢, ¢/, t) are here equal
to unity. In the large Doppler velocity limit (va/Ku<K
1), but not making the “§-function approximation,”
Eq. (30) may be reduced by a series of simple integra-
tions to the form

I(w—») =8[1-90" exp{ (w—»)*/ (Ku)*} ]
X[1+L(e—») I,

with the Lorentzian function
&(w—7) =y Yas*+ (0—2) 2] (34)

This expression for I(w—v), which is somewhat more
accurate than Eq. (96) of Ref. 1, also implies a dip in
intensity as the cavity frequency Q~~v passes through
resonance, provided one is sufficiently far above
threshold.

In order to treat the case where some of the atoms
undergo collisions during the interval (#, f) let us
introduce the conditional probability density P(V’,
v/, ' |v, 1, t) that if an atom were at the phase-space
point V', ', at the time # it would be in the volume
element d® d% located at v, r at time ¢. For simplicity,
we will assume that all conditional probability densities,
such as P(v, ', ¢ | v, 1, t), are the same irrespective
of the state of the active atom. We may now write the
characteristic functions A*(#, ¢) in the following form:

sety= [ av [ oo [ o [ an

XP(V',t',¢|v,t'+Ar, 1) P(v’, ', t)

(34)

Xexp{=+iK-Ar}, (35)

where P(V/, t/, t) is the distribution function of the
radiating atoms at ¢/,

Ar=r—r, (36)
and the space integrations are over the volume of the
laser cavity.

Let us further introduce Fourier transforms G,(Vv/,
r', ' | v, t) defined by the following relations®:

G (v, 1t |v,1) =/ BAr P(V,t' 1 | v, '+Ar, )

Xexp{ixkK-Ar}, (37)
where the parameter « may take on the values 41,
—1, 0. Clearly, once the functions Gk(V/, t/, ¢ | v, &)
are known, the characteristic functions A*(?, f) can be

6 These quantities are often referred to as Wiener integrals;
see, for example, E. W. Montroll, Rendiconti della Scuola Inter-
nagionale de Fisica Enrico Fermi (Nicola Zanichelli-Editore,
Bologna, 1959), X Corso.
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calculated from

ALY, 1) = / P f o / & POV, ¥, 1)

XG:};I(V,: r’? 4 l v, t)' (38)
It is doubtful whether the dilute gaseous active
medium in gas lasers is in thermodynamic equilibrium
with respect to atomic velocities. Nevertheless, for
reasons of mathematical convenience, we will assume
that the distribution P(Vv/, t/, ¢’) is just a steady-state
Maxwell distribution for some temperature, i.e.,

PV, 1t ¢)=V1Py(Vv),
where

Py(V') =738 exp{ — | v/ [*/u?}, (39)

and furthermore conjecture that the transition prob-
ability density P(v/,t’, ¢ | v, t’+Ar, ¢) depends on the

relative position vector Ar, but not on the location
of the point 1’ in the laser volume V. We then define

JO, U v, A ) =P(V,r', U | v, r'+Ar, £)  (40)
and
GV, V| v, t)=G,(v, 1, |v,1), (41)
so that we may write in place of Eq. (37),
GV, 1 |v,8)= / BArf(v, ¢ | v, Ar, )
Xexp{iK-Ar}. (42)

The characteristic function A%(#, {) may now be calcu-
lated as

A, ) = f Py f B Po(V) G (W, ¢/ | v, ). (43)

We must now find a method for determining the
transition probability f(v/, #' | v, Ar, £) of Eq. (40). To
this end let us consider a radiating atom at the phase-
space point t’, v/ at the time # and introduce a repre-
sentative ensemble for that atom which describes all
of its possible future motions. It can easily be shown
that the phase-space density f(v, r, £) of such an ensem-
ble must be a solution of the following Boltzmann
equation:

(a/at)f(v, I, t) = —v-Vf(v, I, t)

—/ @& W |V)f(v,1,1)

+ / F W | V)V, L), (44)
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whose collision kernel W (v | v/) has the property that
W (v |v')d*% is the probability per unit time that an
atom changes its velocity from v to the velocity range
(v, v'+dv’). Consequently, the integral of W (v |v’)
over all final velocities v/ (with exclusion of a small
region about v) is the probability per unit time that an
atom of velocity v will experience a collision and hence
we write

Tw)yi=[wwelv), @)

whose 7T'(v) is the average collision time for an atom of
velocity v. Equation (44) may then be written in the
following simplified form:

(a/at)f(v; T, t) = ——v-Vf(v, r, t) - (T(V) ).—lf(vy T, t)
+ / B W | V11, (46)

Since we want the ensemble to be concentrated in the
volume element d%’ d%’ at the phase-space point v/, r’
at time # we should solve Eq. (46) with the normalized
initial condition

fOV e Y| v, ) =8(r—1")8(v—V'). (47
Clearly such a solution will be just the transition prob-
ability density f(v/, ¢ | v, Ar, ¢) which we seek to calcu-
late since f(v/, t’, ¢’ | v, 1, {) is properly normalized to
unity.

Instead of trying to solve Eq. (46) as it stands,
we multiply both sides by the exponential factor
exp{ixK-Ar} and integrate them over the position
variables Ar. This leads to integro-differential equa-
tions for the quantities G.(V/, ¢ | v, t),

(8/00)Ge(V', ¥’ | v, t) = (ixK-v—[T(v) I)
XG V', ¥ |v, l)—!—/ &' W' | v)

XG(V, V| v’ 1), (48)
where we have made use of the definition (42). We must
solve this equation with a §-function initial condition
GV, V| v,!)=8(v—V). (49)
For any given interaction potential the collision
kernel W(v'|v) is well defined and thus we have
reduced the problem of finding G((v/, ¢ |v, {), and
therefore the characteristic functions A%(#, ¢) which
are related to Gy (v/, ¢’ | v, t) by Egs. (43), to the solu-
tion of an integro-differential equation.
Before attempting to solve Eq. (48) let us turn to
the calculation of the higher-order characteristic func-
tions which are defined by Eqgs. (16). Proceeding along
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the lines of the previous discussion we write

t
2=, ¢, 6 =< exp {:i:iK / &o(d)
t!

t”
FiK dzv(Z)}>
e
t
=<exp{:i:iK-[ div(i)
&
t” A ",
- dtv(t)]}>
e

= (exp{iK-[r(¢) —r(¥)
—x(¢")+r(@")1}). (50)
We define a generalization of the transition probability
P, t, ¢ |v,r,t) by letting
P(VIII’ rlll, t,II | v//, l.ll, tll; vl, r/, t/; v’ r’ t)

Xd' &' d' d¥r' dPodPr
be the conditional probability that an atom which was
at the phase-space point (v, r'”’) at the time ¢’ will
be at (v, "), (v, '), and (v, r) at the later times

", ¥, t, respectively. The characteristic functions
A=(#", ¢, ¢, t) may then be written as

AX( 1, t)=/d3v"'/d3v”/ds'u'/d“v
X/ d3r’"/d3r”/d3r’/d37

XP(VIII’ r//l, t/ll)
XP(V”’, rlll, t/II I vll’ rII’ tl/;
Xv” r,’ t,; v’ r’ t)
Xexp{+iK-[r—r'—r"41""]}. (51)
It seems reasonable to assume that the collisions
constitute a Markoff process. As shown in Appendix I,

one can then factor the complicated four time condi-
tional probability as

VAU LA LA RS S AL 48 SN AR A &)
=P " ¢ v ) PV e | VL, )
XPW(, 1t |vr1,t). (52)
In analogy with Eq. (37), the generalized G functions,

Gu (v, e ¢ | v, ¢'; v, t'; v, t) may now be defined
as

Gil(vlll’ rIII’ tlll l v/l’ t”; vl, t’; v’ t)

= / aBAr / BAY / BAY’

XP(V”’, rIII’ tlII l v/l’ rl’/_l_Ar/I, tl’)

XP(V”, r’ll_l_ArlI, t” I vl, rIII+ArII+ArI’ tl)

X PV, t""+Ar"+Ar ¢ | v,r'"+Ar" +Ar'4-Ar, f)
Xexp{+iK-[Ar -Ar"]}, (53)
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where

Ar'=r"—r¢"", Ar=r'—r”, and Ar=r-r'.

From (42) and the spatial homogeneity of
PV, 1, |v,1,t),
it follows that the quantity (53) factors as follows:
G (V" U |V UV 59, ) =Ge(V, ¢ | v, 1)
XGo(v' ¢ |V, )G (V, |V, 8). (54)
(b) Solution of the Velocity Averaging Problem for a
Simple Collision Model

We first replace Eq. (48) by its one-dimensional form

(3/38) G (v, ¥ | v, ) = (ixKo—[ T (v) TV)G(v', ¥’ | v, 8)

+ / @' W | 9)G (o, 1| v, 0). (48))

Let us further define the collision model by assuming
that the kernel of Eq. (48’) has the form

W (' | v) = (#"2uT)! exp{—1%/u?}, (55)

where T is the average time between collisions inde-
pendent of » and #r ™2 is the average speed along the
cavity axis. The above transition kernel W(v'|v)
implies that no matter what value v’ the axial velocity
had initially, the probability of finding it in the range
v, v4-dv after the collision is given by the equilibrium
distribution, that is to say, we know no more about
that atom than any of the others. Since we knew so
little about it initially, i.e., only one component of its
velocity, this does not seem to be an unreasonable
assumption.
Equation (48') now takes the form

(3/08) G (¥, ' | v, t) = (ixKv— T 1) Gc(v/, ¥’ | 9, 1)
+ (x'2uT) ! exp{—1*/u*} /m @’ G (v, 1 |V, 1),

(56)
with
GV, | v, 1) =8(v—1").
Integrating the above equation formally, we obtain
G (v, t' | v, t) =exp{ (ixKv—T7) (1—1') }6 (v =)

+ (w2uT) 1 exp{ —v*/u?} /t di
&

s exp] (ixKv— T (1—1)} f_ : '

XG(o, ¢ | 9", 1). (57)

If the perturbing atoms are in thermal equilibrium we
may assume that the changes in v form a stationary
random process and the functions Gy(v', ¥ | v, t) depend
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only on the time difference ¢—#=7'. Multiplying Eq.
(57) by
(m20) 1 exp{—o2/u2},

changing the time integration variable from # to r=i—#,
and then integrating both sides of the equation over »
and o', the following equality emerges for k==1:

(w"zu)"lf v’ exp{—v"2/u?} /w dv Gy (v, ¥ | v, 8)

=exp{—3(Kur')2—+'/T}+ (x12uT)1 fof’ dr
Xexp{—1K%2(r'—7)*— (r'—71) / T}

X[/m ' /‘” @V exp{—v"2/u2}Gy (v, ' | 0", V' +1) ]

(58)
One may note that

(wi/2y)—1 /w dv' exp{—v"2/u?} /m dv G (v, V' | v, 8)

ﬁ ‘00 ‘0
- / dv f o' Po(t)Gaa(7, 7 | 0,8), (59)

which are the characteristic functions A*(#, f) defined
by Eq. (43). Hence Eq. (58) may be written as integral
equations for the characteristic functions A*(#, )=
Ai("',)’

Af(7") =exp{—%(Kur')? -7/ T}+(T)™? /T, dr

Xexp{—1K?(r'—7)*— (7'—71)/T}A%(r). (60)

Since Eq. (60) is manifestly independent of the sign
of «, it is clear that for this collision model the charac-
teristic functions A+, A~ and A=3%(At+A") are all
equal.

We recall at this point that a quantity which appears
in Eq. (30) for the intensity 7 is the imaginary part
3:(u) of the function J(u) defined by Egs. (26) and
(27). For the moment, we neglect the variations in the
transition frequency by setting Aw(f)=0 and conse-
quently T'(#, #)=1. Multiplication of Eq. (60) by
exp{—p7’} and integration over the variable 7’ from
0 to » leads to a simple algebraic relation for 3(u),

3w)=Z(W)+(ETEKu)3(u) Z(w'), (61)

where the convolution theorem has been used to carry
out the integration over the second term in Eq. (60)
and Z (') is the plasma dispersion function defined in
Ref. 1 as

Z(u) =iKu / " & exp{—wr'—L(Kur)?}, (62)
0

with complex argument

w=p+1/T)=va+(1/T)+ilw—»).  (63)
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The function J(x) may now be found trivially as
3(w) =Z (") [1+ieZ () I,
where the dimensionless parameter e is given by

e=(KuT)™!

(64)

~(optical wavelength) /(collision mean free path).
(64')

For sufficiently low pressures, € is a small quantity, and
3(u) may be expanded in the form

3(u) =Z (W) — i Z(u) Pt-e-.

We now turn to the calculation of 3%(u, uz) given by
Eq. (28) for the case of T'=(¢"", t”, ', t) = 1. At first, let
us consider the characteristic functions AX(¢"", ¢, ¢/, t)
which, by the use of Egs. (51)-(54) may be written as

(65)

Ai(tlll’ l”, t’, t)

= (mi/2u) 1 f_ Z dv"’ exp{— (v""")*/u?}

X/w dv'’ /m dv' /w dv G:F('U"’, P l vll’ t”)

XGo(W', ¢ | v, )G (v, ¥ | v, 8). (66)
We now note that for k=0, Eq. (56) is solved by
Go(v', V' | v,0)
=8(v'—v) exp{— (1—1)/T}+ (z"Pu)™
Xexp{—v/u*} (1—exp{—(t—1)/T}), (67)

since the integral over v" in (57) is then equal to unity.
In (67), we replace ¢/, ¢ by v/, ¢ and v, ¢ by ¢/, ¢’ and
rewrite Eq. (66) in the form

AE(PT 1, tl’ £)

= (ql2y)1 /m dv'"” exp{— (v'")%/u?} /m dv’”’ /m dv

XG:F(Y),”, tll/ | 7)H’ l”) Gd:(’l)", ll [ v, l)

Xexp{ — (l’—l")/T} + (1'.1/274)—2 /m dv'"”

Xexp{— (v"")%/u?} [_:dv” j;idv'exp{ - (v")%/u?}

X'/. d?) G:F('v”', t’” | ‘Z)”, t”) Gi(vf, tl I v, t)

X[1—exp{— (#—#")/T}],

where the integration over the variable o' has already
been carried out in the first term on the right. Integrals

(68)
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of the form

Dur(#", )= (@)1 [ " expl— (0)2/u1)

X / " o X (0", 0377, 7), (69)

where the quantity
XKK’ (vlll, 'I)’; TI”, T,)

is defined by
forl
XKK’ (vlll, vl; T’", TI) =/ d,vll GK(U”,, 0; 7)”, 7_III)
—00

XGe (v, 050, 7), (69)

are considered in Appendix I. It is shown there that the
quantity (69) obeys the integral equation

Do (", 7') =exp[— { («"+7"") / T} —§(Ku)*

X (&7 4,72 ]+ (1/T) i dt Ac(2)

Xexp[— { (47" —1)/ T} —}(Ku)?

X (¢ =D/ T) [ " a

X Do (", ) exp[—{(+ -1)/ T}
—H(Eu)2 ()2 (7 =D)%]. (70)

For «’=«k==1 it is found that Eq. (70) has the
solution

Dygua (77, ') = A% (7" +1"), (70°)

which corresponds to the intuitively obvious Smolu-
chowski equation,®®

fm dvll G:‘:l('l)”,, 0 | vII’ T’”)Gi('v", 0 l ,v, T’)

=G:h1(7),", 0 ‘ 7, TI+TIII) . (69”)
However, for = —k=-}-1, the quantity
D:F(T'", T') ED_1+1(TIH’ T') =D+1_1(T', 1'"') (70//)

has a more complex structure. It is shown in Appendix
II that its double Laplace transform

S, ug) =1Ku /m dr’ /m dar’"’
0 0

Xexp{ — w7’ —pr’"} DF(e""", 7')  (71)
has the value
S (p1y p) =3 (p1) 3 (e) (ua’+p’) [ Z () I
+[Z () I} (T17)

6a M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 233
(1945).
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Then, by recalling the definitions of the characteristic
functions

AX(V, ) =A%(r") (43)
of Eq. (43), one may write Eq. (68) in the following
rather transparent form:

A:E(TIII’ T”, T’) EAi(tIII’ tll, t’, t)
=exp{—7""/T}D*(«"", 7')
+(1—exp{—7"/T})A¥ (") A= (7). (72)

The first term on the right-hand side of Eq. (72) may be
interpreted as the product of the characteristic function
for the case where the velocity of the atom at the end
of the interval 7"/ is the same as at the beginning of
the interval 7/, and the probability that no collision
occurred in the interval 7”/. The second term may be
thought of as the characteristic function for the case
where the velocities at the end of the interval 7/ and
the beginning of the interval 7’ are uncorrelated, multi-
plied by the probability that at least one collision
occurred in the interval 7”’. Since the collision kernel
Eq. (55) implies that all memory of the previous
velocity is lost during a collision, the possibility of such
an interpretation for Eq. (72) is reassuring.

We now proceed to the calculation of 3%(u, ps) by
setting T+(¢"”, ¢’, ¥, t) =1 and substituting Eq. (72)
into Eq. (28), we find that

5 (u, ) = iKovavel { (1/7a) + (1/7)} f X / "
Xexp{— i’ — por’"'} DF(7'", 7')
F{ (/) + (1) = (1/va) = (/) }

X [ ' ax(e') expl— i)
0

X / Z dr AT(7"") exp{—pr'}], (73)
1]

where the 7/ integration has already been carried out
and we have introduced the notation

'Ya,='Ya+ (I/T):
vw=v+(1/T),
Yo' =Y+ (1/T).

Recalling the definition of the J3(u) function as given
by Eq. (27) for (I'=1), and also substituting (71)
and (71’) into Eq. (73), we find

3% (s, p2) =2va'[ (vavs) / (va'vs') ]
X [3(p1) 3 (p2) (wa'+ua) H[Z () I
+[Z(p) T}
—{[ (varva'vs") / (Yad"vavs) 1— 1} (Ku)™?
X3(um)3(pa) 1. (73")
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The function 3(u) is given exactly by Eq. (64) so we
have obtained an exact solution for Jt(u;, ws) also,
subject only to the assumption that Eq. (55) gives the
correct collision kernel.

To make a proper test of our theory it will be neces-
sary to work with numerically evaluated values of the
plasma dispersion function Z(u). For the present paper,
however, we merely assess the qualitative effects of our
model collisions on the intensity profile by expanding
Eqgs. (65) and (73’) in the high Doppler limit where the
plasma dispersion function is approximated by

Z(p)~im'? exp{— (0—»)?/ (Ku)?}.  (62)

Terms which can give corrections of first order in ¢
are kept, but in them the Gaussian exponential factor
and the relative excitation 97 are not distinguished from
unity. The intensity (30) then becomes

I(w—v)=A[1—-9T exp{(w—»)%/(Ku)?}]
X148’ (—) +-20 (e’ Kt)

XA (Yarvave') | (vas'vavs) =1} 17 (74)
A=8[(va'rs')/ (vavs) J(1+2x12)1  (753a)

and
& (w0—v) = (va)¥/[(vas')*+ (w—»)2].  (75b)

When Eq. (74) is compared to the collisionless intensity
profile given by Eq. (34) it is seen that the main effect
of changing atomic velocities during collisions is to
contribute an additive term in the denominator, and to
add a term (1/7T) to the width parameter v of the
Lorentzian function in the denominator.

Before attempting to compare the above result with
experiments we turn to the calculation of the charac-
teristic functions I'=(#, ¢) and T=(¢"”, ¢/, ¢, ). This is
done in order to determine the effects on the intensity
function I(w—») of adiabatic variations of transitien
frequency Aw(f) during a collision.

V. AVERAGING OVER THE HISTORIES OF Aw ()

(a) General Remarks

In this discussion we assume that the interaction
potential between two colliding atoms is a van der
Waals potential,

Va(r) =%B,/15, (76)

where 7 is the distance of a perturber from the radiating
atom and B, is the van der Waals coefficient correspond-
ing to the ath state of the radiating atom. It should be a
good approximation to assume that the combined effect
of all perturbers is a sum of such expressions V,=
> ;i Va(7;). Because the perturbers are moving, the
Ve will be functions of time V,(¢) and will produce
adiabatic changes Aw(f) =7 V,(¢)—V3(f)] in the
resonant frequency. At the low densities of interest to
us, it will suffice to consider that only one perturber at
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a time is close enough to produce a significant time-
dependent contribution to Aw and that the other more
distant background perturbers produce a very slowly
varying modulation of the atomic transition frequency.
For the latter contribution we replace the time averag-
ing by a statistical average [see Sec. V(c)].

If we approximate the relative motion of the nearest
perturber by a straight line, the time-dependent modu-
lation of the transition frequency may be written as

Aw(t) =[Va(t) = Vo(t) = B(&+08)7%,  (77)

where v is the speed of the perturber in the rest frame
of the radiating atom, b is the distance of closest ap-
proach (impact parameter), and B=B,—B, is the
difference of the two van der Waals constants. The
“duration” of a collision 7, may be defined as the
solution of the algebraic equation

3Aw(0) = Aw(r), (78)

which is 7,220.512(8/v). The average number of en-
counters per unit time with a range db of impact param-
eters b is given by 2wbdbp?, where p is the density of
perturbers and 7 is their mean speed.

The modulation of Aw due to such a close collision
are short-lasting and infrequent, so that the integral

t
dt Aw ()
o

may be replaced by a sum of all the individual phase
shifts due to different collisions in the interval (¢, £).
The approximation is characteristic of interruption
theories of pressure broadening.

In effect, for the purpose of the calculation, we assume
the existence of a critical impact parameter * and
treat all collisions with #<b* in the interruption theory
limit and all other collisions in the statistical limit.
Such a separation of close and distant encounters is
rather artificial and thus the value of b* is somewhat
arbitrary. However, it turns out that the results of
our calculation depend only slightly on 4* and hence
an uncertainty about its value is of little importance.

We now write Aw in the form

Aw= Aw;+Awq, (79)

where Aw, is the modulation due to the close collisions
and Awq is the frequency shift due to the distant colli-
sions. It is reasonable to assume that two such markedly
different types of collision events act independently,
and write (17) in factored form

() =T, 8) =T A (") T (). (80)

Hence, we may proceed to calculate I'ct(7’) and I'g%:(7'),
separately.

(b) Interruption Theory Limit

As mentioned above, in this limit we replace integrals
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of the sort
t
di Aw(f)
i

by the sum of the phase shifts due to N(¢—#) indi-
vidual collisions in the interval (#, f). If one charac-
terizes each phase shift x (v, b) by an impact parameter
b and a relative speed v, and assumes that the various
collisions are independent, then the two-time charac-
teristic function for close collisions may be written as

N(@—t")

Fc+(t,: t) = <exp{:1:1 ;1 X(vi) bl) } >a (81)

where N(i—t') is the number of collisions in time
interval —¢ for a particular history. The average over
all histories may now be calculated in the following
manner:

t b* 0
F(t, ) =Polt, )+ [ b fo by f dn,
t —00

X Po(t, 1) P(t, v, by) explix (by, v1) } Po(2, ')
t ty b * ) b *

+ [ ag f dn / dby / dny / db,
14 t’ 0 — 0

X/ d‘l)2 Po(t, tz) P(tz, Vg, bz)

Xexp{ix(bz, 'l)z) }Po(tz, t]) P(t1, U1, b1)
Xexp{iX(bh 7)l) }Po(tl; tl) +-- %

where Py(#, ') is the probability that there was no
collision in the interval (#, ¢) with b<d*; P(¢, v, b)
is the probability density per unit time that a collision
occurred with an impact parameter 5(6<b*) and a
relative speed v at time ¢. Each term in Eq. (82) should
be thought of as a sum of terms of the kind

Py(t, 1) P(h, v, b) exp{ix(v, b) } Po(t, t')dty,

(82)

(83)

which represents a particular history, i.e., there was no
collision in the intervals (¢, #), (t1-+di, £) and a colli-
sion with & and » occurred at the time # in df;.

The probability Py(¢, #') may be evaluated as the
solution of a simple differential equation. The prob-
ability for one collision of a specified type in a short time
dtis 2mbdb | v | W (v) dvedt, where p is the number density
of the perturbers and W (v) is their velocity distribution.
In a sufficiently short time the probability Py(¢, #') can
decrease only because of the occurrence of one collision,
consequently

dPy(t, V') Jdt=—paBPo(t, '), (84)
where ¢ is the cross section
B *
o=2r f bdb=mb*, (85)
0
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and 7 the average speed

’-——Z/Owdvlv[W('u),

and we have tacitly assumed that the perturbers are
uniformly distributed in space. The solution of this
differential equation subject to the initial condition
Py, t)=11s

Po(t, t') = exp{—pot(i—1)} (87)

and the characteristic function T';H(#/, £) now takes the
form

t b * o)
(= t') = Py(i—1) [1+ dn / by f dn,

XP(tl, v, by) exp{+ix (2, &)}
b* b*
+ dtz / dlfl / db] / dﬂl db2
t! t’ —00

X / dvy P(ty, 1a, b) exp{+ix (b, )}

(86)

X P(ty, o1, by) exp{tix (b, v) } 4+ - ]

(88)

By changing the limits of the time integrations the
above Eq. (88) may be written as

b* o0 t
(=) = Pyl t')Zwo“[/o a [ f

X P(1, v, B) explix(v, b) }T

b* o ¢
= Py(t—1') exp {/ db/ dv | di
0 —Q0 t’

X P(}v,8) explix(s, b) }}. (89)

In order to normalize this average we may note that
the average of unity is

()= Py(i—¥) exp {/b*db /m w [P, b)},
0 —00 t
(90)

and hence write the characteristic function in the
familiar Foley form*7

b o e
TA(—1t")=exp {/ db/ dv | dt P(t,v,0b)
0 —00 t

X Cexplix (b, v)}—l]}

=exp{— (8F14A) (i—1)}. (91)

7H. M. Foley, Phys. Rev. 69, 616 (1946).
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Since it was assumed that
P(t,v,b)db dv="2mwpbdb | v| W(v)dv, (92a)

we have

5=2mp /b' db [°° dvb || W(o)[1—cosx(s,9) ],
(92b)

b * Y
A=2mp / db [ dob|v| W) sinx(8,0).  (92)
0 —o0

Because of our assumption that the phase shifts x(», b)
are independent, we can now trivially calculate the
other relevant characteristic functions (18) as follows:

t
T, ¢, ¢, 1) =< exp { —i | di
i
A, t" A~ -
X Aw(f) 1 thw(t)}>
2
t A~ A,
=<exp {—z/ thw(t)}>
t!
tl’ " N
><<exp {:I:i thw(t)}>
@

=T, (¢, )T, 1"). (93)

As we shall see later, 6 is an additive term to the decay
constant ., while A is a shift in the transition fre-
quency w.

(¢) Statistical Theory Limit

In this section we shall consider the effects of the
distant collisions whose duration is long compared to
T:® We assume here that all of the perturbers are
stationary with respect to the radiating atom for times
comparable to 1/vs and, instead of averaging

t
exp {:I:i / di Aw(i)}
12

over time histories, perform an ensemble average over
all possible static configurations of the perturbers. For
a particular configuration the effect of the perturbers
on the transition frequency is

N
Aw= :E:: Br;s,

7=1

(94)

where NV is the total number of perturbers in a large
volume V' and #; is the distance of the jth perturber
from the radiating atom. For a nearly ideal gas, the
atomic positions are uncorrelated, and the ensemble
average in the definition of the characteristic functions

8 This treatment is adapted from P. W. Anderson and J. D.
Talman, Bell Telephone System, Tech. Publ., Monographs 3117.
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for distant collisions T';t(#, #) reduces to an average

over a single-particle phase space in the following
manner:

Tat(r’) = (exp{ir’ i Bri8} )= (INI exp{=tir’Br;j %} )

7=1 J=1

= ITII (exp{=ir’Brj6})
= (1—(1—exp{=ir'Br5}))¥. (95)

By defining the quantity
V()= /::u dr r*(1—exp{==iBr-5'}), (96)
the characteristic function can be written in the form
PA(r) =[1-V1(dx V£(7) ). (97)

Let us now consider the limit where the volume of the
cavity ¥ and the number of perturbers N go to infinity,
but the density p=N/V remains finite, and write

Pgt(r") =lim [1—4mp V(s ) N-1 ¥

N->co

=exp{—4mpV(r) }, (98)
where Y+(7/) may be evaluated as
()= [ dr r(1—exp(+irBro))
0
=-+3(Br)12 / " (2712 sing— 42~1/2 cosx)
0
=3(2xBr)V2(1—1) (99)

and ¥=(7') may be obtained from Y—(7') = (¥+(') )*.
To avoid ambiguities, we have assumed B>0 and
7/>0. By taking the lower limit of the » integration to
be zero and not b* we have included some configurations
which have already been treated in the interruption
theory limit. Let us defer the discussion of this ap-
proximation for the time being, and write the single
time characteristic function for the distant collisions
in the form

It (v") =exp{—3mp(2nBr')12(1—14) }, 7>0.

(100)

As opposed to the case encountered in the interrup-
tion theory limit where the changes of the phase at
different times were statistically independent and we
could factor the three-time characteristic function, we
must now regard the phase changes at two different
times as absolutely correlated because of our assumption
of stationary perturbers and write T'st(+"”, 7, 7/) in
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the form

T (e, 1, ) :<exp {—1/ di Aw(i)
0

41 dt Aw(?) }>
0

= (exp{ —1tAw(7'F7"")})
=Ti (7"F+). (101)
VI. CALCULATION OF THE INTENSITY PROFILE

To sum up the discussion we now turn to the calcula-
tion of the intensity profile I(w—v») from Eq. (30),
taking into account both the variations of atomic
velocity and the modulation of the transition frequency.
For that purpose, we must evaluate the following
integrals:

5(u) = iKu /0 " dr exp{—pr'}A(Y) T () T (),

(102)
5% (w1, po) =iKuyays D

QO ' Q0
/ dr’ / dr"’ / dar'"’
a=a,b 70 0 0

Xexp{—mr'—vor" —pr’"’}
XA(T”I, T", T’) I\c:l:(TIII’ T,l7 T,)
XT(r", 1, 7). (103)

It is useful to make a Fourier analysis of the charac-
teristic function I'sH(+’) in the form

Tt () = / * dAw explider’} P(Aw)  (104)

with Fourier transform
P(Aw) = (2m)1 / " &' exp{—ider')Tit(r'), (105)
where Tgt(—7')= (Igt(+7') )* for +/>0. By making

use of Egs. (101) and (104), Egs. (102) and (103)
may be rewritten as

5(u) = /_ : A Ba(u+iA0) P(Aw),  (106)

3% (w1, u2) =/ dAw 3£ (u+1A0, ueFildw) P(Aw),
(107)
where 33(r) and 3z (u1, ue) are defined by the equations

Sa(w) =iKu /0 " ' exp{—ur'}A() T (), (108)

3 (s, p2) =1iKuyavs Z / dr’ / dr"” / dar'"’
a=a,b 0 0 0 .

XCXP{ _”171__7“7//_#27_/1/}

XA(T’”y 7'”) T/) Pﬁi(‘r”,i T”’ TI) * (109)
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Since P(Aw) is the Fourier transform of a charac-
teristic function, it is a probability distribution and
hence Egs. (106) and (107) may be interpreted as
averaging the functions 34(k), 34 (w1, pe) over changes
in the transition frequency according to the distribution
P(Aw).

With the help of Eqgs. (91) and (93) we now rewrite
3a(u) and 3% (u1, ue) in the forms

%a(w) = iKu /0'” & exp{—pr}A(F),  (110)

/wd'r' /md'r" /de”,
0 0 0

Xexp{—mr'—var"'— pzt7""}

5 (m, pe) = iKuvays D

a=a,b

XA, ", 1), (111)
where
g=p+o+iA=ya+o+i(0—v4A),
=+ 0414,
foE= g+ 0TF1A. (112)

We note that the J; functions (110) and (111) can very
easily be calculated by repeating the derivation in
Sec. IV(d) with p replaced by [, p1 by &, and u, by
fe®. Then, with the approximations made in the deriva-
tion of Eq. (74),

Im3s(u+ilw) =7'[exp{— (w—r+A+Aw)?/ (Ku)?}
+ail%e], (113)
I3 (u+idw, p-+idw)
=22 (ya"vavs) / (Fa"va"ve') J{L1(0—r+A+Aw)
X[exp{— (w—r+A+Aw)?/ (Ku)?} 4212
+a2 (Yo' /Ku) [ (varvav') / (Ya'vavs) — 1]}, (114)
Tmaa+ (u-+iAw, w*—iAw)
=20 (va"vav) / (Ya'va"vs') ]
X{[exp{— (0—r+A+Aw)?/(Ku)?} +27'/2%]
+72 (Yo' / Ku) [ (varvavs') / (va'vavs) — 17}, (115)
where v4/, v5/, and vo' are given by Eq. (72),

Yab' =Y +6-+ T, (116)

and
L1(w—r+A+Aw)
= (Ya') L (Fa') >+ (0—r+A+Aw) 2L (117)

The intensity profile (30) can be written approxi-
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mately as
I(w=v) =4 expl(a=v+8)Y/ (Kn?} [ do P(aw)
X [exp{ — (w—r+At-Aw)?/ (Ku)?) — 1]
x[ f_ : A P(Aw) {1481(0 —v+A+Aw)
20 (7 K)
XLt/ Cratmem) =12} | (119

where
A=8[ (Favdv') / (va'vav) J(1+42a1%).  (119)

To complete the discussion we must evaluate the
distribution P(Aw). By taking the Fourier transform
of Eq. (100) we are led to the expression

P(Aw) = (27) 12T (Aw) 32 exp{ — 312/ Aw},
for Aw>0

=0, for Aw<0 (120)

where

I'=2%rp(2nB)12, (120")

The maximum of this unsymmetric distribution is at
(Awn) =3T2=(8/27)7%B. (121)

We note that 7p?B is just the interaction energy of the
radiating atom with a nearest neighbor whose separa-
tion is p~13. Hence, the most likely configuration is
that whose total effect may be replaced by the inter-
action of a single atom at a distance slightly less than
p'3. Since a typical value of p2B at the pressures usually
encountered in experiments (1 or 2 Torr) is about
10 kHz (much less than vs) we are assured that the
integration over Aw in Eq. (118) will change the func-
tion I(w—v») only slightly. In fact the smallness of
Awn/va warrants the expansion® of the integrals

ir(a, Ku) = f " dAw P(Aw) exp{— (a-+Aw)Y/ (Ku)?},
(122)
i2(a, va) = / " dAw P(Aw)S(atAw)  (123)

in powers of (I')/(vw)Y? and (T)/(Ku)!2, respec-
tively. We find

iy(a, Ku) = exp{—a?/(Ku)?}
— (1.23) (2)12(w)712(T%/ Ku) 12
X[14+1.479(a/Ku)] (122

9 A method for carrying out such an expansion is given in
Appendix III.
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and
ia(a, v) =7 (v*+a*) 71— ' (T?/v) 12

XRe[(1=19) {y(y—ia)~1}*2].  (123')

Then
I(wo—v)=A exp{ (0—v+A)2}[i(0—r+A, Ku) —901]
X[14-t2(0—v4A, ') + 202 (V'/ Kus)
X { (vasvave') [ (vas'vavs) =1} 1L (124)

It is clear that the ““dip” shape is a function of pressure
because it depends on the pressure-dependent param-
eters 771, §, A, and I'. An attempt to compare Eq.
(124) with experiment will be made in the next section.

VII. COMPARISON WITH EXPERIMENTS

Experimental studies of a pressure-dependent in-
tensity profile for the case of single-mode oscillation
have been carried out by Szoke and Javan,® Smith,
and Cordover.! Similar observations for two-mode
oscillation have been made by Fork and Pollack,’? but
our theory has not yet been developed to handle this
case, and we will therefore discuss only the case of
single-mode operation.

The intensity curves of Szoke and Javan and of
Cordover show some signs of asymmetry. However, the
asymmetry is small, and they have fitted their experi-
mental tracings with a nearly symmetric intensity
function I(w—»). In our theory, an asymmetry can
only come from the effects of distant collisions, and
accordingly we dispense with averaging over the asym-
metric distribution P(Aw) in Eq. (118). This approxi-
mation not only simplifies our expression for the in-
tensity profile but also corresponds to the fact that
these effects are indeed small as we shall show later.
The intensity function I (w—») can be written in a form
equivalent to that used first by Széke and Javan,

I(w—v) = A 1-90" exp{ (w—»+A)%/ (Ku)?} ]

X[14(ve/v1) £1(0—»+4) T, (125)
where
A1=8[ (Ya'va"v') / (Ya'vars) 1 (va/v1) (14-271%) 4,
(126)
1=’ =Yoo +GaP+T7143, (127)
Ye="a'(14+6)7, (128a)
where
0=2n"2(ya'/ Ku) {[ (varva"vs') / (Yo' vaye) ]— 1},
(128b)

0P, W. Smith, J. Appl. Phys. 37, 2089 (1966).

1R, H. Cordover, thesis, M.L.T., 1967 (unpublished). We are
indebted to Dr. Cordover and Professor Javan for making this
material available to us before publication.

12 R. L. Fork and M. A. Pollack, Phys. Rev. 139, A1408 (1965).
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with
L1(w —v+A) =y [vi*+ (0—r+A4) 2], (129)
and
Ya' =Yat G P+T7,
v =71+GP+T7,
Yo' =Ya+GaP+T71. (130)

The parameters 8, A, T are defined by Egs. (92b)
and (92c) and Eq. (55), and the constants G, G,
Ga are introduced for reasons mentioned in Sec. II.

Equation (125) for the intensity profile looks very
similar to that obtained in the collisionless theory
[see Eq. (34)]. Apart from a different multiplicative
factor A; (which would be very hard to detect experi-
mentally) there are three main differences: (1) The
curve I (w—v) is shifted in frequency by an amount A
associated with the phase shifting (close) collisions of
Sec. IV; (2) the Lorentzian term in the denominator
has an increased width parameter v;; and (3) the size
of the Lorentzian term is reduced through multiplica-
tion by a factor (y2/v1). The immediately noticable
consequence of changes (2) and (3) is that the central
tuning dip becomes less pronounced.

It is interesting to consider the condition under
which I(w—v») should have a central tuning dip. By
expanding (125) in a Taylor series in powers of
(w—»+A) we obtain the condition on the relative
excitation

N> 1+ (vi/Ku) 14 (v1/72) ], (131)

in contrast to the prediction of the collisionless theory
which gives

N> 142(va/Ku)2. (132)

Since v; and v, are increasing functions of pressure, we
see that as the pressure increases the dip will be found
only at higher excitation.

Szoke and Javan and Cordover analyzed their data
by a semiempirical equation of the same form as Eq.
(125) and A=0. They have taken the damping con-
stants v; and v, to be linear functions of pressure, writ-
ing in effect
(133)

(134)

Y1="Yao+h+S,
Ye="Yath,

where % and s are supposed to describe ‘“hard” and
“soft” collisions, respectively. In their terminology the
“soft” collisions are the ones which give the radiating
atom a zig-zag path due to a number of small-angle
collisions, and “hard” collisions result in a sudden and
complete interruption of the radiation process. It can
be seen by comparing Egs. (133), (134) and Eqgs.
(127), (128) that our theory is more explicit about the
expressions for v; and v, and in addition predicts that
there could be a nonlinear dependence of s on pressure,
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although the importance of the departure from linearity
remains to be determined.

By comparing Eqgs. (127) and (128) with Eqgs.
(133) and (134), we see that %45 could be identified
with the quantity 8+ (1/7T), while the contribution
of soft collisions might be taken to be s=#@y,, where
vz and 6 are given by (128a) and (128b). In view of the
peculiar form and nonlinear pressure dependence of
this expression, it does not seem to us that the division
of collisions into the hard and soft categories is particu-
larly significant.

Cordover worked with He-Ne lasers at 0.6328y,
(3s3—2p4), having a He-Ne mixtures of 8:1 and 5:1.
We will only consider the fitting of his data for the
8:1 ratio for which the total pressure P ranged between
0.9 and 2.0 Torr. He found that v; and v, in MHz were
given by

v1=134g,P, (135)
v2=134g. P, (136)

where g;=58 MHz Torr™? and g=22 MHz Torr .

In order to test our theory we need to have values
for such quantities as va, Y6, Yas, T, 6, Ku and various
G’s which enter into Eq. (125). Unfortunately, some of
these are not very well known, but as will be seen below
we will manage to make a fairly plausible assignment
of their values. For the Doppler width parameter we
take the value K#=855 MHz which is wavelength
scaled from the value 470 MHz used earlier by Szoke
and Javan. The radiative decay constants should be
determined from measured lifetimes. It appears, how-
ever, that the lifetime of the upper laser level has not
been measured. Therefore, we take the extrapolated
value ys»=13 MHz from the experiment of Cordover,
and by using Bennett and Kindlmann’s measurement!
of decay rate y,= 8.30 MHz for the lower level, we infer
that

Ya= 2701,—-7b= 177 MHZ. (137)

We note in passing that the partial decay rate of the
3s; state to one of the 2p states is only a small fraction
of the total decay rate v, obtained above. It seems that
the dominant mode of decay from the state 3s, is the
optical transition to the ground state. The phenomenon
of resonance trapping therefore plays an important
role in a measurement of the partial decay rate to the
ground state, and would reduce the apparent value of
¥.. However, in our model, if an excited atom 4 decays
to the ground state by emitting radiation (not at the
laser frequency), it is discarded. If a distant atom B
absorbs this radiation, we consider the process as
contributing to the excitation rate of B, and neglect
the small correlations between the decay of 4 and the

13Tt should be remembered that following the convention in
Ref. 1, a numerical value stated as y=10 MHz really means
v=2r X107 sec™L.

( 1“4 W. R. Bennett, Jr., and P. J. Kindlmann, Phys. Rev. 149, 38
1966).
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excitation of B. Hence the parameter v, which has been
determined in (137) should be the decay rate of an
isolated atom, which unfortunately has not yet been
measured.

As mentioned in Sec. IT we are postponing discussion
of nonradiative resonant interchanges of excitation
which lead to an #~3 van der Waals interaction. In some
approximation, the effect of these could be described
by adding further terms of the form G.P to each of the
decay constants v.. We will first try to fit the experi-
mental data of Cordover without including any such
terms in our formulas.

We now turn to the determination of the parameters
T and é. Unfortunately, the calculation of their values
from first principles would be rather difficult since it
would involve the determination of the van der Waals
coefficients for the excited states of Ne. It is clear,
however, from their definitions, Eqs. (92b) and (55),
that 6 and (1/7) are linear functions of pressure.
Hence, we may attempt to fit the experimental points
of Cordover by writing

T_lngPHe,
0= g5 Pue.

(138)
(139)

Since our expression for v; in Eq. (127) is now exactly
of the form displayed by Eq. (135) we may conclude
that the combination

g+gr=58.0 MHz Torr. (140)

We now have to determine 7! and § separately from
the knowledge of v,. However, unless Eq. (128) can be
linearized in the pressure region where the experimental
points are taken, a direct comparison between Eq.
(128) and Eq. (136) is not possible. On the other hand
one may try to fit experimental points to Eq. (128). In
doing that, we determine 7' by demanding that Eq.
(128) give an approximate fit to experimentally ob-
served values of v, at pressures near 2 Torr. Accordingly,
we find

gr=17.0 MHz Torr™,

gs=41.0 MHz Torr. (141)

Plots of v; and v, as functions of pressure are shown in
Fig. 1. Within the limits of experimental errors, our
nonlinear expression Eq. (128) fits the experimental
points as well as a straight line. Clearly, more experi-
ments with wider ranges of pressure would be helpful
in an attempt to observe the more strongly nonlinear
portions of the y,-versus-pressure curve. It is interesting
to note that in the present theory v, depends on the
Doppler linewidth K#, hence experiments on other Ne
transitions should be used to further test the theory.

Having obtained § as a function of pressure, we may
now predict a shift for the center of the intensity profile.
It has been shown by Foley” that for a 7—¢ interaction
potential, the ratio of shift A to broadening & is inde-
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F16. 1. Plot of damping constants v; and v, against pressure
based on Eqs. (127) and (128). The required numerical values of
gr [Eq. (138)] and g5 [Eq.(139)] are determined from data of
Cordover (Ref. 11) for a helium-neon laser operating at 0.63g.
The experimental points are indicated by solid and open circles.
Also shown (dashed line) is the linear relation for ; of the Szoke-
Javan theory.

pendent of the van der Waals coefficient, and is given

by
| A|/6=0.726. (142)

Consequently, in an experiment like that of Szoke and
Javan one should expect a shift A of

A/P=29.8 MHz Torr. (143)

This is a sizeable shift and should be readily detect-
able.’® If no shift is found or the observed shift is much
less than 29.8 MHz Torr~!, we must conclude that the
increase of y; with increasing pressure cannot entirely
be caused by collisions which are described by 6+ (1/T),
but rather, at least in part, it should be attributed to
the inelastic collisions described by the phenomeno-
logical constants G, Gs, G- We can then always assign
values to these G’s which will reduce the shift to the
desired size. A further test of the theory should involve
an independent experimental check of the cross sections
corresponding to the values of the G’s obtained above.

Having decided on a value for §, one is able to calcu-
late the most likely shift caused by distant collisions. If
one carries out the averaging procedure indicated in
Eq. (92a), the broadening 6 may be written as

5=4.25 (suzzo) ¥5(B) /5. (144)

15 Shifts of this order of magnitude have recently been observed
[e.g., A. L. Bloom and D. L. Wright, Appl. Opt. 5, 1528 (1966)
and A. D. White, Appl. Phys. Letters 10, 24 (1967)] but the
experimental situation is still somewhat confused. The sign of our
frequency shift A depends on the unknown sign of the van der
Waals coefficient B.
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Solving Eq. (144) for the van der Waals coefficient B
under the assumptions §=41.0X (27) X 10° sec™!, p=
2.59X10' cm—® (pressure=1 Torr and T=373°K),
uge=1.208X10° cm sec™?, one finds B=6.32X10"%
cm® sec™. The corresponding most probable frequency
shift then becomes Aw,=3.89X10* sec™* or 6.2 kHz in
ordinary frequency units. This is the basis for our
earlier statement about Aw, which led to the expansion
(124) of (118) in powers of (T'/Faw'2).

As mentioned before, the intensity curves of Cordover
do show some asymmetry. The only source of asym-
metry in our theory is to be found in the statistical-
theory limit of Sec. V(¢). One may note that there is a
connection between the frequency shift A of Sec. V(b)
and the asymmetry of Sec. V(¢). It is unfortunate
that we do not know the value of A more directly from
the observation of a beat note frequency, as well as the
value rather indirectly inferred from the analysis of
Egs. (133) and (136). (Note: Our A should not be
confused with the A symbol used by Cordover.)

With the numerical values for the various parameters
as determined in the text, the two peaks of the tuning
curve can differ in height by a few percent at pressure
1 Torr. The asymmetry terms vary as the square of the
pressure.

The asymmetry effects increase rapidly as one goes
into the wings of the atomic response functions a and
B. In the studies of Fork and Pollack!? on the effects of
pressure on two-mode operation there was definite
evidence for asymmetry, and it is quite possible that an
extended theory could fit their data with our value for
the van der Waals constant B.

Should a larger asymmetry be found there would be a
further indication of the need for an extension of our
theory to include resonant interactions.

VIII. DISCUSSION

fA general expression for the effect of collisions on the
single-mode intensity of a gas laser was given in Eq.
(30). A similar general expression for the frequency
could easily be written down by working from Eq. (3)
instead of Eq. (4). These general expressions were
evaluated in an approximate but plausible manner. We
took into account two types of interactions (a) short-
range nonadiabatic collisions which are described by
adding terms G,P to the radiative damping constants
Ya, and (b) longer-range interactions of van der Waals
type. The latter produced three distinct effects which
were discussed in Secs. IV-VI. The first of these in-
volved the deflections experienced by an active atom
which lead to an irregular amplitude modulation of the
optical field seen by it, and eventually caused a modi-
fication in the output of the laser. A full discussion of
this effect would require the solution of an integral
Eq. (48) for a realistic collision kernel. We have con-
tented ourselves with a solution using the simplest
form of collision kernel, Eq. (55), which leads to expres-
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sions dependent on one parameter T, the collision
time.

The second effect of the van der Waals interaction is
produced by the frequency modulation Aw(#) in binary
collisions. Here again the general expressions, Egs.
(17) and (18), are available, but we have evaluated
them using the approximation that each collision leads
to a phase shift x(», b), and that such collisions occur
in a random manner. In addition to the collision time
T, we find two parameters, § and A, related to each
other by Eq. (142), entering the equations. The first
leads to a broadening and the second to a displacement
in frequency of the intensity curve I (0—g).

The third effect of the van der Waals interaction is
due to the combined action of many distant atoms and
was treated in a static statistical approximation in
Sec. VI. Here we found an asymmetrical broadening
of the intensity profile which is most noticeable in the
wings of the curve.

As an illustration of our theory, in Sec. VII we have
analyzed some measurement of Cordover.! The agree-
ment was quite satisfactory in view (1) of the simplify-
ing approximations of our theory, (2) the uncertain
experimental values for v, and v;, and (3) the fact that
we did not make use of the extra degrees of freedom
afforded by the possible terms G,P which could be
added to the radiative decay constants 7.

The investigation of pressure effects on laser opera-
tion can provide a powerful technique for the study of
atomic interactions. In the past, studies of collision-
broadened spectral lines could only be carried out at
high pressures, where the pressure-dependent distortions
were not masked by Doppler broadening, or else one
was restricted to the study of line shapes far out in the
wings where a Lorentzian dependence prevailed. We
hope that this paper will stimulate more experimental
work in this interesting and heretofore inaccessible low-
pressure range. This would be desirable not only for the
increased technical possibilities for laser development
but also for the insight which it affords into the inter-
actions of the atoms concerned in the laser action.

In later papers, it is planned to extend the theory of
pressure effects by considering the deflecting collisions
more realistically and by allowing resonant interactions.
The cases of Zeeman and ring lasers, as well as of multi-
mode operations, are also being treated.
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APPENDIX I
A derivation of Eq. (52) is given in this Appendix.

It follows from elementary probability theory that the
conditional probability density of Eq. (52) obeys the
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equation
P(Vlll’ rlll’ t/,/ | v/l, l:./I, t’/; VI, rl, t,; V, r’ t)
— P(vlll’ r/ll, tlll I vll, rII’ tll; V,, rl’ tl)
XP(VIII, rll/’ t”,; vll’ rll, tll; V’, rl, tl l v’ r’ t)’ (Il)

using a notation where P(a | b; ¢; d) is the probability
that state ¢ implies subsequent states b, ¢, and d while
P(a; b; ¢|d) gives the probability that states a, b,
and ¢ taken together imply a later state d. If the scatter-
ing process is Markoffian with respect to variables r
and v, it follows that the second P function on the
right-hand side of (144) depends only on v/, r’, ¢ but
not on the earlier values v/, '/, ¢/ and v”, t”, ¢"
and may be written as P(v/, r’, ¢ | v, 1, £). Application
of similar arguments to the first P function on the
right-hand side of (145) gives

VACAUS LA DA S LS 8 )
=P " | v 1)
XPW", e v | v, )
=P " ¢ Ve 0 PV v ).
(12)

The desired result (52) follows by combining (145)
and (146).

APPENDIX II

For evaluation of the first term of (68) we must deal
with integrals of the form

XK‘(’(DI,I, v; TI//’ T')
- f T W G, 0|0, 7)Ge (v, 0| 0, 7). (69)

This can be done most readily using the Boltzmann
Eq. (56) which, assuming stationarity, becomes

(0/97) G (v, 0 | v, 7') = (i Kv— T G (¢, 0 | 1, 7')
(P T exp{— (v/u)?) / " G (v",0]5,7).
(111)

It follows from this that the 7’ dependence of (69’) is
determined by the differential equation

(0/37) X (0", 03 7", ')
= (i'Kv—T7) Xy (v, 05 7", 1)
+ (x2uT)~ exp{— (v/u)?} f 05 Xoo (0", 5577, 7).

(112)
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We see from (57) that this equation is to be solved
subject to the (initial) condition at 7'=0:

X,‘,‘/(’D”/, v; 7"", O) =GK(1)'", 0 l v, T'”) i (113)

Formal integration of (1I2) then gives
Xxx' (,U/ll’ 7}; TI,,, TI)
= exp{ (iK' Kv— T 7'} G, (v, 0 | v, /")
+ (724 T) ! exp{— (v/u)?} f di
0
X exp[ (iK' Kv—T—) (' —1) ]

X / 5 Xoo (v, 5577, 8). (T14)

Inserting this into (69), we get an equation for
Dxn’ (TI,I, T/) )

Do, ) = ()1 [ ae” exp{— (0" /1)
X/ dv exp{ (i’ Kv—T71)7'}

XGy(v"", 0 | 2, 7") +(1/T) / di
0
Xexp{ —1[¥/Ku(r'~D)
~ (¢'=8) T~ D (", 7).
We then substitute (57) into (II5) to obtain

(115)

Dy (7", 1) = (x'2y) 1 /m " exp[— (v /u)?]

X eXp[—' (T"*‘T”,) 11__1

+1:K'U"I(K,T,+KT”/) ]+ (1r1/2u T) -1 ar

0
X/m dv exp[— (v/u)?
FiKo(k't' s’ —k7) — (7' 7" —7) T1]

x{(qruzu) 1 /_ : " exp[— (v" /u)?]

x/_";dw,(v"',ow, f)}+(l/T> /0 ar
Xexp[ —3H{WKn(7' -7)}?
= (/=) T D (7", 7). (1I6)

Noting that from (43) it follows that the expression
in the curly brackets in the second term of (II6) may
be replaced by the single time correlation function
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A*(7), we obtain an integral equation for D, (v, 7'),
Dy (7", ") =exp[ — (+'+7"") T1— % (Ku)?
X (7 HW/T) [ dr
0
Xexp[ —%(Ku) (k7' ks’ — k7)?
— (r 4= 1) T AR +(1/T)
X f dl exp[—3 (K Ku)? (' —1)?
0
— (7' —8) T IDy (+""", }), (II7)

which is a generalization of (60).
For k=«'==+1, Eq. (II7) becomes, after a change of
integration variable,

Dy (7", 7) =exp[— (¢ +7"") T — 2 {Ku (7' +7"") }2]
Ly

+(1/T) f i

/

Xexpl —}(Kul)*—IT]a%(x'++'" ~1)
+(1/T) /T dt exp[ —(Kut)?—iT-1]
0

XDy (7, T'—-Z). (118)
1t follows easily from Eq. (60) that
Di]_il(T",, T’) EAi(T,+T,I/)

is a solution of (II7).
It is more difficult to determine the solution of
(II7) when k= —1, ¢=-+1. We denote this by

D", 1) =Daia(r'" 1) = Dyaa(r', 7).

Fortunately, to evaluate (28) we do not need (70”)
directly, but rather its double Laplace transform

S (1, ) = iKus f " f A
0 0

Xexp{—mr —per’""}D¥ (7", 7).

Corresponding to the three terms of (I17), we may write
(I111) in the form

(119)

(1110)

(1111)

S (p1, p2) = S+ Str+ St (I112)
We then have
S1=1Ku /m dr’ /w dr’"" exp[— (m+T7)7
0 0
— (pet T V)7 —3(Ku)?(r'—7"")2]. (1113)

Such integrals can be evaluated by introducing new
variables of integration in the 7/, 7/ plane, giving

Sr=[w'+u/TLZ(w")+Z ()], (1I14)
where

w'=m+T7, p=pt+T71 (1115)
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as in Eq. (63). The second term is

Su=1KuT1 /m dar’ /w dar'"’ di
0 0 0
XeXp[*yq"r"—-[LzT"'—- (TIII___ 2) T
—1(Ku)2(«"" —-1—7)2]A(F). (1116)

An interchange of the order of the "’ and { integrations
[see Eq. (35) of Ref. 1] and the introduction of a new
variable of integration 7=17"""—¢ instead of 7" gives

Su=iKuT1 /0 “ & AG) exp[—udl] /0 "o /0 " i
Xexp[ — 't —ps7—3(Ku)2(+'—7)%], (II17)
and by (27) and (I114) we find
St= (iKuT) '3 (pe) [+’ T Z (") +Z (w') ]
(I118)
The third integral is

Snl:iKuT‘“lf d’r”'f dr’ exp[ —par’ —pgr’'"]
0 0

X/ di exp[— (' —1) T1—1(Ku)?
0
X (7'=1)XIDF(+"",1). (1119)

Making an interchange of the 7/ and £ integrations, and
replacing the variable 7/ by {=+'—¢, we find

St=iKuT1 / ? / W / it
0 0 0

X exp[—m (t+H) —por"'— (/ T) — 1 (Kut) IDF (", 3).

(1120)
Using (62) and (II11), this gives

Str= (iKuT)7Z (u1') S (w1, us) - (1121)
In all, the desired quantity .S (u1, us) obeys the equation
Sty p2) = [+ T Z (') +2Z (') ]

XU+ (EKuT) 715 (po) T+ (iKuT) Z (11') S (s, 2)

(1122)
which may be solved to yield

S (pay p2) = [ +ue’ TLZ (1) +Z (p') ]
X[1+(GKuT) 15 (ug) J[1— (iKuT)"Z (') T

(1123)
Using Eq. (64) in the form
I(ue) =Z(u) [1— (iKuT)Z (u) T,  (1124)
we find the relation
14+ (iKuT) ™3 (up) =[1— (iKuT) 7 Z (/) 1. (1125)
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When this is substituted in (1I23) we finally obtain
the desired expression

S (p1, p2) = [ 2" 1723 (1) 3 (pe)
XALZ (w!) I H[Z () T4

as stated in the text.

(1126)

APPENDIX III

To carry out the expansion leading to Eq. (124) we
consider integral representations for the functions
P(Aw), £(a+Aw), and exp{— (a+Aw)?/ (Ku)?}:

P(Aw) = (2m)1 / “ 4t exp|—iAwi—T(1—i) 82} +c.c.,
0

£(a+Aw) =3y /m dt exp{—v | t | +i(a+Aw)i},
with >0

expl— (a+-Aw)?/ (Ku)?} =3nKu [ di

Xexp{+i(atAw)i—i(Ku)?}.
By substituting the above expressions into Egs. (123)
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and (124) we obtain

i(a, Ku)= [ dAw P(Aw) exp{— (a-+Aw)?/ (Ku)?)

=37 V2Ku /wdt exp{ — (1—2)T!>+iat
0
—1(Ku)*}+-c.c.,

is(a, y)= dAw P(Aw)£(Aw) =1y /m dt
0

—Q0

Xexp{—7v | ¢t |+iat— (1—2)T#2} +c.c.

We now expand 75(a, ¥) to first order in I'y%/2 and
obtain

iz(a, v) =7y (v*+a) T — gD /) 2
XRe[ (1—19) {y(v—ia)7}**]. (123)

A similar expansion of 7;(a, K#) under the assumption
(| ¢ |/Ku)<1 gives

41(a, Ku) =exp{—a*/(Ku)?}
—(1.23) (2)V2(r)~12(T2/Ku)?[141.479(a/Ku) ].
(122%)
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Paramagnetic Resonance of Fe-Cu, Fe-Ag, and Fe-Li Associates
in II-VI Compounds*

W. C. Horron, M. pE Wir, anp T. L. EsTLE}
Texas Instruments Incorporated, Dallas, Texas
AND
B. DiSCHLER
Institut fiir Elektrowerkstoffe, Freiburg-Br., Germany
AND
J. SCHNEIDER
Physikalisches Institut der Universitit, Freiburg-Br., Germany
(Received 13 December 1967)

The paramagnetic resonance of the 65 state of Fe3* has been studied in the monoclinic C, symmetry
which arises from Fe3+ associated with a monovalent metal impurity (Cu*, Ag*, or Li*) in ZnS, ZnSe,
ZnTe, CdTe, and ZnO. The Fe3* and {Cu, Ag, or Li}* impurities are substitutional for the metal ions at
one of the nearest possible sites. The zero-field splitting due to the crystalline electric fields is frequently
large compared to the Zeeman interaction. It is observed that no specific ratio of the two quadratic fine-
structure terms in the spin Hamiltonian occurs. This suggests that in many cases the observation of nearly
isotropic lines near g=4.3 results from a fortuitous set of values for these fine-structure terms, supporting
the view that a pure “rhombic”’ term need not follow from the symmetry of the environment.

I. INTRODUCTION

HE role of copper in the luminescent behavior of
the zinc and cadmium chalcogenides has been the
subject of considerable investigation for several dec-
* Research sponsored in part by the Air Force Office of Scientific
Research, Contract No. F44620-67-C-0073.

t Present address: Physics Department, Rice University,
Houston, Tex.

ades.! Recently, the technique of electron paramagnetic
resonance (EPR) has been applied to the study of these
materials.! Although some measure of understanding
has been achieved for a variety of impurity centers,

1 For an excellent review see Physics and Chemistry of I1I-IV
Compounds, edited by A. Aven and J. S. Prener (John Wiley &
Sons, Inc., New York, 1967). See Chap. 6 by R. S. Title for spin

resonance and Chap. 9 by D. Curie and J. S. Prener for lumi-
nescence.



