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Mossbauer Di8raction. I. Quantum Theory of GaInjlna-Ray
and X-Ray Optics*
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The Green-function techniques of quantum electrodynamics are used to obtain the equations governing
the interaction of x rays and y rays with crystals. In particular, the theory of Mossbauer y-ray optics for
crystals containing the resonant nuclei is developed.

I. INTRODUCTION

f 1HE scattering of Mossbauer p rays has received.. relatively little attention from physicists, yet these
processes involve features of considerable fundamental
interest and of great potential for practical use.

The most extensive experimental work has been
carried out by Moon, Black, O' Connor, and co-workers
at Birmingham. ' This group erst demonstrated the
nuclear scattering effect by Bragg reQection of the
14.4-kev Fe5~ p ray from enriched iron crystals, and
they have examined the interference effects between
the electronic and nuclear scattered waves. In addition,
Bernstein and CampbelP have investigated the effects
of the nuclear processes in the critical reRection of
Mossbauer p rays from Fe'7-enriched iron. The angular
variation of the nuclear scattered wave in the Bragg
region has been measured by Major and by the
Birmingham group.

For most Mossbauer transitions, the p-ray wave-
length ( 0.1-1 A) is well suited for diffraction experi-
ments. The linewidths are exceedingly sharp, allowing
the easy variation of the phase and amplitude of the
resonantly scattered wave by Doppler shifting, with
negligible variation in the nonresonant electronically
scattered wave. This offers a powerful method for
determination of the structure factors for crystals
with complicated unit cells which contain the resonant
nuclei. '~'4

*Work supported in part by the National Aeronautics and
Space Administration and by the U.S. Atomic Energy Com-
mission.

$ Present address: Laboratory for Electrophysics, The Technical
University, Lyngby, Denmark.' P. J. Black and P. B. Moon, Nature 188, 481 (1960).' P. B. Moon, Proc. Roy. Soc. (London) A263, 309 (1961).' P. J.Black, D. E. Evans, and D. A. O' Connor, Proc. Roy. Soc.
(London) A270, 168 (1962).

4 P. J. Black, G. Longworth, and D. A. O' Connor, Proc. Phys.
Soc. (London) 83, 925 (1964);83, 937 (1964) .' D. A. O' Connor and P. J. Black, Proc. Phys. Soc. (London)
83, 941 (1964) .' P. J. Black, Nature 206, 1223 (1965).' S. Bernstein and E. C. Campbell, Phys. Rev. 132, 1625 (1963).

8 J. K. Major, Nucl. Phys. 33, (1962).
M. L. Rudee (private communication) is preparing to in-

vestigate short-range order in Fe—Ni alloys, utilizing Fe resonant
scattering."C. Tzara, J. Phys. Radium 22, 303 (1961)."H. J. Lipkin, Phys. Rev. 123, 62 (1961)."J.P. Hannon and G. T. Trammell, Bull. Am. Phys. Soc. 11,
771 {1966).

169

Mossbauer scattering may also be very useful in
magnetic structure determination. In magnetic crys-
tals, the nuclear ground state and/or excited levels are
Zeeman split, and the amplitude and polarization of
nuclear scattered waves are strongly dependent upon
the magnetic structure. The magnetic spiral structures
of rare-earth metals, for example, '5 will result in
Mossbauer diffraction patterns which exhibit the spiral
structure. This also affords a possible means of deter-
mination of a complicated magnetic unit cell containing
several unequivalent sites, e.g., yttrium iron garnet
(YIG).M We discuss these applications to magnetic
structure determination more fully in II.'~

It is our purpose to develop the quantum theory of
crystal optics and to treat in particular the quantum
optics of Mossbauer p rays.

Shortly after the discovery of the Mossbauer effect,
several workers' ""'~" suggested the possibility of the
use of the Mossbauer p rays in performing diffraction
studies. In Refs. 18 and 19 it was pointed out that the
effective coherent cross section per crystal site for
resonant nuclear scattering is

F%'~3F')& 10' b for Fe",2j&+1 ' (fl', '
I r

where F is the fraction of resonant nuclei in the sample.
The Rayleigh scattering from atomic electrons is about
40 b/sr in the forward direction and about an order of
magnitude less at a 60' scattering angle. Thus, for
appreciable values of Ii, the, ',nuclear scattering can be
made to stand out above the electronic very near
resonance.
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It was also pointed out in Ref. 18 that the nuclear
absorption cross section is generally several orders of
magnitude greater than the scattering cross section
(oz 10' b at resonance for Fes7). Thus, under ordinary
circumstances, there is very little penetration into an
enriched crystal, and appreciable scattering occurs only
from the first few thousand crystal layers at resonance.
The extraordinary circumstance in which one obtains
deep penetration even at resonance is when the incident
radiation is very near a Bragg angle. ' "" When a
crystal containing resonant nuclei is excited at a Bragg
angle, the effective coherent elastic radiative width is
enhanced over that of a single nucleus by a factor
proportional to the number of crystal layers. This gives
a consequent suppression of absorptive and inelastic
processes and leads to large reflection and/or trans-
mission amplitudes (III") s' These modes of excitation
correspond to the "super-radiant" emission modes of a
gas studied by Dicke.'~" To discuss these and other
"thick." crystal results, one must of course go beyond
the Born and kinematical approximations to the
dynamical theory. '4 "

In this paper we make use of the techniques of
modern quantum field theory to develop a relatively
simple theory which determines the scattering of x rays
and p rays by crystals.

In Sec. II we give a preliminary discussion of the
scattering from a single atom. We then give the general
expression for the scattering of a quantum by an arbi-

trary system in terms of the scattering operator of the
system.

In Sec. III we obtain an approximate set of equa-
tions determining the scattering amplitude of
scatterers in terms of the single-atom scattering
operators by summing a class of ladder diagrams for
the photon Green function. This leads to a set of
coupled equations of the multiple scattering type

studied by Foldy, ' I.ax," and Watson, " and indeed
formally the same as those derived in the dynamical
x-ray theory in a semiclassical manner. ""

In Sec. IV we extend the multiple scattering formal-

ism to include phonon-photon exchange between the
scatterers and obtain our fundamental Eqs. (50) and

(51) .
In Sec. V we give the relevant ensemble averaged

equations.
In II we discuss the single-atom scattering operators

in terms of which the general theory has been developed.
We then discuss the interference between nuclear and
electronic scattering, the effects of electronic shielding
of the nucleus, polarization effects, and finally we

discuss several applications of the Mossbauer diRrac-
tion in the Born approximation. In III we use the
general formulas to develop the dynamical theory of
Mossbauer optics.

IL BASIC EQUATIONS

The quantum theory of crystal optics is most con-

veniently developed using the Feynman-Schwinger-
Dyson Green-function techniques of quantum electro-
dynamics. "" In Secs. II and III we use the simple
intuitive Feynman procedures to obtain equations of
optics bearing a close formal relation to those of
classical optics."
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FIG. 1 ~ Feynman diagrams for scattering by a single atom.
The light solid lines represent the ground states of the atom and
the double lines the excited states. The external wavy lines rep-
resent the incident and scattered photons, and the internal lines
represent virtual photon emission and absorption. In (c') the
solid lines represent nuclear states and the "bubble" is an excited
electron with a hole in a normally 6lled electronic level.

0 L. L. Foldy, Phys. Rev. 67, 107 (1945).
3' Melvin Lax, Rev. Mod. Phys. 23, 287 (1951).
"K.M. Watson, Phys. Rev. 89, 575 (1953)."M. von Laue, Eontgenstrahleninterferensen (Becker und Erler,

Liepzig, 1941), Chap. V.
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At the outset we should emphasize that we shall be
concerned with single-photon processes. We are inter-
ested primarily in x-ray and p-ray optics, and for
technological reasons it would seem that the day is far
off when we will need. be concerned with coherent
multiple-photon eBects in these energy ranges.

Initially, we consider just one atom and for simplicity
let it be fixed in space. Then the lowest-order contri-
bution to the scattering is given by the two diagrams
of Figs. 1(a) and 1(a'). In Fig. 1 the light solid lines
represent the (possibly degenerate) ground states of
the atom (nuclear and electronic) and the double lines
the excited states. The external wavy lines represent
the incident and scattered photons, and the internal
wavy lines represent virtual photon emission-absorp-
tion. Figures 1(a) and 1(a') represent of course just
the ordinary second-order perturbation expression for
the scattering. These processes would suKce if we were
only dealing with electronic scattering. However, for
the resonant nuclear scattering it will of course be
necessary to include a class of diagrams which include
radiation reaction, internal conversion, and the eGects
of electronic shielding of the nucleus. The simplest
higher-order diagram is shown in Fig. 1(b). If both
excited states are nuclear, the virtual photon emission-
absorption gives a radiation reaction correction Lsimi-
larly in Fig. 1(c)j. If one of the excited states is
electronic and the other nuclear, then Fig. 1(b)
contributes to the electronic shielding of the nucleus.
The effect of internal conversion on the scattering is
an e' diagram, which we show by the more explicit
Fig. 1(c'). Here the double lines represent excited
nuclear states, and the "bubble" is an excited electron
with a hole in a normally 6lled electronic level. Dia-
grams of the type 1(d) with disconnected radiative
parts give ignorable radiative corrections to the ground-
state energy.

In any case the net scattering amplitude is the sum
over the elaboration of the basic diagrams of 1(a),
where internal photon lines are inserted in all possible
ways. This leads, as is easily shown, to the expression
for the S matrix (see Appendix A)dp:

8'= —(d/d) fa (x)""d '(xy„)s„'(y)d„'xd'y, , (I)

where

M.."(*,y) =-('/~") (~. I

2.Lj.( )j,(y) j I ~.I. (»

In Eq. (2), @p and Pr are the initial and final Heisenberg
atomic-state vectors, j„(x) is the Heisenberg current
operator, T is the time-ordering operator, and ao and

' We use the four-vector conventions of Ref. 39. x, y are four-
vectors (ct, x), (ct„, y). Four-vector contractions are denoted as
either km = (ck4t —k.x'l or by repeated indices A„J3„=A4J34 —A B.
The four-dimensional gradient operator used later is 8„=
p (1/c) (8/St), —Vg. In intermediate calculations we take ti =c=1.

s 'J„(x) fd4y =dd„.(x, y) a.'(y), (5)

is conserved. The Feynman potential for the photon
at the space time point s due to the current (5) is
(Appendix A)

d4„'(s) =c ' b+(s, x)J„t'(x)d'x, (6)

where

expI —ik (s—x) $ d'k
bi(s, x) = —4 (7)

is the Feynman photon propagator. A„' satisfies the
I.orentz gauge condition B„A„=O. Furthermore, that
J'„(x)

I Eq. (5)j is invariant under the gauge trans-
forrnation a„P—+a„P+ci„x follows from 8„M„„(g, y) =0
and the symmetry of M„„,M„„(x,y) =M„„(y, x) .

If Et and Ep are the energies of the states @t and dt p,

then we obtain from (3) and (5)

(~t I ~.(» t.) I &p) =~"(» ~p) expL' —i(~p+Ep —Et) t.j,
(8)

and from (6) and (7)

A„'(s) = expI i(oyp+E—p Et) t,5c —t—
X J t'( )d (9)

where
kt= c oyt=c (Qyp+Ep —Et) .

The Feynman potential of the scattered photon (9)
due to the steady current (8) is the same as the classical
retarded potential due to that current, and this is the
basis for the validity of the semiclassical formulas of
x-ray diGraction. In fact, in the integral over t, of
Eq. (6), which leads to Eq. (9) for the Feynman
potential, the contribution for t,&t, represents the
amplitude for a photon emitted by the system to be
found at s, whereas the contribution from t,)t, repre-
sents the amplitude that a photon emitted from s is
absorbed by the system. If (9) were expressed as the

a~ are the Feynman potentials representing the initial
and final photons, "

a„(x)=I 4yrSC'/2dpp]'"e„exp( —ioypt, +ikp x)

a„~(x)*=$4yrKC'/2oyt]'I'e„t* exp(ioytt, —i'.x) . (3)

Although we have motivated our discussion by erst
considering the scattering by a single fixed atom,
Eqs. (1)—(3), as well as the subsequent developments
of this section, are valid for an arbitrary scattering
system (Appendix A) .

It follows from the gauge invariance of the S matrix
that

B„M„„(x,y) =0

and that the transition current induced by a,
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sum of these two contributions, then each part wouM
be a complicated function and not be of use, whereas
their sum is simple and useful. If ky

~
z —x

~
is large,

only t (t, contributes appreciably to (9), and (9)
becomes the amplitude of the scattered photon; on the
other hand, for multiple scattering processes involving
more than one atom, it is (9) which is of direct
relevance.

At large distances from the scattering system,

A„*(s)= exp( —i(~p+Ep Ef) t,j exp(i' (
z ~)

exp —ik~ x J~ x Mp dx c, 10

time-dependent factor, Eq. (9) becomes

A„'(z) = M„„(x,y) AP(y) dxdy,
exp(ikp

~
z x ~)

or in obvious matrix notation

A'= 8+MA'.

(16)

If s is very large compared to the atomic dimension,
Eq. (16) gives for the scattered wave amplitude
(replacing z by R)

~iItB

A„'(R) = exp( —i' x)M„„(x,y) A„(y)dydx

which may be used to compute the scattering cross
section in the following manner: At large distances
from the scatterer the expected energy Qux is given by

8=(c/4~) Re(E xB*), (11)

where E and B are computed from the potential (10)
in the usual manner. "The quantum flux is (Spp) 'S.
Dividing by the incident quantum Qux, we obtain for
the scattering cross section

do My—= —lim E'A '(R) *A„'(R)/(g„*g„')
dQ +0 @~Co

IIL MULTIPLE SCATTERING EQUATIONS

In this and the following sections we shall obtain
approximate equations determining the coherently
scattered wave from a crystal in terms of the scattering
operators of the individual atoms.

We shall regard the crystal as a collection of inde-
pendent atoms with harmonic forces acting between
their c.m. 's. In the absence of radiation we take the
Hamiltonian of the crystal to be

Hp gH'+ Q——P /23I;+ V(R), ~ ~, RN) ) (19)

lim &'
~

Ai'(R) ~'/(a„'*a ')GOy

or equivalently, substituting (10) into (12),

1 2

X — exp( —i'.x) JAP(x, &vp) dx
c

(12)

(g pea p)

where B' is the internal Hamiltonian of the ith atom
with the electromagnetic effect represented by instan-
taneous Coulomb interaction among its constituents,
P; is the total momentum of ith atom, M; its mass,
and V represents the interatomic interaction. 4' In this
section we simplify by taking the atoms as fixed in
space, so that

We delete the superscripts "0" and we have from
Eqs. (5) and (8)

J„(x,&u) = M„„"(x,y) aP(y) dy, (15)

where the superscript ~ indicates the Fourier transform.
In order to avoid excessive sufBces and symbols, we
shall delete the symbol ~ in J(x, &o) and 3f (x, y); the
explicit arguments of space position only can serve to
remind us that we are referring to a particular frequency
component. Thus, M"(x, y)~M(x, y). Deleting the

where Ji is the current component perpendicular to kr.
Our concern will be primarily with coherent scatter-

ing in which the initial and Anal states of the system
are the same. In this case M„,rP(x, y) depends only on
(t, t„) as is seen—from Eq. (2);

We may now develop the expression for the 5 matrix
as a sum of terms each corresponding to a Feynman
diagram. In each diagram there will be an external
photon line representing the incident photon, another
representing the outgoing photon, a number of inter-
atomic lines representing virtual quanta exchanged
among the atoms, and finally a number of intra-atomic
photon lines representing the atomic radiative re-
actions.

4' In (19) we neglect the effect of correlations among the internal
motions of the various atoms and the effect of itinerant electrons,
but for x-ray energies these effects are quite negligible. For elastic
scattering, the itinerant electrons make a negligible contribution,
except in the forward direction, and in this case the correct
results are given if we treat all electrons as bound. Magnon effects
could be treated in a manner similar to that employed in Sec. IV.
However, for y-ray scattering, the primary effect of the spin cor-
relations is to determine the effective magnetic field at the
nucleus and hence to determine the Zeeman splitting, and for our
purposes, it is sufhcient to treat this effect as a temperature-
dependent contribution to H'.
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Calling the interatomic lines, as well as the incident
and outgoing photons, "external, " we then initially
consider the sum of all the diagrams contributing to the
coherent elastic scattering from E atoms in which no
more than two external photon lines are connected to
any given atom. In Figs. 2(a) and 2(b) we give such
diagrams. The circles in Figs. 2(a) and 2(b) represent
the summed contribution of all possible internal photon
lines on the respective atoms. The wavy lines between
atoms represent photon exchange, and the singly con-
nected wavy lines represent the incident and scattered
photons. Figure 2(c) gives a diagram which is not
included in the sum. The time integrations are carried
out as shown in Appendix B. We note that since t is
not restricted to be greater than t;, diagrams like Figs.
2(a) and 2(b) contain contributions from multiphoton
and multiatomic excitations simultaneously present.
These contributions must be included or else spurious
E. ' interaction terms appear.

The contribution to the amplitude of the coherent
scattered wave for the class of graphs summed is easily
seen to be given by (Appendix 8)

(A') '=8+M'L1+8+MJ+8+M&8+M'+ ~ ]A', (20)

where summation over all different i, j, k is understood
and the matrix notation is that of Eq. (17). The
interpretation of the third term in the brackets of (20)
is that the incident photon is scattered from the kth
atom, it propagates to the jth atom ( jWk), where it is
again scattered, and then it propagates to the ith atom
i/j/k, where it is Anally scattered to an "exterior"
point. The effect of the "mirror" terms such as shown
in Fig. 2(c) is partially accounted for by letting k also
run over i in (20), and we obtain

A'= 8+M'f A'+8+M'LA'+8+M~A'+ ' ' ' j} (21)

where k is now summed over all values except k=j. It
is shown in Appendix 3 that for x-ray and p-ray
scattering this is indeed a very good approximation.

Fn. 3. Schematic diagram repre-
senting the two-atom scattering
operator M("&. The dotted line
between the atoms represents the
exchange of a photon and an arbitrary
number of phonons.

We may rewrite (21) as

A'= +8+M'A', (22)

A'= A'+ +8+M'A', (23)

then

A'= Y 8+(ar)M'(co)A'(&u) e 'd~ (24)

gives the scattered-photon wave packet.
Finally, we write (22) and (23) explicitly:

+tt
expPko

~

R—x I)

/R —xf

XM„.'(x, y) A, '(y) dxdy, (25)

exp(ikp
~
x—y ~)

4+ I

XM„.&(y, z) A„&'(z) dydz. (26)

where (23) gives the equation determining the effective
6eld incident on the ith atom in our approximation. "

Except for inaccuracy in accounting for "mirror
terms, "Eqs. (22) and (23) are the exact single-quan-
tum coherent-scattering equations from a collection of
scatterers. A' is linear in the incident held, and the
total 6eld is A'(R)+A0(R). We have assumed an
incident photon of good energy Sco. However, if the
incident wave packet is

(i) (i)

(o)

(k) (i) (j) (i) (j)
(b) (c)

IV. CRYSTAL VIBRATIONS AND THE EFFECTIVE
FIELD EQUATIONS

In the preceding it was assumed that the atoms were
6xed in position; now we wish to consider the eGect of
the thermal- and zero-point motion on the coherent
scattering.

FxG. 2. Feynman diagrams representing contributions to co-
herent elastic scattering from N atoms. The circles represent the
summed contribution of all possible internal photon lines on the
respective atoms.

4~ See Foldy, Lax, and Watson {Refs. 30—32) for similar
developments.
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Let R be the operator of the position of the c.m. of
an atom and let $ denote a complete set of internal
dynamical variables. Now j„(x)=f„(x—R), or we shall

simply write j„(x)=j„(x—R) . j(x—R) = j(&, x—R)+
p($, x—R) V, but the second term representing the
contribution to the current of the c.m. motion is of no
importance and we shall neglect it.

Our single scattering operator I Eqs. (1) and (2)j

now has the form

M &'&(x' x)

= —iTL j„($(t'),x' —R(t') )j„($(t),x—R(t) )j. (27)

Similarly, our double-scattering operator corresponding
to a virtual quantum exchange between atom 1 at x~'

and atom 2 at xs (see Fig. 3) is

X8~(xsxt') jz"'(fr(tt'), xt' —Rt(tt') )j„&»(/t(tt), x,—R, (tr) )$dxsdx, '. (27')

The expression for the multiscattering operator is the
straightforward extension of (27') .

We shall take the Hamiltonian of the form LEq. (19)j
H=I +H;((;)+Hg(R, P) j,

where H;($;) refers to the internal Hamiltonian of the
ith atom and the f; are its internal dynamical variables,
and. Hz(R, P) is the crystal-vibration Hamiltonian,
with R and P standing for the c.m. 's of the various
atoms and their momenta. Under our assumptions the

P, (t)'s referring to different atoms (and same or dif-

ferent times) commute, and $;(t) 's commute with
R(t') 's."

It is useful to introduce the double-space Fourier
transform of the scattering operators. For M&» LEq.
(27)$ we have

M„„&»(t', kt, t, ko)

and substituting

js($(t) x—R(t))
= exp(iHzt) j„($(t),x —R) exp( —iHzt)

into Eqs. (27) and (28) before doing the space inte-
gration, we obtain

M„,"'(t', kf,. t, ko) =M„„'(t', kr,. t, ko)

XTLexp( —ikf R(t') ) exp(iko R(t) )j, (29)
where

M„„'(t', kf, t, ko) = i exp(——ikr x')

XTLj„($(t'),x')j„($(t),x)j exP(iko x) dx'dx (30)
is the atomic scattering operator for the nucleus fixed
at the origin. Similarly the Fourier transform of 3f&' ')

is

M„„' ' (t,', kf tt ko) = exp( i' xs') M—„„'"(xs', xt)

exp( —ikr x')M„„"(x',x) exp(iko'x)dxdx', (28) h' h from (27/)
X exp(ik, xt) dx,dxs', (28')

Mpp ' (ts ~ kf j tip ko) dtsdtl d Jo Msx~ (t2 ) kf j tsar k) Mxp (tl y kj tl) ko)~y(~ )

X exp( ik4(ts tt'—) )TI ex—p(—ikf Rs(ts') ) exp(ik Rs(ts) ) exp( —ik Rr(tt') ) exp(iko Rt(tt) )j, (29')

where 8+(k') is the Fourier transform of 8+(x)
LEq. (7) j, 8+(k') = 4(2s~) —'D's'+irtj ', re~0+. In
(29') the M 's carry superscripts 2 and 1, since they
may be different for different atoms.

The analysis of (29') and more complicated processes
is simplified by noting that in the time-ordered product
t2 and t&' may be set equal because during the transit
time of the quantum between the two atoms the
crystal will not change its configuration (neglecting
Vjc terms). '.This can be seen mathematically in the

4' It is clear that the small slow crystal vibrations have negligible
effect on the internal dynamics of the atom {the (V/c) ' shift of
the nuclear splittings discussed by R. V. Pound and G. A. Rebka,
Jr. { Phy Revs. Letters 4, 274 (1960)g and 3. D. Josephson
Libid. 4, 341 (1960)g are of no interest in the present discnssionl.

following way. Suppose that the internal current at $j'

is exp( —i~tt'), where ~ is an x-ray frequency ( 10
keV) . Then the relevant term in (29') is

exp( —ik4(ts —tt') )
I exp(ie„ts) exp( —isa(t, —t,') )

X exp( —ieott') exp( —'&tt') (x I
exp(ik Rs) I xs&

X (xs I exp( —ik.R ) I xo& I « 'd'&.

In this expression the matrix element of expI ik R, (t,)j
expL —ik Rt(tr') j has been taken using as bases the
stationary vibration states

I x;) with energies e, ,

(31)
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Performing first the t~' integration, then the d4k inte-
gration, we obtain

f exp( i—((o+pp p—.) tp)

X (z I
exp(ik'& Rp) I x~)(zp I exp( —ik'Q Ry) I xp)dQ,

where Q is a unit directional vector and k'=a& —(pp —pp) .
But (ps —

pp) 10 ' eV and &o 104 eV; therefore, the
change of wave number of the photon has a negligible
effect in the matrix elements (the term depends on
E2—E&, but for very large E2—E& the phonon exchange
is unimportant, in any case). We may then replace k'

by pp and replace the sum over P by 1; the result is that
of setting tp t&' in t——he time-ordered brace of Eq. (29').
Making this replacement, Eq. (29') becomes

M„,'P '&(tp', kr, tg, kp)

dtpdtg' d'k M„),'"'(tp') kf j tp) k)

XMzP&'&(tg', k; tg, kp)8„(k')

X exp( —ik4(tp —t&') )TIexp( —i''Rp(tp ) )

X expI ik (Rp(tp) —R~(tp) )j exp(ikp Rq(tq) )I.
(29")

Or equivalently we could replace t2 by Ij' in the brace.
Rather than further general discussion of (29"), it is

convenient first to discuss the single-scattering formula

(29) .
Again, we are principally interested in coherent

scattering for which the initial and final internal atomic
state is the same. We denote by I a& this initial internal
state and by I zp) the initial vibration state of the
crystal. We now assume that the expectation value of

M~/ LEq. (30)] in the state
I a& has been taken and.

inserted in (29), which then becomes an operator only
in the dynamical variable R (and P~).

M„P is a sum of a very fast electronic part E„P(t'—t),
for which the primed and unprimed times may be set
equal in Kq. (29), and a very slow nuclear part X„P
(t' —t) (we assume that ~p is within a few widths of a
nuclear resonance), for which (t' —t) r„, the nuclear
excited-state lifetime. For Mossbauer transitions 7.„ is
very long with respect to crystal-vibration times and
we can effectively take the primed time in6nitely later
than the unprimed time in the brace of Eq. (29).4'

The nuclear part S„„ includes not only the purely
nuclear processes such as shown in Fig. 4(a), but all
processes which pass through the nucleus, such as the
screening processes Figs. 4(b) and 4(c) . The electronic
part E„„'includes only purely electronic processes, such
as shown in Figs. 4(d) and 4(e), and gives a very broad
(frequency-insensitive) contribution. More explicitly
(as shown by direct calculation in II'7), we have

M„P(t', k„ t, k,)

p(k& kp, t' —t) +E p(kf kp, t' t), (32—)
where

tV„„'(kt, kp, t' —t) = —i+N„„'(kr, kp, rc)

X exp( —i(E„—E ——,'iF„) (t' —t) )1(t'—t) (33)

and, su%.cient for our purposes,

E„„'(kg, kp, t' t) =E„—„'(kt, kp, cup)b(t t'). (34)—
In Eq. (33) E„—-', iF is the energy of the excited
nuclear state

I
e&. If we now insert (33) for Mp in (29),

multiply on the right side by I xp) exp( —
unapt), and

perform the I, integration, we obtain

E~ (Qf kp z) exp( i+pt ) exp—(—ikf R(t') ) I xs) (xs I
exp (ikp. R) I xp)

EI4P (t ) kfy P) I xP& (E E ) (p p )+1iF

which becomes for the very slow Mossbauer transition

tV„P(kr, kp, e)
&„,o'(t', kr, kp) I yp)= exp( —i~pt') exp( ikf R(t'—)) I

x.p) p ' '
. I (zp I exp(ikp R) I yp)

=—exp( —icopt') exp( —ikr R(t ) ) I xp)&„.P(kr, kp) &xp I
exp(ikp R) I xp). (36)

Similarly, for the fast electronic contribution to
M„„&"(t', kt, kp) I xp), we have

E,."'(t', kr, ko) I xo)

= exp( —&opt') exp( —i(kf —kp) 'R(t') ) I gp&

XE„„'(kf,kp, ppp). (37)

Equations (36) and (37) give the effect of the crystal
vibrations on the Mossbauer and x-ray single-scattering
operators and have been discussed extensively in the
literature. For elastic scattering the Anal phonon state

is
I Xp), and nuclear scattering processes have the

phonon factor (exp(ikp R) )(exp( —i' R) ), which is
simply the Mossbauer phonon factor (averaging over
initial phonon states zp). while the purely electronic
scattering has the usual Debye-Wailer phonon factor
(expL —i' —kp) Rj).

Returning to the multiple-scattering formula (29"),
since the most interesting phonon effects are nuclear,
we first neglect the electronic part and take M' of the

44 Phonon frequencies are on the order of co„y,=1014jsec. For the
excited ~~ state of the Fe" nuclei, r =10 ' sec and co„q=10'/g„.
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form (33). Inserting (33) for the Ms's in (29") and nucleus at R;
multiplying on the right by exp( —2'o)()ti)

I x()) and per-
forming all integrations except t~' we obtain (A'(R;) )=(

M„„(2 '&(4', kr, tk, k()) exp( io—)oti) I xo)d4

exp(kk,
I
R;—R; I))IR;—R;I

X1P"'(k k') (Ak(R;) ) (40)

= exp( —io)()t2') exp( i—kr R2(4') ) I xo)

exp(ik() I
R2 Rl I)Xk',xxe(kr, )r) (xe R xe)

2 1

X&,'('&(k, ko)(xol m(ko R) Ixo) (38)

where we have made the Mossbauer assumption (or
the slow-collision time assumption) that

I o)o—(E —E ) I
«kBOD phonon energies.

The interesting feature of Eq. (38) is that the ampli-
tude for simultaneous photon-phonon exchange between
two resonant atoms is given by

exp(ikp
I

R2—Ri I)
(xelk +Ix)=(x 2 2 x) (kP)

2 1

(see Fig. 3) . We shall discuss this factor in more detail
below.

The significance of k appearing in (38) is that of the
momentum operator for the virtual photon exchanged
between atoms 1 and 2. Before doing the dk integration
of (29"), there was the photon factor exp(ik. R2(t2) )
exp( —ik Ri(ts) ), and k also appeared in 1P(i&(k, ks)
in the form

and for the scattered photon potential

Lk'(R)1"
I xr) =Z

I xx) xr
' ' )

X1P(k&(k k') (A'(R;) ). (41)

In the above Eqs. (40) and (41) the angular brackets
refer to the expectation value in the initial vibrational
state

I x()). Also in (40) and (41) we have both k and k'
appearing. The meaning of 1P(k&(k, k') is that k' is
the momentum that was absorbed by the jth atom and
should be replaced by (—i)Vik, , whereas k is the
momentum emitted by the jth atom and should be
replaced by iVa, , therefore, 1P(»(k, k') means 1P(k&

(iVrk, , 2VR—,). T. he R s appearing in the above
equations are the operators for the c.m. of the various
atoms. If we let R;=R,'+r;, where R,' indicates the
equilibrium position of the ith atom, then in Eq. (40),
for example, taking A'(R;) =kk' exp(ik() R;), where
a' is a constant four-vector, we have

(A'(R, ) ) =rk'(exp(2k() r;) ) exp(2k() R') (42)
and

exp(xk,
I
R;—R; I))$,~+

I
R,—R, I

exp( —2k xi) 1P"'(xi, k()) dxi
exp(xk,

I
R;; +r; r; I))"—~

~

I R"+r' —rk
I

(43)

and in 1P("(kr k) in the form

exp(ik x,)1P(2& (kr, xs) dx2.
~

~

We can then replace 2( —k) appearing in the 1P"&

(k, k()) integration by Vak and ik in the 1P(I(kf, k)
integration by VR, . The dk integration then gives

exp(2k() I R2—Ri I)1P(2&(kr, —iVikk) 1P(k& (2wit„kp),
2 1

where the arrows indicate the directions the gradient
operators are to operate. Since the photon propagator
b»+ is only a function of R2 —R& and VRj= VR2,
employing the same symbol k in 1P('& 1l&' "& in Eq. (38)
is consistent. If k()

I
R2—Ri I ))1, then it is seen that

k—+kis=ko(R2 —Ri)/I R2 Ri I.

As noted above, (();;+) gives the amplitude for simul-
taneous photon-phonon exchange. By Fourier trans-
formation we have

1 exp(ik R,ks)
( @+)=—,, ' (exp(ik. (r;—r;) ))dk. (44)

Taking account of the fact that in the crystal r; and
r; are the sums of many small independent displace-
ments, 45 we have

(exp(ik (r;—r;) ))
= exp( ,'((k r,—)'-+(k r;)' 2(k. r,)—(k r;.) )).

Therefore, (k),,+) is given by"

(8;;+)= exp( ——',((k r;)'+(k r;)' —2(k r;) (k r;) ))
XLexp(ik(kR;ko)/8;ksj, (45)

Effective Field Equations

The extension of Eq. (38) to the nuclear multi-
scattering case is straightforward. Summing up all the
diagrams as in Sec. III, we have for the generalization
of Eq. (23) for the effective field incident on the

~ L. Van Hove, Phys. Rev. 95, 249 (1954)."It is interesting to note from (45) that even if the amplitude
of oscillation of each of the atoms were quite large, so that the
Mossbauer factor would be quite small, the amplitude for photon
exchange could still be quite appreciable if the motions of the two
atoms were well correlated (2 ((k r;) (k. r;) )= ((Ir.r;) 2+
(I rk)')).
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or, equivalently,

(~;f-)=f;"(k)ff"(» u+~;f(k) ~[-p('kpR;:)/R„'~.

(46)

In Eqs. (45) and (46), R;; =(R; —Rf) k= i—Vz, o,

f, (k) = exp) —((k r,)')$ is the Mossbauer factor for
atom i (when the ensemble average is taken), and

q;;(k) = exp((k r;) (k r;))—1

represents the eGect of the correlation in the motion
of i and j on their amplitude for exchanging a Moss-
bauer p ray. The $;f correction term to the ordinary

f,'"f,'I' Mossbauer factor for quantum exchange is

generally very small. In a rough model (Debye, T 0,

R;;/a))1, where a is the lattice constant) it can be
shown that $,f is of the order k'(r')a/R. f. and the
decrease of p ff$,;Rdy ' exp(ikpR;;) j with R,; will make
this correction of the order of the mirror terms dis-
cussed in Appendix 8 and will be similarly negligible.

With the neglect of $,f, Eqs. (40) and (41) simplify
so that it is now possible, as in the Axed-atom case, to
dehne an eGective Geld which is an ordinary function
of space. If in (40) we replace (A'(R;)) by f;~('(k)
A'(RP), then (40) leads to the equation

A'(RrP) =A (Rr )+Q ' f'IP(k)

XNo(y)(lr k')f, 'I (k ) Af(Rfp) (4g)
and (41) becomes

pA'(R)3"=g hf I exp( —ik r') I
xp)N""(k k')f'"(k')A'(R')exp(ikf [ R—R,' ~)

[R—R (49)

The electronic contribution to the coherent scattering may be obtained by similar arguments. Adding the elec
tronic contribution, we obtain for the coherent elastic wave incident on the ith atom

A'(R ) =A'(Rr.o)+g, Lf,'"(k)N""(k, k')fy'"(k')+f'I'(k —k')EP(f)(k k'))Af(R o) (50)
exp (ikpR;yP)

jwi iJ

and for the coherent scattered wave at R

~ exp(i(kf
~

R—RfP
~

p)ft) )—
R—Rf'

X(xf f (exp( ik r;—) [x,)N'()(k, k')ff ('(k')+ exp( —i(k —k') r;) f
xp)Ep(»(k, k') jAf(Rfp). (51)

In Eqs. (50) and (51), k iV=ak, .'r= —i%a,.o. Defining the operator

Mp. '(i) =Np„f (i)+Ep„f (i)

= (Xf I exp( —ik r') I xp)NP"" (» k') hp I
exp(ik' r') I Xp)+(Xf } exp( —i(k —k') .r') i xp)Ep.p("(k, k'),

(52)
then Eqs. (50) and (51) can be written in the previous matrix form

A'=AP+QB "+(kp) MPP( j)Ay, (50')

pA'(R) jfp g()a .+(kf) Mfp(i) Ai (51')

where';;+(kp) =(R;;) ~ exp(ikpR;, ').
Finally, for clarity, we rewrite the equations determining the potentials (50) and (51) more exphcitly. We

give the expression for the total coherent wave: A (R) =A.'(R) +A,"(R).If we write

(f(r))=(, (f(r) Ix)=fr;(r)f(r)dr;,

then

d„(R)=d„'(R)+g|'drdxdr, dy

Xp(r;) IN„p(f)(x, y) p(r )+E„p(y')(x, y)8(ry —rf') IA„f(Rfp+rf +y). (53)

In (53) the sunnnation is over all of the atoms of the crystal. To obtain A'(R), we delete the j=i term in (53).
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where G is the exact ground-state Heisenberg state
vector of the scattering system, and A„(x) is the electro-
magnetic potential operator in the Heisenberg repre-
sentation.

If we write for the interaction Lagrangian density

&r h„A——„+gA„A„, (A2)

where h and g are operators depending only on the
matter variables, then the current density

{0) (b) (c) (~) (~) j„=8&r/BA„= h„+2gA„ (A3)
FIG. 4. Contributions to the single-atom scattering operator

N'. The solid lines represent nuclear states, and the "bubbles"
represent virtual electronic transitions.

V. ENSEMBLE AVERAGE

If we neglect the eGect of mirror" terms, then Eq.
(54) becomes

A, '=Ao+Q8;;+(ho) M, ( j)A, J. (55)

In Eq. (55) the subscript c referring to the coherent
wave means the ensemble average of the quantity. In
Eq. (55) we delete the (00) superscript on the scatter-
ing operators M I Eq. (52) 7.

APPENDIX A

Equation (2) for M„„ in terms of the ground-state
expectation value of the time-ordered current densities
is not quite correct if the electromagnetic-matter inter-
action Lagrangian contains an A„A„ term. The photon
propagator (from which the S matrix and the Feynman
potential may be obtained) is defined by4i

D..(*,y) = —(i/«) &G I
7'A. (x)A.(y) I G), (Al)

47 M. Gell-Mann and M. L. Goldberger, Phys. Rev. 96, 398
(1953).

Equations (50) and (51) give the coherent fields for
the crystal in a well-defined initial state (and a well-
de6ned final state). The fields thus depend upon the
initial crystal-vibration state, the initial state of each
atom (degenerate ground states for Mossbauer nuclei),
and indeed upon which atom occupies a particular site
if there is atomic disorder (isotope effect).

We shall never have such precise information, of
course, and what is of interest in obtaining the scatter-
ing cross sections is the ensemble average (A') of the
incident wave. ' Taking the ensemble average of Eq.
(50') we have

A '—= &A') =A'+gb "+(ho) &M"( j)A'). (54)

will have an explicit dependence on the potential. The
Feynman perturbation expansion for D„„is obtained in
the usual manner, by going to the interaction repre-
sentation and assuming that the ground state

I G)
evolves from the no-interaction ground state

I Go) as
the interaction (A2) is slowly switched on.47 In this
case D„„may be expressed as

D„„(x,y) = —(i/«)

X &Go I
TSA„(x)A. (y) I Go&/(Go I

S
I Go&,

with""

S=T exp — Zr(xIdx), (A5)

A.'( )A.'(y) —= &G I
7'A. ( )A.(y) I

G &

=i«g„„b~(x, y)

=i5cD„„o(x,y), (A6)

where 8~ is given by Eq. (7) . Utilizing

A„' (x) I (A„(y) )"7' =i5cD» (x, y) mI A„(y)7" i (A7)

and the form of S LEq. (AS) 7, it is very easy to obtain

48 Silvan S. Schweber, An Introduction to Relativistic Quantum
Field Theory (Harper 8z Row, New York, 1961), pp. 481—482.

4' P. T. Mathews, Phys. Rev. 76, 684(L) (1949);76, 1489(E)
(1949).

"G. C. Wick, Phys. Rev. 80, 268 (1950).

where the integration is over all space-time, with Z~
being slowly switched off as t—+& ~. The operators in
(A4) and (AS) are in the interaction representation.
Expanding 5 in powers of Zz and utilizing Wick s
theorem, " all of the photon operators may be con-
tracted to give an expansion of D„„,each term of which
may be represented by a Feynman graph which may be
evaluated by the simple Feynman rules. " According
to Wick, the contraction of two simple photon factors
is given by
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the relation

(G, I TSA„(x)A „(y) I Gp) = i5cDy'(x, y) (Gp I
S

I Go&

~&z(x') &&z(y')+(inc)' — Go TS, , G, D„„'(xx')D„.P (y'y) dx'dy'
BAp' x BAy'

~
z O'Zz(x')

+(inc)' — Gp TS, , Gp D„„'(x,x') D„P (x'y)dx'.BA„x' cjA, x' (A8)

n'
ZR
I n'

I
g Zg

Zg
g

a'

(a)

nI'

n

(c) (&)
Fro. 5. Typical lowest-order mirror diagrams.

Substituting (A8) into (A4) we obtain

D..(x y) =D.'(» y)

y fp (xx„„'),'M„, „.(x', y')D, ,.'(y'y)(lx'dy', (A9)

with M„„(x,y) given by

~,.(x, y) = —(ic/&) (G I Tj.(*)j.(y& I G&

—(G
I
2g(*) I

G&~(x y) g" —(A10)

where j„and g are defined in (A3) and (A2) .
The second term in (A10) is absent if we are dealing

with electromagnetic interaction of normal Dirac
particles (for which Zz j„A„),although a similar term
(the Rayleigh-scattering term, see II") arises in the
nonrelativistic approximation in this case. This term is
present in the case of nuclear scattering due to the
electromagnetic interaction with the virtual mesons;
however, its effect is quite negligible (being frequency-
independent and of the order of nuclear Rayleigh
scattering) in the low-energy resonance scattering
regions of interest to us. The 5 matrix is obtained from
D„,fEq. (A1)7 by letting t, ++ pp and t„+ p—p, which-, —
if we go over to a momentum rather than a space repre-

sentation of D, gives Eq. (1).The Feynman potential
results from letting t„~ pp in (—A1) and subsequent
equations and yields Eq. (6) of the text.

APPENDIX B

In Sec. III we approximated the eGect of "mirror
terms" and obtained multiple-scattering equations
LEqs. (22) and (23)$ of the classical form. In this
Appendix we wish to show that the "quantum correc-
tions" to these equations will be quite small for cases
of interest. For this purpose we consider the scattering
from two atoms in some detail. This example will also
serve to illustrate certain interesting features of multi-
atom resonant scattering.

Before getting involved in detailed calculations we
first note that Eq. (23) for the incident wave on atom i
can be written

A'=A'+g~;~+~'LA, + g b,.+~~APj
jwi k&', J

+Pb,"+M'5 "+M'A', (I31)

where the last term on the right of (H1) represents the
(leading) mirror contribution. The summand of this
term is of the order L f; f, exp(2ikpR;;)/(R;;)'jA',
where f; and f; are the scattering amplitudes. Summing
over j, we obtain approximately

L
—if;(f;)lI,p exp(2ikpa) /a'jA',

where a is the lattice constant. For x-ray wavelengths
the coe%cient of A' is (&I. For example, for the Fe'~
resonance radiation, f„„,i 6X10 " cm (assuming no
Zeeman splitting), fe~6X10 " cm, a~2.5X10 ' cm,
and the contribution from the mirror term will be 2X
10 'Ai and thus quite negligible. The point of our
further treatment is now to show that the quantum
corrections" do not change this estimate and, secondly,
to show, as a matter of some interest, that for a sharp
nuclear resonance the fractional error in our expression
for the "elastic" mirror term (see below) is of the order
of I"/Lop.

For two atoms, typical mirror terms which can occur
are shown in Figs. 5 (a) —5(c) . These terms, and higher-
order mirror terms, give the eGect on atom i due to the
response of atom j (or the surrounding "medium") to
the field emitted (scattered) from atom i.
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In Fig. 5(a) the state of atom 1 during the time
tllat a photon is being exchanged with atom 2

is the same as the initial ground state
I n(1) ). As we

shall see below, this. type of mirror term is correctly
accounted for by Eq. (23). We shall call this type of
mirror term an "elastic" mirror term.

In Figs. 5(b) and 5 (c) atom 1 is in the ground state

I
u'(1) )t'W

I u(1) )7 or an excited state
I
e'(1) ) during

the exchange time t„—+t„.. Ke shall call these terms
"inelastic" mirror terms. It is important to note that
for coherent elastic scattering, the Anal states for atoms
1 and 2 must be the same as the initial states. Thus the
transitions 0.—+rt~n', n~~' can only contribute to
the coherent elastic scattering through "inelastic"
mirror terms, such as shown in Figs. 5(b) and 5(c).
These are of course purely quantum processes, whereas
the elastic mirror processes have classical analogs. The
"inelastic" mirror terms are not accounted for by

Eq. (23), but, as we shall see, these contributions have a
negligible eGect on the equations for the coherent 6eld.

In computing the elastic mirror term contribution,
Fig. (Sa), the time integrations must be restricted so
that (t„, t„) are both less than or both greater than
(t„., 3 ) . The contribution of Fig. 5(a) is thus given by

d4xd'sg'd'sgd4y d4s2'd4s2

X~„~(x)*&V„,&u (x, s, ') ~,(.,', s,')

X~gx (s21 s2) ~+(s2y sl) Mkr (sl) p) +y ($) q (82)

where the time integrals involving atom 1 are carried
out with the above restrictions. As we discussed at the
beginning of this Appendix, (82) cc ( f&)'f2 and will be
of most importance in the case that all three scatterings
correspond to (sharp) resonance transitions. For this
case M"' is given by

X„„&@(x,y) = —i+Ã„„&"(x, y, n) exp( —i(E„—E —il'„/2) (t,—t„))l(t,—t„), (83)

in correspondence with Eq. (33) . Substituting (83) into (82), the time integrations for (t„, t.,)((t„,t,) give the
factor

where

2~~(~x—~0) exp(~ko(l »' »'
I + I »—z& I) )

+E =m+6 )
(Q(1) )'Q(2)

I
zi' —z2' Ij z2 —zi

I

28 (cog —Mo) DaoAE(2) —o'7 exp (—0 (I z&' —z2'
I + I z2 —z& I) )

(Q(1) )'
I

I:~'+(~E(2) )'7(~'+~o')

(84)

(84')

t'a)o —AE(2) +-',ir
F (koRg2) . (85)

The time integrations for (t„, t„))(t„, t,) give only a
term e"~(Q(1)/I ~0+E(1)7)'e'&&e'. Thus near reso-
nance (e'+e")/m (I'/Coo) F(koan) and we see that
the "quantum corrections" are quite negligible.

~'Actually, radiative corrections such as shown in Fig. 5(d)
will contribute terms also of the order of the error term which we
computed, but the above suKces for an order-of-magnitude
cgfirnp, te of the err' inyolygd,

In Eqs. (84) and (84'), Q(i) =
I k, —DE(i) +2iI'7 and

DE(i) =E„&o—E &,~. The leading term m in (84) is the
term that would be obtained with no restrictions on the
time integrals involving atom 1 (which is equivalent
to our approximation for the mirror term), and e' gives
the "quantum" correction/' The integral in (84') is of
the order of I cvo+E(2)7 'F(koR~), where F(koan) 1
for koR&2«1, and (koR&2) ' for koRq2»1 Thus .the
relative error (e'/m) is given approximately by

The form which we obtain for the "quantum correc-
tion" e' can be understood in the following way: The
correction arises from the fact that in the integrations
over time for processes represented by Fig. 5(a),
(t„., t,) are restricted to occur later than (t„, t„);but
if the lifetime of the "mirroring" state of the nearby
atom is long, then the main contributions to the mirror-
ing process will occur for t„—f., (I'&g) ' and the
relative error introduced by formally extending the
integrations to t„&t„(whi hcyields our approximation
for the mirror term) is only of the order of (I'&2~/&do), in
accordance with (85). If the "mirroring" should be due
to a nonresonant reQection, e.g., the electronic contri-
bution, the relative error 1XF(koRu). For this case
the relative error is still quite negligible for koR&2»1,
but more importantly the (leading) mirror term itself
is proportional to the scattering amplitude of atom 2
and is quite negligible for nonresonant scattering.

Ke have thus verified that the quantum corrections
to the "elastic mirror" term give a negligible correction
to our multiple scattering equations (23). Equations
(23) do rot include the effects of inelastic terms
Le.g., Figs. 5(b) and 5(c)7; however, it is quite easy
to show that generally these terms are no larger than
the elastic mirror terms and thus are similarly negligible.
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A ('& Ao+b„+M(')A(o)

A ('& Ao+b„+M(i&A (86)

and, for kp
I
R—R;

I
»1, the elastic scattered wave A'

I Eq. (22) 5 is given by

exp(okoR)
A„'(R) = g exp( —ikf R;)E j=]

XM„„(o(kf, k)A„("(R;), (87)

where R= —iVR, , and

k, = limk, (R.—R,)/I R—R, I.

For the near-resonance case being considered, the
scattering operator is given by

M„„(k,k')

=j."(—k)j' (k')/I:ko —(»—E.)+oil'5, (88)

Resonant Scattering from Two Identical Atoms

We now wish to discuss the resonant scattering from
two identical atoms. This problem has been treated in
Refs. 18 and 19 (J.P.H. , M.A. thesis) and serves to
illustrate several interesting features which occur in
multiatom resonant scattering (and emission) .

For simplicity we shall assume that the Zeeman
sublevels of the ground and excited states are suK-
ciently separated so that for a particular incident
frequency, p&p (Eb E ), we only need to consider the
transitions from

I
a)=

I J„m,) to
I
b)=

I
Sb, mo). Both

atoms are assumed to be initially in the state
I a).

For two atoms the coherent-field equations (23) are
explicitly

where

j„(ak)= exp(haik x)j„(x)dx

is the Fourier transform of the current density j„(x)
and the superscripts ab(ba) indicate the matrix ele-
ments of j„(&k) between the states

I a), I b) (b, a) . I' is
the total width of the excited level b and is equal to
Ll' +I'~(b)5, where I' is the width for inelastic and
absorptive processes, such as internal conversion, and
I'~(b) is the radiative width of level b, which is given
by

oi'. (b) = —ImZ, dk j'"(k)j "b(—k)
a/ 7l

X[k' kp'—ii)5—'

= —Imp dxdy j„"'(x)
a)'

exp(ik(&
I
x—y I) . „

From Eqs. (87) and (38) we see that the scattered
wave A„' is given in terms of the quantities

M„„("(kr, k) A „("(R;)—=j„(—kf) S(", (310)
where

S"'=j„'(k)A „('&(R;)/Lko —(Eo E,) +i' I'5 ——(31.0')
S&" corresponds intuitively to the amplitude that the
atom i is in the excited state

I b), and we shall refer to
the S"' as "excitation amplitudes. "

It is easier to solve for the scalar excitation ampli-
tudes S(') than for the four-vectors A„"'. Contracting
Eqs. (86) with j„o'(k), we obtain the equations
determining S&'):

I ko —(Eb—E,)+ioi'5S' =j '(k) a exp(iko R,)+ j ( —k)S('&
exp(ikpR») .

12

(311)

From (311) we easily obtain

Lkp —(Eo—E,) +ioi'5S(') =j o~(k) a„o exp(iko. Ro) + j„~( k)S(»—exp(ikpR»)

21

S(')=j„"(kp)a„o-,'tLexp(iko R,)+ exp(ikp. R;)5/Q(+)+Lexp(ikp R,) —exp(ikp R,)5/Q( —) I,
where i=1,j=2 or vice versa, and Q(&) is given by

(812)

exp(ikp
I Ri+yi —Ro—yo I) .Q(~) =k,—(E,—E.)+o-', rW j„o (x,) jq (xo) dxidxo

I
R,+y, —R,—x,

=kp —(Eo—E,) +io I Wj„'(k)Lexp(ikoR») /R»5j„"( k) . — (813)
In the last line of (813) k= —iVzi. From Eqs. (812), (810), and (87), we obtain the scattered wave

A„'(R) =
I exp(ikoR)/R5j ' (—kr)jP (ko) a„

X ', I(Q(+) ) 'Lex-p(i(ko —kz) 'Ri)+ exp(i(kp. Ro—kf Ri) )+ exp(i(lro. Ri—kf Ro) )+ exp(i(kp kr). Ro)5—

+(Q( —) ) 'I exp(i(kp —kr) Ri) —exp(i(k, R,—kr. Ri) )—exp(i(ko Ri —kf Ro) )+ exp(i(k, kr) Ro)5—I.
(814)
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It is convenient for further discussion to dehne the
quantities g(o, E(+), and r, (&) as

exp(tkp I
Ri+xi —R,—x, I)

jo (i)
I Ri+xi —Rp+xs I

&&j„"(x,)dx&dx,

=j„"(k)[exp(ikp&»)/Asj j„"(—k), (815)

E(+)=Eke Re(g(o), (816)
-', r, (a) =-,'r, (b, a) W Im(g~). (817)

In (317) r~(b, a) is the partial radiative width of
level b that is associated with the transition b +a [e.g—.,
F (b, a) =C'(J,LJb,' m„mp m—) r~(b), where C is the
Clebsch-Gordan coeKcient for transition bka) Wit.h
r~(&) and E(+) given by (816) and (817), Q(&) is
now given by

Q(~) = [kp —(E(~)—E.)+is (r'+rv(~) )j (813')

where F' represents all contributions to the total width
of level b, except the partial width F7(b, a) [e.g., F'=
F„+g. q.C'(J, LJp, m, , mp —m ) F,(b) g.

For simplicity of further discussion we assume a pure

multipole transition (L, l) [L=/, l+1; (l, l) indicates
an M(/) and (/+1, /) an E(l+1) transitionj.

As shown explicitly in II,'7 for an (L, l) transition,
we can utilize (89) to obtain

j"(k)j (—k) = —(r (» )/2k)E (g) (31g)

In Eq. (818)

FzM (g) =-,'[(d,~«) (g) )p+ (d,M«) (g) )pj(2L+1)
where the notation for the rotation matrices dq~~~& is
that of Rose,"M=m~ —m„and 0 is the angle between
the direction of k and the quantization axis z. Thus, in
the region koEz2&)1, where we can replace k by kz& ——

k, (Ri—Rp)/I Ri—Rp
I

in Eqs. (815)—(817), E(W)
and I"~ are given by

E(+) =Ep&-', r, (b, a) Pz/)t(g) cos(kent»)/(kpR»)

(316')
I', (&) = F,(b, a) [1aFz)(r(g) sin(kpg»)/(kpg») ).

(317')

To obtain r~(&) and E(&) in the region kpR»&&1,
we first note that we can write g(o (315) as

dk j 'e(k)j 'p( —k) exp(ikp R») [k'—kpp —irtj '

dkj„" k j„' —k

I'V sin(k R») I'V cos(k R»)
X i. (2 ) '5(k' —k, ') coc(k Rc,)+ + —(2 ) 'b(k' —kt/) cic(k Rc,)2x' k' —ko' 2 '

(815')

If the states a and b are states of good parity, then j„"(k)j„"(—k) =j„'e(—k)j„e'(k), and the integrations over
sin(k R») in Eq. (815') give zero. In the region kpR»«1 we expand cos(k R») in powers of (kp. R») in the
imaginary part of (815') and utilize Eq. (818) to obtain

8 = —i(-', r„(b, c) )P(cickc14/kcecc)+0(k k )']—(I'„(k, c)/4 ')fek rcM(&) cctc(k Rc )Pr(ck()r k,') j '). —

(815")

Thus we see from (815") that if the two atoms are
much less than a wavelength apart, then the (partial)
radiative widths r~(&) are given by

r, (~)=r, (b, a) 1a sin(kent»)
&O(kpR»)', (817")

kpR12

The (+) and (—) quantities in Eqs. (812)—(817")
refer to the symmetric and antisymmetric semistation-
ary excited states,

I &)=(1/v2)[I a(1)) I b(2))&
I b(1) ) I

a(2) )], whose virtual excitations are respon-
sible for the scattering. If the separation is small
compared to the wavelength (kent»«1), then we see
from (317") that the (partial) radiative width of the

symmetric state, r~(+), is twice the single-atom
(partial) radiative width r~(b, a) (corresponding to a
multipole moment V2 times that of a single atom),
whereas F7(—) O(kpR»)' (corresponding to the next
higher multipole order). As the separation increases

r~(+), r~( )~r~(b, a). The —energy shifts (E(&)—
Ep) are large for kent»«1, 'while for kpR»))1, E(&)—+

The intensity of the scattered radiation is propor-
tional to

I
As I' [Eq. (814)j, and we see that as the

kk M E Rose, Elementary Theory of Angtttar 3Amentttm {Jo»
Wiley @ Sons, Inc. , New York, 1957), pp. 32—48.
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incident frequency is Doppler-shifted, two scattering
peaks will occur—a peak of width I"+I'~(+) at the
frequency a&s= (E(+) E,)—, corresponding to reso-
nance fluorescence from the symmetric state, and a
peak of width I"+I'7( —) at the frequency Mp

——

(E(—) E,),—corresponding to resonance fluorescence
from the antisymmetric state. The fact that the
radiative widths can be broadened or narrowed in
multiatom resonant scattering is a characteristic
feature of such scattering and has been discussed by
several authors. ' ""

We also note from (312) and (814) that it is possible
to selectively excite the symmetric or antisymmetric
state. If ko R»=2', then we see that only the sym-
metric mode will be excited, while if kp'Ris= (20+1)7r,

then only the antisymmetric mode will be excited. In
particular, if koR»«1, the first term of the bracket in
(814) ~4/Q(+), while the second term 0. Thus if
the two atoms are much less than a wavelength apart,
the interaction is entirely with the symmetric state.
The (partial) radiative width in this case is twice that
for a single atom, and the emitted radiation is four

times as intense oG resonance, and

4
( I"+I'7(b, a) &'

(I"+21'~(b, a)j
times as intense at resonance t o&s ——E(+)—A j.

The above results are of course intuitively obvious
from classical considerations. If two identical multi-
poles are vibrating in phase with a separation much
less than a wavelength, the emitted radiation is of the
same multipole order, with Geld amplitudes twice as
large and with radiated intensity four times as great
as for a single multipole, and hence the symmetric-state
radiative width is I'~(+) 21'~. However, if the
currents are 180' out of phase, then for hot»«1 only
higher-order multipole radiation is emitted and
I'~( —) 0. (For example, two electric dipoles vibrat-
ing 180' out of phase become an electric quadrupole
current source for ksRis((1). If kp'Ris=2nx. , then the
currents are driven in phase and only the symmetric
state is excited, while if ks Ris ——(2m+1)x, then the
currents are driven 180' out of phase and only the
antisymmetric state is excited.
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Intermetallic Compounds
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The appreciable variation of the gadolinium hyperfine fields from one compound to another in GdX2
(X=Rh, Ir, Mn, Pt, Al) is explained by interaction of the nucleus with the conduction electrons. These
electrons are polarized by their exchange interaction with the Gd ion. This interaction was investigated
experimentally by measuring the Gd g shift by means of electron spin resonance. The g shift was found
to vary in both magnitude and sign in these compounds. A relation between the Gd hyperfine field and the
Gd g shift is derived, enabling us to calculate the hyperfine field per spin for 6s electrons in GdPt2 to be
2.8X10' G.

INTRODUCTION
" "N a recent letter, Gegenwarth et al.' reported on the
. „gadolinium hyperhne fields in the magnetically
ordered state for several GdX2 cubic Laves phase
compounds. They found that the hyper6ne fieMs vary
considerably from one compound to another. According
to Gegenwarth, the hyperhne 6elds in Gdx2 compounds
result from two main phenomena: (1) core polarization'
and (2) interaction with valence electrons.

On the assumption that core polarization remains
constant from sample to sample, any variation in the
hyperlne delds should be attributed to interaction with

' R. K. Gegenwarth, J.I.Budnick, S. Skalski, and J.H. Wernick,
Phys. Rev. Letters 18, 9 (1967).

~ G. T. Rado and H. Suhl, in SIagnetism (Academic Press Inc. ,
New York, 1965), Vol. AII, p. 237.

the valence electrons. Gegenwarth stressed this point
but did not specify the mechanism of the interactions.
It is the purpose of this paper to present further experi-
mental results on the Gdx2 compounds and to explain
the origin of these hyper6ne 6elds.

In electron spin resonance (ESR), we measure the
exchange interactions between the Gd ion and the
conduction electrons. Since these interactions are re-
sponsible for the variation in the hyperfine fields (as
will be explained later), we believe that ESR measure-
ments are best suited to the above-mentioned purpose.

RESULTS AND DISCUSSION

The KSR of gadolinium in powdered samples of
GdXs (X=Rh, Ir, Mn, Pt) and GdN was measured
as a function of temperature, from liquid nitrogen to


