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The theory is developed for the temperature and magnetic 6eld dependence expected for the energy of
long-wavelength spin waves in ferromagnetic heavy rare-earth metals. Emphasis is placed on examining
magnetoelastic e6'ects on the spin-wave energies. The resulting theory is applied to understanding recent
neutron inelastic-scattering and ferromagnetic-resonance experiments in Tb and Dy. For Tb and Dy,
comparison of theoretical predictions with the experimental results, especially the magnetic 6eld dependence
of the uniform-mode spin-wave energy, precludes the applicability of the frozen-lattice approximation
suggested by Turov and Shavrov for magnetoelastic effects on spin-wave energies. The most striking
point found in the present work is the contrast between the behavior of Tb and that of Dy. For Tb, the
magnitude of the planar anisotropy constant found in static measurements is much smaller than the value
necessary for agreement with the spin-wave experiments, i.e., neutron inelastic scattering and ferromagnetic
resonance, which are mutually consistent. In contrast to this puzzling discrepancy for Tb, for Dy the
static measured planar anisotropy constant gives absolute calculated values for the spin-wave behavior in
excellent agreement with the results of ferromagnetic-resonance experiments.

1. INTRODUCTION

EARLIER studies' ' have treated the nature of spin-
& wave excitations in the heavy rare-earth metals.

These studies, however, did not discuss the temperature
dependence of the spin-wave energies in any detail, nor
did they include magnetoelastic e8ects. The present
paper is intended to include such eGects for long-wave-
length spin waves in the ferromagnetic regime, and to
apply the resulting theory to understanding the relevant
recent experimental results. The relevant experiments
are neutron inelastic scattering for Tb and ferromagnetic
resonance for both Tb and Dy. Since applied-field
effects on the ferromagnetic spin waves play an im-
portant role in separating out and understanding the
various e8ects present, they are treated in somewhat
more detail than in the previous work. '

In a recent note' we have pointed out the importance
of magnetoelastic eGects for understanding both the
equilibrium and excited-state magnetic properties of
rare-earth metals. It was shown that the driving force
for the spiral to ferromagnetic transition in Dy and Tb
is the energy of cylindrical symmetry associated with
the lowest-order magnetostriction eSects. We also
brieRy mentioned the expected effect of magnetoelastic
forces on the spin-wave energies. These ideas are treated
in more detail in the present note. In particular, we
show that for both Tb and Dy results of neutron
inelastic scattering (done for Tb only) and ferro-
magnetic-resonance experiments preclude the appli-
cability of the frozen-lattice approximation suggested
by Turov and Shavrov' for treating magnetoelastic

~ B. R. Cooper, R. J. Elliott, S. J. Nettel, and H. Suhl, Phys.
Rev. 127, 57 (1962). Referred to as I in the text.

~ B.R. Cooper and R. J. Klliott, Phys. Rev. 131, 1043 (1963);
153, 654(E) (1967).' B.R. Cooper, Phys. Rev. Letters 19, 900 (1967).

4 E.A. Turov and V. G. Shavrov, Fiz. Tverd. Tela7, 217 (1965)
LEnglish transl. : Soviet Phys. —Solid State '7, 166 (1965)j.
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effects on spin-wave energies. Turov and Shavrov
suggested that the correct way to 6nd the uniform-mode
frequency is to regard the strain as frozen at its equi-
librium position. Then, in the excited state, the relative
orientation of moment and strain changes, and there is
a net increase of energy relative to the equilibrium
state, even though the equilibrium energy associated
with the magnetostriction has cylindrical symmetry.
However, comparison of the results of the present
detailed calculations with experiment, as discussed
below, suggests, to the contrary, that the strains move
with the motion of the magnetization for the long-
wavelength modes.

The most striking point found in the present work is
the contrast between the behavior of Tb and that of
Dy. For Tb the magnitude of the planar anisotropy
constant found in static measurements' is much smaller
than the value necessary for agreement with the spin-
wave experiments, i.e., neutron inelastic scatteringII'~ ~'

and ferromagnetic resonance' which are mutually
consistent. (This discrepancy in magnitude of the
planar anisotropy has already been pointed out by
M )lier ef g/. ' for the neutron inelastic scattering
experiments. ) If the frozen-lattice approximation were
applicable, the spin-wave energies would be larger
than those expected using the value of the static planar
anisotropy constant and not including any frozen-
lattice eftects. This is true because when the frozen-
lattice approximation applies, the lowest-order energy

5 J. J. Rhyne and A. E. Clark, J. Appl. Phys. 38, 1379 (1967).
6H. Bjerrum Mgller, J. C. Gylden Houmann, and A. R.

Mackintosh, Phys. Rev. Letters 19, 312 (1967).
'H. Bjerrum MP]ler, J. C. Gylden Houmann, and A. R.

Mackintosh, Sixth Rare Earth Conference, Gatlinburg, Tennessee,
1967 (unpublished) .

a H. Bjerrum Mpller, J. C. Gylden Houmann, and A. R.
Mackintosh, J.Appl. Phys. 39, 807 (1968).

8 D. M. S. Bagguley and J. Liesegang, J. Appl. Phys. 37, 1220
(1966); Proc. Roy. Soc. (London) A300, 497 (1967),
28I
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associated with magnetostriction (of cylindrical sym-
metry) would contribute to the spin-wave energy, but
not to the static planar anisotropy constant. However,
the experimental temperature and field dependence of
the spin-wave behavior rules out the applicability of
the frozen-lattice approximation.

In contrast to the puzzling discrepancy with regard
to size of planar anisotropy which occurs for Tb, for
Dy the static measured anisotropy constant ' gives
absolute calculated values for the spin-wave behavior
in excellent agreement with the results of ferromagnetic-
resonance experiments. "" Moreover, the detailed
temperature dependence of the resonance field in Dy is
in excellent agreement with theory when the frozen-
lattice approximation is inapplicable. Thus, once one
decides that the frozen-lattice approximation does not
apply, the absolute agreement between theory and
experiment for the spin-wave behavior in dysprosium is
excellent.

2. TEMPERATURE AND FIELD DEPENDENCE OF
SPIN-WAVE ENERGIES FOR FERRO-

MAGNETIC HEAVY RARE EARTHS

%e begin our detailed discussion by generalizing the
results of Cooper et at.' (referred to as I hereafter) to
include the temperature dependence of the spin-wave
energies. We also give a more complete description of
applied-field effects than is found in I.

We discuss the spin-wave excitations for a ferro-
magnetic system characterized by the following
Hamiltonian:

X=—Q J,;8,'8;—Q fP,SP——',Pg'XL(S p

+ S' )'+(S' S' )'3I (2 1)

Here and throughout this paper S denotes total
angular momentum, spin+orbital —the usual J. There
is an exchange term of a Jong-range, oscillatory char-
acter, a large axial anisotropy term which guarantees
that the equilibrium magnetic arrangement is planar,
and a hexagonal planar anisotropy term. The easy
direction for the planar anisotropy is taken as the P

axis; and in the absence of an applied magnetic field
the ferromagnetic alignment is in that direction. With
the further inclusion of magnetoelastic effects, to be
discussed below, this Hamiltonian quite adequately
describes the behavior of Dy and Tb in the ferro-
magnetic regimes. (As shown in I to lowest order in

1/S, i.e. , neglecting zero-point motion effects, higher-
order axial-anisotropy terms do not contribute to the
spin-wave energies when the equilibrium magnetic
arrangement is ferromagnetic alignment in the planes
perpendicular to the c axis. )

As shown in I, it is a straightforward procedure,
taking a coordinate system with the s axis along P and
using the standard Holstein-Primako6 transformation
technique, to 6nd the spin-wave energies for the
Hamiltonian of (2.1) . These are

~(q) = S 'I
l
—2P2S'+2S' J(0) —2S' J(q) —6P,'S6)

&(L2S J(0) —2S'J(q) —36PB'S'$I '~2 (2.2)
with

J(q) —=g J;, expLiq (R;—R;) j. (2.2')

This then gives the spin-wave dispersion law at T=0 for
a ferromagnetic arrangement along the planar easy axis
as in Dy or Tb. (The treatment of I, and that of the
present paper, treats the hcp lattice as a Bravais
lattice. This gives the correct results for the acoustic
spin waves which are of interest to us, and actually
gives the exact result for all energies for q parallel to
the c axis. The hcp lattice is not a Bravais lattice, so
that the spin-wave spectrum strictly speaking has two
branches, an acoustic and an optical branch. Niira"
treated this problem by considering two interpene-
trating hexagonal Bravais lattices. ) The expression in
(2.2) neglects terms from the P2 and Pq' contributions
arising from commuting spin operators for the same
site. Such terms go as 1/S compared with the retained
terms and thus are expected to give small contributions,
i.e., S='&' for Dy, S=6 for Tb.

The spin-wave dispersion law given by (2.2) holds
at T =0. It is a simple matter, however, to see approxi-
mately how the spin-wave energies should decrease
with increasing temperature. This is most easily done

by using an approximation regarding the renormali-
zation of the anisotropy parts at low energy (long
wavelengths) and that of the exchange part at high
energies separately.

The renormalization of the anisotropy terms is
accomplished by considering the phenomenological
macroscopic theory developed by Smit" ' for treating
ferromagnetic resonance in highly anisotropic materials.
That theory determines the resonance frequency and its
temperature dependence. The ferromagnetic-resonance
frequency is the frequency of the q=0 mode, and the
particular renormalization arrived at is appropriate for
long-wavelength spin waves. The anisotropy terms in
(2.1) correspond to a free energy of the form

F=X2(T) sin'0+X~(T) sin'8 cos6&, (2.3)

where E2 and E6 are the macroscopic temperature-
dependent anisotropy constants. Then the frequency of
the q=0 mode is given by

6(o(0) = (gP/M) (FggF~p Fep')'I', —

' S. H. Liu, D. R. Behrendt, S.. Legvold, and R. H. Good, Jr.,
Phys. Rev. 116, 1464 (1959).' F. C. Rossol and R. V. Jones, J. Appl. Phys. 37, 1227 (1966)."F. C. Rossol, Ph. D. thesis, Harvard University, 1966 (un-
published) .

"K. Niira, Phys. Rev. 117, 129 (1960)."J. Smit and H. G. Seljers, Philips Res. Rept. 10, 113
(1955).

~4 J. Smit and H. P. J. Wijn, Ferrites (John Wiley 8z Sons, Inc. ,
New Vork, 19S9), Chap. 6.
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where g is the Lande factor, p is the Bohr magneton, M
is the magnetization, and F~g, etc., denote second
derivatives of the energy with respect to angle eval-
uated at the equilibrium position, 0= sin. , &=0.

Fss =—O' F/88'. (2.5)
This gives

~(0) = (gPIM) {[2&s(&)+6&s(&)][36&s(&))}"'
(26)

The temperature dependence of fio~(0) can be intro-
duced explicitly into (2.6) in terms of the reduced
magnetization using the theory of Callen and Callen"
for the temperature dependence of the macroscopic
anisotropy constants.

5(v (0) = (gp/M) {(2Es (0) Is/s[2 '(o ) )+6Es (0)

X»s/s[& '(&)])(36&s(0)Ils/2[& '(o)))}'" (2 7)

Here, I&s&+il/s[& '(o) ) is the ratio of hyperbolic Bessel
function of order si(2t+1) to that of order si, where
the argument of the Bessel functions is the inverse
I.angevin function of the reduced magnetization. For
low T, I&si+i&/s goes as o' '+"; while as m~0, X&si+i&/s

goes as cr'. Actually, the low T o-'('+'&", approximation
is usually good for most of the ordered temperature
range.

Then by comparison with (2.2) the temperature
renormalization of S~o(q) in the limit q—+0 is clear.

h&v(0) = (o.S) '{(—2P,S'Ipse-'(o) )—6Ps'S'

X»s/s[& '(o)))( 36Ps'S'»s/s[& '(&)])}'" (28)

Thus, the anisotropy terms in the spin-wave energy are
renormalized as the corresponding anisotropy field,
i.e., as the corresponding anisotropy energy divided by
magnetization. Liesegang" used such a renormalization
scheme in discussing his resonance results (although the
correct dependence of anisotropy energy on reduced
magnetization was not used); and MlSller et al.s i' have
also used an equivalent scheme for discussing their
neutron inelastic scattering in Tb.

The simplest, reasonably accurate way to renormalize
the exchange contribution in (2.2) is to use the random
phase approximation (RPA), and multiply the ex-
change-energy terms by a factor 0'.

fur(q) = (o S)-'{(—2Ps S'Is/s[Z —'(o) ]+2o'S'[J(0)
—J(q) 7—6Ps'S'&»/s[~ '(o) 7)(2o'S'[J(0)

—J(q) ]—36Ps S I»/s[g '(o.)])I'/'. (2.9)

As the anisotropy terms vanish, the RPA gives spin-
wave energies renormalized proportionally to the
reduced magnetization. The RPA approximation is

accurate in the high-energy limit. Thus, this simple
approximation should be accurate both at low energies
where the anisotropy terms dominate and have been
correctly normalized as q

—+0, and at high energies
where exchange dominates and is properly normalized
by the RPA. A renormalization scheme equivalent to
this was used to discuss the spin-wave spectrum for Tb
by Mitller et at.s i'

Now, following the treatment of I, we consider the
effect of an applied magnetic field on the spin waves.
For Geld parallel to the easy axis, the spin-wave fre-
quency simply increases monotonically with applied
field. Then the spin-wave frequency of (2.2) becomes

fuo(q) = {(—2PsS[Is/s/o)+2o S[J(0)—J(q))
—6Ps'S'[»s// )+gPH)(2 S[J(0)—J(q))

—36Ps'S'[»3/s/o 7+gPH) }'/ (2.10)

Here we adopt the convention used through the
remainder of this PaPer, that whenever I&si+il/s aPPears,
the argument is understood to be 2 '(o).

For the q=0, uniform mode observed in ferro-
magnetic resonance, the appropriate demagnetizing
fields should also be included:

M(0) = {( 2PsS[Js/s—/o) 6Ps'S'(I»—/s/0)

+gP[H —(Es—Per) M])X (—36PssS'[»8/2/o']

+gp[H (Xs—X )M))—}'/' (2.11)

Here N», N„and N~ are the demagnetizing factors
along the three axes. In (2.11) we note that the sign of
the demagnetizing factor has been corrected from that
given in (8.8) of I. With our sign conventions, Ps and
Ps are negative (i.e., $ is an o axis for Dy and a t/ axis
for Tb), while g and the X; are positive. In practice,
one can usually perform the experiments in such a way
that demagnetizing eGects can be neglected. The
demagnetizing factor along the c axis, N~, appears only
in the factor where the very large eGective axial
anisotropy field appears. In this factor all applied-field
effects can usually be safely neglected. On the other
hand, the demagnetizing factors in the plane, N~ and
N„, can usually be made negligible by using a sample in
the form of a thin disk with the c axis as normal.

The effect of an applied field along a hard planar
axis as treated in I is much more interesting than that
for a 6eld along an easy axis. Such an applied held pulls
the magnetization away from the easy axis. The
Hamiltonian for this system is

BC= —Q J;;S,'S;—Ps+Sr'+-', Pss+$(S;s+i S;„)'
iAj

+(S,s iS,„)'5 gPH cos—-', 7r+S;s —gPH sin's7r+S;„. —

'~ H. 3. Callen and E. Callen, J. Phys. Chem. Solids 2'?, 1271
(~966'."I. Liesegang, D. Phil. thesis, University of Oxford, 1966
(unpublishedl .

(2.12)

The effect on the spin waves as the magnetization
moves toward a hard axis can be seen by transforming
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FERROMAGNET H ALONG HARD PLANAR AXIS

e {0I
g{k j

to a coordinate system with s axis along the equilib-
rium-magnetization direction for the applied field. '

y= —$ sin5+r/ cos8,

s=$ cos8+r/ sin8. (2.13)

Here 5 (the angle between the direction of magnetiza-
tion and the easy axis) is determined by the condition
that the equilibrium energy be minimized.

0= —6''S'Iiq/2 sin65+gPHSo sin(B —om-), (2.14)

or with
(2.15)

this becomes

0 = —12P,'S'Iiq/2( —1+4 cos'P) (4 cos'P —3 cosP)

—gpH So. (2.16)

so that 8 =-,'m, and alignment along the hard axis occurs
for II=36H~, where

H

FIG. 1. Field variation of co(0) and co(kp) for ferromagnet with IJ
along the hard planar axis. III,= —I'6'S'I13I2/gpo.

&o(lro) goes to zero and the spin arrangement Qops to a
fan centered. about the hard axis. LThis is assuming
that the exchange energy itself favors a spiral so that
the maximum of J(q) is at q=ko.j The behavior of the
uniform-mode spin wave is then as shown in Fig. 1. As
field increases still further above 36H/„~(0) increases
from zero and the fan closes up to a ferromagnet
aligned along the hard axis.

In Fig. 1 the situation corresponding to a relatively
low signal frequency is also indicated. Ferromagnetic
resonance occurs when the signal frequency matches
the frequency of the ~(0) mode. Thus, for low fre-
quencies (less than 30 GHz, say) one expects to ob-
serve resonance for fields near 36'. As the signal
frequency increases, one should in principle observe
two resonances on either side of 36', although the
lower field resonance may be lost among domain align-
ment eGects. Finally, at high signal frequencies, one
should observe only a single high field resonance.

3. MAGNETOELASTIC EFFECTS AND
EQUILIBRIUM STRAINS

As already brieAy discussed by the present author, '
in addition to the exchange and anisotropy terms
already treated in Sec. 2, a third type of energy con-
tribution is quite important for understanding the
magnetic behavior of the system of tripositive rare-
earth ions having localized moments. This is the energy
associated with magnetostriction effects. Then the
Hamiltonian for the spin system is

X=XEx+XcF+KMs. (3 1)

Here XEX and Xc,p are the exchange and crystal-Geld
anisotropy terms, respectively, as already given in
Sec. 2.

The third term, XMH, comes from magnetostriction
effects arising from the modulation by the strain of the
crystal-field splittings. LThe presence of an apphed
field, of course, adds a fourth term, the Zeeman energy,
to (3.1).)

H/ = Ps'S'~a3/2/gPo— (2.17) ~MS ~K+~M. (3.2)

is a convenient notation used below.
Using the transformation of (2.13), it is a simple

matter to find the Hamiltonian correct to quadratic
terms in S;, and 5;„. The diagonalization of the
Hamiltonian then proceeds in the usual manner. This
gives

&~(%) = {(2So[J(0)—J(%)3—2P2S(I5/~/o)

—6Pq'S' cos65 (Ii3/~/o) +gPH cos( —',m
—5) )

X (2SoLJ(0) —J(q) $—36P6'S~ cos68(I13/Q/0)

+gpH cos(-', ~—b) ) I'/'. (2.18)

We see that cu(0) =0 for H=36 H/„. That is, &u(0) goes
to zero just when the moment is pulled fully around to
the hard axis. Actually, for a Geld slightly less than this,

Here XE is the elastic energy associated with the
homogeneous strain components, and XM is the
magnetoelastic interaction, coupling the spin system to
the strains.

We have already mentioned in a brief note' that the
driving force for the spiral to ferromagnetic transition
in Dy and Tb is the energy of cylindrical symmetry
associated with the lowest-order magnetostriction
eGects. Basically, the spiral arrangement serves to
restrain ("clamp" ) each successive plane along the
c axis from developing the strain that would minimize
the combined elastic and magnetoelastic energy.
Transition to a ferromagnet allows such energetically
favorable strains to develop. We now present this
treatment in more detail than was possible in our
previous brief communication. This treatment will
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+MS= +E++M) (3.3)

where EF is the elastic contribution and EM is the
magnetoelastic contribution.

The elastic contribution to the free-energy density
is of the form

also have the benefit of introducing the notation used
in discussing magnetoelastic eRects on the spin-wave
energies.

Accordingly, we treat the magnetostriction contribu-
tion to the free energy for a hexagonal crystal. We follow
the general treatment of magnetostriction by Callen
and Callen'~ and adopt their notation.

The total strain-dependent energy density E»
leading to the magnetostriction is

The constants 8„& ' give the phenomenological magneto-
elastic constants up to second order in the direction
cosines, n, , of the magnetization relative to the crystal-
lographic axis. The 8„&' have temperature dependence
proportional to that of the square of component of
moment along the equilibrium magnetization direction.

The equilibrium values of the strains arising from a
given net magnetization are determined by minimizing
the total strain-dependent energy density, EM& =
RE+EM, with respect to each of the strain components.
To consider the spiral to ferromagnetic transition in Dy,
we are interested in the strains developed for magneti-
zation in the plane, i.e., n~ ——0. Then we need consider
only e~~ and ep'. The equilibrium values of these strains
are

+E—
2 Cia (0n, l) 2+ C2n (0a,2) 2+C a0a10n2, ,

+2C1'L(01l') 2+ (02~) 2/+ 2ceL(0le) 2+ (0 r) 2j (3 4)

elm = (1/2cv) (n32 —n 2) Bv 2

02"= (1/c') n3n.B" (3.9)

(3.6)

where the Cartesian strains are defined as usual:

0,;=,'$(ap;/Br;)+(Bp~/-ar;) j, (i,j =c, rj, f) (3.7)

with y as the displacement of a point relative to its
equilibrium position. The c,&& are the elastic stiffness
constants which are related to the five independent
Cartesian stiffness constants by the relations

cl = ir(2cll+2c12+4cl3+c33) )

C2 = 2 (Cll+C12 4C13+2C33) ~

C12 3 ( Cll C12+C13+C33) y

c~ =2 (cl1—C12),

1" =4c44. (3 8)

"E.Callen and H. B. Callen, Phys. Rev. 139, A455 (1965).

and the magnetoelastic contribution is of the form

—B a,
&
0nl +Bn,0&a,2+B,a &2al(n 2 2)3

+B2 20a2(nnr2 ) +BY,201' 1 (n32 n 2)

+B"02"n3n„+B''01'n„nr+B' '02'nrn3 (3.5).
This includes the lowest-order magnetoelastic effects,
i.e., those arising from terms in the Hamiltonian
having quadratic dependence on spin components.

The e,» are the irreducible strains with the symmetry
of the hexagonal close-packed structure. '7 They are
related to the usual strains defined with respect to
Cartesian axes in the following manner:

0 ' =«3+&32+&rr&

"'=3 (20rr «3 ".)— —

01'=2 (023 0-)-
&~=6gg)

Then the total strain-dependent energy density for a
given net magnetization is found by substituting these
expressions into (3.4) and (3.5). In particular, for Dy
with magnetization along an easy ] axis,

EMS 2C (01 ) (3.10)

The saturation magnetostriction X =8// is given by

~tlt' 3~11 (2) +(2~3)) 12 (~) (nr —3)

+2%1 (&) (Pr2—') +V3) 22 (&) (nr2 —3) (62—3)

+» (2) I-:( 3'—,') (~3'—O,')+ 3,13@,I

+2&'(&) InnnrP2&r+«nrPAI (3.11)

011'=X&'(n32 n-')—
eP =X~n(n~) (3.12)

so that the equilibrium energy of magnetostriction is
given by

&Ms = —3C'() ') ' (3.13)

This is the term in the free energy that provides the
driving force for the spiral to ferromagnetic transition
at the Curie temperature in Dy and Tb, and that aids
an applied field in driving this transition at tempera-
tures above T,. We evaluated E&Mz in Ref. 3 by assum-

ing c& to be temperature-independent and the tem-

where the P; are the direction cosines relative to the
crystal axes of the direction of observation. (Here in

particular, the coefficient X& represents the distortion
of the circular symmetry of the basal plane by the
rotation of the component of the magnetization in the
plane. )

The equilibrium strains are given by
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perature dependence of X& to be given by the theory of
Callen and Callen'~.

(3.14)

Then, using experimental values for ) (0) and c&, we
found E&» to be closely equal to the experimental value
for the spiral to ferromagnet driving energy for a
considerable range of temperature above T,. (There is a
second, much smaller contribution to the driving
energy, the hexagonal planar anisotropy energy of the
undistorted lattice. )

4. MAGNETOELASTIC EFFECTS ON THE SPIN-
WAVE BEHAVIOR: FROZEN-LATTICE

APPROXIMATION

Turov and Shavrov4 have suggested a very pro-
vocative idea for the magnetoelastic effects on the
spin-wave energy gap at q=0 for the ferromagneti-
cally aligned heavy rare-earth metals. Basically, their
idea is as follows: The lowest-order terms in the free
energy giving rise to the equilibrium magnetostriction
have cylindrical symmetry about the c axis. (These are
the terms discussed in Sec. 3 above. ) Thus, for any
direction of magnetization in the hexagonal plane, the
strain arising from magnetostriction at some specified
angle relative to the magnetization will be the same.
Turov and Shavrov suggest that the correct way to find
the uniform-mode frequency is to regard the strain as
frozen at its equilibrium position. Then in the excited
state, the relative orientation of moment and strain
changes, and there is a net increase of energy relative to
the equilibrium state associated with magnetostriction
effects ever tholgh the eqniHbrinm energy associated with

the magmetostrictiom has cylindrical symmetry. Using the
macroscopic equation of motion technique and approxi-
mate values for the relevant experimental parameters,
they estimated this effect as giving an energy gap of
about 10'K for the q =0 mode in dysprosium. Thus, the
effects they suggest are quite significant.

In the present section we will give these ideas more
detailed treatment than is contained in the paper by
Turov and Shavrov. To do this, we consider the
magnetostriction effects on the long-wavelength spin
waves using the same sort of effective spin Hamiltonian
used by Callen and Callen' to treat the equilibrium
magnetostriction. In this treatment the strains are
treated as classical quantities. This is consistent with
the fact that the strains considered correspond to the
homogeneous strain modes for which the natural
vibrational frequencies vanish.

Then the relevant equilibrium strains to be con-
sidered are those affected by motion of the spins in the
hexagonal plane, ~i7 and ~p. [The other strain terms will

give effective fields entering into the same factor in the
expression for co(0) as the large axial anisotropy field.
Any effect caused by them will be negligible as com-
pared with the large axial anisotropy field. ) In the

—B [~~i g(5 p —S ')+~2 g(5,~5;„)] (.4.1)

Here, as in Sec. 2, we take $ as the easy planar axis.
Then H~~ is the component of field along $, and Hi is
that perpendicular to f B.& is the magnetoelastic
coupling constant, '~ and is determined using the
experimental value of the saturation magnetostriction
coefficient, )~, and the elastic constant c&. The equi-
librium strains ep and ~p are also obtained from the
experimental values of )&.

To find the spin-wave dispersion law for the Hamil-
tonian of (4.1) involves using the transformation given
in (2.13) so that the s axis is taken along the equilib-
rium magnetization direction. Then keeping the
quadratic terms gives

Se= —g J;;(5;+5;-+5,,5,,) P,+5 '—+P,6+

X (S,,' cos68 —155;.'S;„' cos68) gPH~ ~

cos8+S—;,

gPHi sin5+S;—,+-', (B&X~)Q(5. '—5,,') . (4.2)

Here we have used the relationship between the
equilibrium strains and the experimentally measured
magnetostriction coefficient )~:

e~~= —,') ~ cos28,

ep'= —,') & sin28,

(4.3a)

(4.3b)

where 8 is determined by (2.15) and (2.16) .
Then the diagonalization of 3C using spin-wave boson

operators proceeds in the usual way to give (at T=0)

h~(q) = f[2SJ(0)—2SJ(q) —2P2S—6P6 5 cos68

+gPH~| cosl+gPHi sin8+-', (B&X&5)][25J(0)
—25J(q) —36P6'S' cos65+gPH~

~
cos8

+gPHi sin8+B&X& S]}"'. (4.4)

To treat the temperature dependence of 5~(q), we

express the magnetoelastic coupling constant in terms
of )& and c&, the experimentally determined elastic
constant:

B"=3c~X~/5(25 —1) . (4.5)

Then defining the quantity D& by the relationship

3c&(T=O) (X&[T=0])'
2D&=B&(T=0))&(T=O) S=-

(2S—1)

(4.6)

frozen-lattice approximation this then gives the follow-

ing spin Hamiltonian to be used in determining the
long-wavelength spin-wave frequencies:

K= —QJ,i.S,'S;—P2+5 r'+ —i2P6'Q[(5;)+i 5; )'i'
+ (5;p iS,„)—'] gPH~ —

( QS,) gPH&—QS,„
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Equation (4.4) becomes for T=0

~(q) = [[2SJ(0) —2SJ(q) —2P,S—6Ps'Ss cos66

+gpII~~ cos8+gpIIi sinb+D&j[2SJ(0) —2SJ(q)
—36I'ss S' cos68+gpII~

~
coso+gpIIi sin5+2D&] I'".

(4.7)

To find the temperature dependence, we use the
result of Callen and Callen' that X~~Is/s[Z —'(o) j.
This has been confirmed experimentally for Dy by
Clark et al."and for Tb by Rhyne and Legvold. "The
temperature dependence of c& is expected to be small.
(For Er, where data" is available below room tempera-
ture, c& decreases slightly less than 8'//~ between 63 and
298'K.) Then the temperature dependence of the D~

term is proportional to (1/o.) (Is~s)'.
For II along an easy axis, including the T dependence,

(4.'7) becomes

A~(q) = I (2S~[J(0) —J(q) j—2I', S(I„,/~)

—6Ps'S (Ipse/o) +gpII+ (W[Is(s]'/o) ) (2 So[ J (0)
—J(q) j—36PssS'(I&s~,/o) +gPII+2W([Is~s]s/a) )I'I'.

(4.8)
For II along a hard axis, (4.7) becomes

&~(q) = I (2S~[J(0)—J(q) j—2&sS(~5/2/&)

6I'ssS' cos6—8(Iqgs/o) +gPII cos(sm —b)

+ (W[Is~s]'/o) ) (2So[J(0) —J(q) ]—36PssS' cos68

X (Ils/s/o ) +gPII cos (-,'vr —8) +(2W[I@s]'/o ) ) I 'I',

(49)
where 8 is determined from (2.15) and (2.16) .

~e have the result then that (4.8) and (4.9) give
the magnetoelastic effect on spin-wave energies based
on the frozen-lattice assumption, i.e., that for long-
wavelength excitations the strain due to magneto-
striction stays frozen in its equilibrium position. We
will discuss the relevance of this result to experiment in
Sec. 7. Before doing so, in the next section we consider
the other possible physical extreme. This is that the
uniform strain associated with magnetostriction is able
to follow the nearly-uniform motion of the magneti-
zation in the long-wavelength modes. In that case, the
magnetoelastic, W, contribution to the spin-wave
energies, given in (4.8) and (4.9), and associated with
the lowest-order magnetostriction effects (that giving
rise to an equilibrium energy having cylindrical
symmetry) vanishes.

Physically, this is quite obvious. Roughly speaking,
the two factors within the square root in the ex-

'8 A. E. Clark, B.F. DeSavage, and R. Bozorth, Phys. Rev. 138,
A216 (1965)."J.J. Rhyne and S. Legvold, Phys. Rev. 138, A507 (1965).

' E. S. Fisher and D. Dever, Trans. Met. Soc. AIME 239,
48 (1967).

S. MAGNETOELASTIC EFFECT ON SPIN-WAVE
ENERGIES WHEN FROZEN-LATTICE
APPROXIMATION DOES NOT APPLY

We now consider the contribution of the second-order,
hexagonally symmetric, magnetostriction terms to the
long-wavelength spin-wave energies in the event that
the frozen-lattice approximation does not apply.
Mason" has discussed in considerable detail the
symmetry restrictions placed on the form of the elastic
and magnetoelastic contributions to the free energy in
a hexagonal material. Following that treatment, the
contributions to the elastic and magnetoelastic energies
related to change in direction of magnetic moment
within the hexagonal plane are given by

&E= s~'[(e~")'+ (es') 'j (5.1)

EM =ep [2 ' (nt' n„') —C—s+8Csnssn ']
+es'[4C&n)n„+4Csntn„(nP —a ') ]. (5.2)

Here ~~ and 0., are the directional cosines of the mag-
netization with respect to the p and g axes, respectively.
The constants C~ and C2 then give the magnitude of the
first- and second-order magnetoelastic energies. The
equilibrium strains are then found by minimizing the
total energy associated with magnetostriction,

&Ms =&K+&M, (5.3)
with respect to strain. This yields

eP = —(1/c&) [2Cx(ns' —n„') +8CsnPn ' —C j
(1/c~) [4Cynsn„+4Csnsn (nP n')j—(5.4a)

(5.4b)

"W. P. Mason, Phys. Rev. 96, 302 (1954).

pressions for M(q) in (4.8) or (4.9) represent two
different effective fields governing the motion of the
magnetic moment on departure from equilibrium. The
6rst factor gives the effective field perpendicular to the
equilibrium-moment direction. In this factor, typically
the axial anisotropy, I'2, term is dominant and the
magnetoelastic, D&, term and the planar anisotropy,
I'6', term have little effect. On the other hand, the
second factor gives the effective Geld parallel to the
equilibrium-moment direction; and this effect, for long
wavelengths, is completely given by the magnetoelastic
and planar anisotropy effects, together with that of
applied held in the plane. Clearly, if the strain is free to
follow the motion of the moment, and if the energy
associated with magnetostriction has cylindrical sym-
metry, then the magnetoelastic contribution to the
spin-wave energies vanishes. In this case, there can still
be a magnetoelastic contribution to the spin-wave
energies, but it corresponds to higher-order magneto-
striction effects, those giving an equilibrium energy
with hexagonal rather than cylindrical symmetry.
Experimentally, for Tb, the measurements of Rhyne
and I.egvold" separated out the higher-order magneto-
striction effects having hexagonal symmetry from the
lowest-order, cylindrically symmetric, effects.
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Then by comparison with the corresponding expressions
of Rhyne and Legvold, " we obtain the relationship
between the parameters Cy and C2 and the experi-
rnentally measured first- and second-order magneto-
striction coefficients, C(=—2V) and A in the notation
of Rhyne and Legvold:

Cr = ——,'c'C = ', (c'X—&)-, (5.5a)

C2 ————,
' (c&A) . (5.5b)

Substituting the equilibrium strains given in (5.4a)
into (5.3) gives the equilibrium energy associated with
the first- and second-order magnetostriction effects:

Here
EMs= Krt+Ehe~. (5.6)

E,rt ,'[c——&()—, —)'](nP+n')' (5.7)

is the lowest-order energy, already discussed in Sec. 3,
and has cylindrical symmetry. On the other hand, the
energy Eh, associated with the second-order magneto-
striction effects has hexagonal symmetry:

Ehe„=-', (cd&A) cos6$.

Experimentally, " the parameters C(or X&) and A,
distinguishing the first- and second-order magneto-
striction e6ects, are obtained using the expression for
the u axis magnetostriction accompanying a rotation
of the magnetostriction through an angle p in the basal
plane

N/t = —2C sin'p+ A sin'2p. (5.9)

Since Eh,„, given in (5.8) has hexagonal symmetry,
there is a corresponding magnetostriction contribution
to the uniform-mode energy, even when the frozen-
lattice approximation does not apply, and the strain
assumes an instantaneous equilibrium value following
the motion of the magnetization. By comparison with
(2.6), the value of fio&(0) is obtained by the replace-
ment

E8(T) =Le(T)+-,'(c~X~A), (5.10)

where L6(T) represents that part of the planar ani-

sotropy constant given by the single-ion crystal-field
effects for the unstrained lattice. Then

fi&o(0) = (gP/M) I[2E2(T)+6(LS(T)+4r(c&h&A) ))
X[36(L6(T)+~r(c&X'rA))]}'~'. (5.11)

According to the theory of Callen and Callen, '~ the
temperature dependence of A goes as I9~,[g '(o) j.
This is borne out for Tb by the measurements of
Rhyne and Legvold. " Therefore, the temperature-
dependent expression for the uniform-mode frequency
including the energy associated with the magneto-
striction terms of hexagonal symmetry is

$~(0) = (gp/j//) {[2%2(0)I5/2+6(L6(0) Ir3/2

+-,'[~'V(0) A (0)3I iJ / )][36(L (0)I,
+-'L "l (0) A(0) $&/ I / )l}'". (5.12)

c ~Pv eifLS.Y~ (6 2)

This then would give a value of c& for Tb equal to 0.94
that of Dy (using the longitudinal velocity) or 0.895
that of Dy (using the shear velocity). Taking the
average of these two possibilities gives

Tb, c'r =0.89X 10"erg/cm' =20.33X 10' 'K/atom.

(6.3)

The extrapolation scheme can be checked by extrapo-
lating from Dy to Er, for which experimental results
are also available. Doing this gives c& within 5% of the
experimental value for Er.

This value of c& can be combined with the value of
X& at T =0 to obtain the parameter Dr defined by (4.6)
which gives the magnetoelastic effect on the spin-wave
energies in the frozen-lattice approximation. For Dy,

Dy X'(T=0) =8.5X10 ', (6.4)
which gives

Dy 2D& =3.43'K/atom. (6.5)

This compares with a value for 36P6'S' obtained from
the anisotropy-constant measurements of Liu et al.' "
on the basis that the planar hexagonal anisotropy
constant is completely due to crystal-field effects of the
unstrained lattice:

Dy 36 &s'&'= —11.5'K/atom. (6.6)

For Tb, X& is obtained from the measurements of
Rhyne and LegvoM, "

Tb X'(T=O) =8.8X10 '.
This gives

Tb 2D& =4.35'K/atom.

(6.7)

(6.8)

2' J. F. Smith, C. E. Carlson, and F. H. Spedding, J. Metals 9,
1222 (1957)."The measurements of Rhyne and Clark (Ref. 5) give
36P66S' =—8.33'I/atom for Dy.

6. VALUES OF PARAMETERS

Before discussing the relevance of the preceding
theory to the neutron-scattering and magnetic-reso-
nance experiments, it is necessary to obtain values for
the various parameters entering the theory. We first
discuss the values for the elastic constant c&. For Dy,
the value at 298'K is directly obtained from the
measurements of Fisher and Dever' using the definition
given in (3.8):
Dy, c'r =0.9/X10" erg/cm'=22. 2X10 K/atom. (6.1)

For Tb, there are no direct measurements of the
relevant elastic constants available. However, one can
extrapolate" from Dy using measurements by Smith
et al.22 of the longitudinal and shear elastic-wave
velocities for polycrystalline Dy and Tb. This involves
the assumption that the elastic constant varies as the
product of the density and the square of the elastic-
wave velocity.
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Again this can be compared with 3686'S' obtained
from the anisotropy-constant measurements of Rhyne
and Clark, ' if one assumes that the planar anisotropy
constant is completely due to crystal-field effects of the
unstrained crystal:

3.2-

EXPERIMENT
h A AXIS0-8 AXIS

UNSTRAINED HEXAGONAL

THEORY
AN ISOTROP Y——HEXAGONAL ANISOTROPY
DUE TO STRAIN

Tb 36 Pgs5'= —3.4'K/atom. (6.9)

Thus, examining (4.8) and (4.9) we expect that for both
Dy and, especially, Tb the magnetoelastic contribution
to the long-wavelength spin-wave energies associated
with the lowest-order, cylindrically symmetric, mag-
netostriction effects will be quite signi6cant if the
frozen-lattice approximation holds. (Actually, for Tb,
as discussed immediately below, a large part of the
macroscopic planar anisotropy constant is probably
due to the second-order, hexagonally symmetric
magnetostriction effects. However, this does not effect
our statement about the importance of the effects
associated with lowest-order magnetostriction in the
frozen-lattice approximation. )

We can also consider the relevant magnitudes if the
frozen-lattice approximation does not hold, and the
magnetoelastic contribution to hco(0) is given by (5.12) .
Since the lowest-order, cylindrically symmetric and
higher-order, hexagonally symmetric, magnetostriction
effects have been experimentally separated for Tb but
not for Dy, this is possible only for Tb.

Then, at T=0 from Rhyne and Clark's' measurement
for Tb,

Tb E's ——2.4X 10' erg/cm'; (6.10)

while using the experimental values of Rhyne and
Legvold "

(6.11)Tb &~'XrA/4 =4.14X 10' erg/cm'.

The measurements and analysis of Rhyne and Clark'
are such that their value of E6 should include both the
hexagonal anisotropy of the unstrained crystal and
that associated with magnetostriction as given by
(5.10). This then indicates that the magnitude of the
contribution of the magnetostriction-associated hexag-
onal anisotropy is comparable to the total hexagonal
anisotropy constant. Indeed, the present estimate of
the strain-dependent anisotropy in (6.11) actually
exceeds the total measured hexagonal anisotropy
constant in (6.10).This excess would indicate that the
hexagonal crystal 6eld for the unstrained lattice favors
alignment along the a (hard) axis for Tb. However,
the numerical values in (6.10) and (6.11) probably
contain substantial uncertainty. For example, in Dy the
value found by Liu et a/. for E6 by analysis of the
magnetization behavior exceeds that found by Rhyne
and Clark' by analysis of magnetostriction data by
about 40%. Probably the strongest statement that can
be safely made is that the hexagonal anisotropy
associated with strains due to magnetoelastic effects
gives a large, and probably dominant, contribution to
the total hexagonal planar anisotropy constant.

2.4

~~ l6

0.8

Tb

0 I

40
I

80
T ('K}

I T
I20

Fzo. 2. Basal-plane anisotropy of terbium obtained from
magnetostriction data compared with theory. Results from both
o and b axis strain measurements are shown. [Solid curve and
experimental points are from J.J.Rhyne and A. E. Clark, J.Appl.
Phys. 38, 1379 (1967)g.

In practice the difference in behavior between a
hexagonal anisotropy caused by the crystal field of the
unstrained lattice )Is(T) of (5.10)] and that caused
by strain t sr(c&) rA) of (5.10)j is not very great. The
temperature dependence of the former goes as
It@st 2 '(o) j; while that of the latter goes as
Isis' '(o))IgigLZ '(o)]. In Fig. 2 we show the com-
parison of both of these types of temperature depend-
ence to the experimental values for E6, where the
Is@Isis dependence matched at low T has been super-
imposed on Fig. 2 of Rhyne and Clark, ' which already
contained the curve with Itsig dependence. (The mag-
netization data of Hegland et u/. '4 has been used in the
calculations throughout this paper involving the
reduced magnetization of Tb.) On the basis of the ex-
perimental data, there is no very strong case for
choosing one of the theoretical curves over the other.

24 D. E. Hegland, S. Legvold, and F. H. Spedding, Phys. Rev,
13&, 158 (1963).~ D. R. Behrendt, S. Legvold, and F. H. Spedding, Phys. Rev.
109, 1544 (1958).

7'. DISCUSSION OF EXPERIMENTAL RESULTS
FOR ftto(0) IN Tb AND Dy

In this section we discuss the application of the
theoretical results of the preceding sections to under-
standing the observed long-wavelength spin-wave
behavior for Tb and Dy. (In all calculations involving
the reduced magnetization, we use the magnetization
data of Hegland et u/. '4 for Tb and of Behrendt et g/. 25

for Dy. ) In particular, we discuss the relevance of the
frozen-lattice approximation to the observed behavior.



290 BERNARD R. COOP ER 169
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AXIS

precludes the applicability of the frozen-lattice approxi-
mation. This is demonstrated by the results shown in
Fig. 4.

The experimental values for A~(0) shown in Fig. 4
involve extrapolating the measured dispersion curve~ '
to q=0. (The smallest q actually measured is about
10% of the distance to the zone boundary. )

In addition to the experimental points, three theo-
retical curves are also shown in Fig. 4. For all three
calculations, P2 has been taken as the experimental
value. '

SINAL FREQUENCY

36 HI,

FIG. 3. Field variation of cv (0) for ferromagnet with H along a
hard planar axis, including magnetoelastic eBects in the frozen-
lattice approximation.

In this connection there are two key qualitative points
to make about the q =0 spin-wave behavior to be ex-

pected when the frozen-lattice approximation is
applicable. The energy for the q=0 mode, given by
(4.8) or (4.9), essentially corresponds to the geometric
mean of two effective fields, one perpendicular to the
equilibrium direction of magnetization and one parallel
to that direction. These correspond respectively to the
first and second factors on the right-hand side of (4.8)
or (4.9) . The D& term in the second factor, coming from
the lowest-order magnetostriction effects in the frozen-
lattice approximation, falls off much more slowly with
increasing temperature than the other contributions to
the second factor. Thus, for relative values of param-
eters as given in Sec. 6, the W term dominates the
effective Geld parallel to the direction of magnetization
for increasing temperature. This causes the long-wave-

length spin-wave energy to decrease much more slowly

with temperature when the frozen-lattice effect applies
than otherwise.

The second key point refers to an even more striking
qualitative difference predicted for the frozen-lattice
case as compared with other possibilities. This is the
fact pointed out by Turov and Shavrov, 4 that the
contribution of magnetostriction effects to the value
of fico(0), the spin-wave gap, because it comes from an

energy of cylindrical symmetry, is isotropic. Thus,
typical behavior for A&a(0) with H applied along a hard
planar axis gives behavior as shown in Fig. 3. In con-
trast to the behavior illustrated in Fig. 1 for vanishing
magnetoelastic effects, fur(0) does not go to zero at
36H~. Thus, a Geld applied along the hard planar axis
can be used to separate out any contribution to M(0)
of the frozen-strain type.

In Ref. 3, we have noted that the temperature
dependence of the q=0 spin-wave energy for Tb
found in neutron inelastic scattering experiments

32-

28

EXPERIMENT 0
UNSTRAINED HEXAGONAL ANISOTROPY
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FIG. 4. Temperature dependence of q=o spin-wave energy
for Tb.

Tb, P2S = —31.8 K/atom. (7.1)

The three curves have been matched at 90'K to the
experimental value of fia&(0) found by neutron in-
elastic scattering. ' 7 ~'

The short-dashed curve labeled "Frozen-Lattice
Approximation" was obtained using (4.8) by taking I'6
as the value given in (6.9) and taking W to give the
neutron ko(0) at 90'K. This requires 2M=2.98'K/
atom, which is only about 70% of the value given in
(6.8) found from equilibrium measurements.

The solid curve was obtained by putting &' in (4.8)
equal to zero and taking a value of P6' necessary to
match the experimental fuv(0) at 90'K. This requires
3686'S'= —12.55'K/atom. This value is 3.7 times that
given in (6.9) (which is the value obtained from the
macroscopic planar anisotropy constant if one assumes
that the planar anisotropy constant is completely due
to crystal-field effects of the unstrained crystal). A
similar discrepancy has been noted by Mfiller et al.'
fMpller et at. quote values for their parameters 8 and
G at 110'K for a Tb—10% Ho alloy that correspond to
the following values of parameters at T=O: P2S=
—22.06'K/atom and 3686'S'= —18.2 K/atom. Their
values for the two parameters are different from ours
because they have obtained their value for P2 from the
neutron group intensities at 110'K, and this value is
about 30% lower than our value in (7.1) obtained from
torque measurements. However, their P6 is cor-
respondingly greater than ours so that the product of
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FIG. 5. Temperature dependence of resonance 6eld in Dy at 37.7
6Hz for II along a hard axis in the basal plane.

I'2 and I'P giving fur(0) at T=0 is the same as ours
within less than 1%.j The solid curve then gives the
"ordinary" result with no magnetostriction, that is, the
effective fields giving the q=0 spin-wave energy come
from the axial and planar crystal-field anisotropy of
the unstrained crystal.

The third, long-dashed, curve puts W in (4.8) equal
to zero, and replaces the E86Iqai2 term by one going as
Iqi2Igi2. This represents the case where the hexagonal
anisotropy is caused by magnetoelastic eGects. For
this case, one of course, has exactly the same discrep-
ancy already noted for the "ordinary" case (where
the hexagonal anisotropy is caused by the crystal field
of the unstrained crystal) between the experimental
magnitude of the macroscopic planar anisotropy con-
stant and the magnitude required to explain the
experimental value of fico(0) at 90 K. While there is
substantial scatter in the experimental values of the
macroscopic planar anisotropy constant E6' shown in
Fig. 2, the value of E6' at 90'K would have to be almost
four times larger than the value given by the solid
curve in Fig. 2 to remove this discrepancy.

On the other hand, if we put aside the question of a
discrepancy between the static measurement of planar
anisotropy and that required to match experiment at
90'K, we can compare the three theoretical curves to
the experimental values of fua(0) at higher tempera-
tures. The experimental spin-wave energies fall between
the two curves for which the strain is not frozen. This
argues against the applicability of the frozen-lattice
approximation. Actually, there are other experimental
results arguing much more forcefully against the
applicability of the frozen-lattice approximation for the
magnetoelastic behavior for understanding the behavior
of the energy for long-wavelength spin waves in Tb and
Dy. These are the observations of ferromagnetic

l5

7 0
I t t

20 30 40
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resonance ' " in Tb and Dy at 9.44 GHz and 37.7
GHz, respectively.

When the frozen-lattice approximation is inappli-
cable, as illustrated in Fig. 1, a magnetic field applied
along a hard hexagonal axis can reduce co(0) to zero.
When ~(0) matches the signal frequency, one can
observe resonant absorption. On the other hand, be-
cause of the cylindrical symmetry of the lowest-order
magnetostriction energy, as pointed out by Turov and
Shavrov, 4 one cannot drive &u(0) to zero with an applied
field along a hard planar axis. For example, at 90'K.
our calculations for the frozen-lattice case in Tb predict
that fire(0) cannot be reduced below 10.8 K. (This
occurs for 8 kOe along a hard axis. ) Thus, for the
frozen-lattice case, Fig. 3 illustrates a typical situation.
The minimum value of cv(0) falls well above the signal
frequency, and one expects no resonant absorption. We
will now discuss the resonance experiments in Dy and
Tb in more detail.

The experimental values of resonant field applied
along a hard planar axis found by Rossol and Jones'0»
for Dy at 37.7 GHz are shown in Fig. 5. For tem-
peratures above 85 K, the magnetic arrangement iri
zero applied field is actually a spiral. However, for the
lower-temperature part of the spiral regime in which
these observations occur, the planar anisotropy effects
are still quite important. Then the situation is basically
the same as that shown in Fig. 1, except that the low-
field arrangement is a distorted spiral rather than a
ferromagnet. At a critical field, the moments Qop to a
fan centered about the hard axis; and at a somewhat
higher field, complete cancellation of the planar anisot-
ropy is obtained.

FIG. 6. Theoretical 6eld dependence of q =0 spin-wave energy
for Dy at 80'K with H along a hard axis in the basal plane, when
magnetoelastic effects are included using the frozen-lattice approx-
imation.
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FIG, 7. Theoretical Geld dependence of q=0 spin-wave en-
ergy for Dy at 80'K when frozen-lattice approximation does
not apply.

The detailed temperature dependence of the hard-
and easy-axis resonance fields can be found using (4.9),
in combination with (2.16), or (4.8), respectively, to
calculate co(0) as a function of H for a number of tem-
peratures. We can Grst ask what would be expected if
the frozen-lattice approximation were applicable with
the values of &' and PG' given by (6.5) and (6.6) . The
value of P2 used is taken from the torque measurements
of Rhyne and Clark. '

Dy, I'25 = —25.2 K/atom. (7.2)

The results found at 80'K are shown in Fig. 6. As can
be seen, the minimum value of SIU(0) lies well above the
energy equivalent of the signal frequency, 1,81'K.
This is the typical behavior for all temperatures. Thus,
the occurence of hard-axis resonant absorption strongly
argues against the applicability of the frozen-lattice
approximation.

We can also calculate the resonant-field behavior
using the same values of P2 and P6, but putting W =0
in (4.8) and (4.9), i.e., the case when the frozen-lattice
approximation does not apply. Results of the calculation
for 80'K, a typical case, are shown in Fig. 7. Because of
the monotonic rise in Ace(0) for H along the easy planar
axis, one does not expect to observe resonance in that
case. This is consistent with experiment. On the other
hand, for H along a hard axis one expects to observe
two closely spaced resonances where fur(0) matches the
signal frequency. Actually, for the broad lines en-
countered, one could not expect to resolve the two
separate resonances when they are only one or two kOe
apart.

Detailed comparison between the calculated and
experimental values of the hard-axis resonance for Dy
are shown in Fig. 5. The two solid curves trace out the
two values of II, as shown in Fig. 7 for 80'K, at which
A~(0) equals the signal frequency, while the dashed

I E I ' I
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HEXAGON~ ANISOTR
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Fxo. 8. Temperature dependence of resonance Geld in Tb at 9.44
GHz for II along a hard axis in the basal plane.

curve gives the value of H for which 5&U(0) =0. The
experimental result agrees quite well with theory. This
is especially true when we recall that the experimental
value of P6' found by Liu et al. ' and used in our calcu-
lation may be somewhat high. (The value of Liu et al.
exceeds that found by Rhyne and Clark'" by about
40 jo.)

Hard-axis resonance experiments have also been
performed in Tb by Bagguley and Liesegang. Their
results for the resonance field at 9.44 6Hz are shown in
Fig. 8. We have again used (4.9) to calculate the
expected resonance frequencies. For the frozen-lattice
case we use the same values of W, P6', and P2 as were
used to calculate the short-dashed "frozen-lattice"
curve in Fig. 4. Again we 6nd a situation similar to that
illustrated in Fig. 3. Typically, the minimum value of
IU(0) falls well above the energy equivalent of the
signal frequency (0.45 K). For example, at 160'K the
minimum value of fr~(0) is 5.9 K (at 500 Oe) . Thus,
again for Tb as for Dy the observation of ferromagnetic-
resonance absorption argues strongly against the
applicability of the frozen-lattice approximation.

We have also calculated the hard-axis resonance Geld
in Tb at 9.44 0Hz using (4.9) with D&=0, choosing
P2 and P6~ to have the same values used in calculating
the solid, "unstrained hexagonal anisotropy", curve in
Fig. 4. As can be seen, the theoretical curves (the solid
curves in Fig. 8) lie below the experimental values and
drop o8 rather more sharply with increasing tem-
perature.

Actually, as discussed in Sec. 6 (see Fig. 2) the
hexagonal anisotropy in Tb may be largely associated
with the magnetostriction rather than the hexagonal
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FIG. 9. Values of applied
field for which power-ab-
sorption maxima occur in-
Tb at 100 GHz, plotted ver- ~
sus temperature I after J. S.
Stanford and R. C. Young,
Phys. Rev. 15'7, 245 ~~

{1967lj. (The theoretical 4
curve of Stanford and
Young, which is also shown, ~
involved some strong ap- ~~

proximations and should be ~~

disregarded. )

20—

18—

16—

14—

12—

IO—

6—

~J/—:

TERBIUM
H II a-AXIS

HRF 1, H

60
27r

THEO

I I I I J. I

~
~ /

/
/

/Ir

2
Tc TN

I I I II ll I I I I I I

0 l50 140 ISO l60 170 l80 190 200 2IO 220 230 240 2SO 260 270 280 290 300
T(K)

28

~ 20

12

Tb
GHz = 4.80'K

80 120 160 200

anisotropy of the unstrained crystal. Using an equation
similar to (5.12) [but including applied-field effects as
in (2.17)j we have calculated the behavior of fire(0)
when the hexagonal anisotropy has this origin. The
results of this calculation are also shown in Fig. 8 (the
dashed curves) . The values of parameters used are the
same as for the long-dashed, "hexagonal anisotropy
due to strain, " curve in Fig. 4. The experimental be-

havior agrees reasonably well with this theory at the
lower temperatures shown in Fig. 8. However, for the
higher temperatures shown, the experimental resonance
Geld falls more slowly with increasing temperature than
the theory would indicate. This may in part be due to
the fact that the great width of the broad resonance line
makes precise location of the peak dificult.

In contrast to the rather good agreement between
the existing theory, when the frozen-lattice approxi-
mation is inapplicable, and experiment for the reso-
nance experiments so far discussed (putting aside the
question of the size of planar anisotropy in Tb), the
experimental results of Stanford and Young" for Tb at
100 6Hz are quite anomalous. The experimental results
they obtained for the resonance Geld are shown in Fig. 9.
(This is Fig. 4 of Stanford and Young. The theoretical
curve shown involved some strong approximations and
should be disregarded. ) The applied dc 6eld was along
a hard planar axis. The results shown have several
striking qualitative features.

There is a resonance line at about 3.8 kOe, the
location of which is essentially temperature-independent
between 160'K and the Curie temperature. The
location of this resonance line breaks sharply upward at
the Curie temperature. This is particularly striking
because the critical field for the spiral to ferromagnetic
transition in Tb is less than 1 kOe. Therefore, the Gelds
used in the resonance experiment suppress the spiral
between T~ and T,. Presumably, however, the crystal
still distorts at T, because the decrease in crystal-Geld
energy associated with the magnetostriction exceeds
any increase in exchange energy associated with the
distortion. Finally, there is a second resonance line at

I'IG. 10. Theoretical behavior expected for variation of resonance
Geld with temperature for Tb at 100 GHz. "J.S. Stanford and R. C. Young, Phys. Rev. 157, 245 (1967).
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about 19 kOe, the location of which is approximately
constant down to 190 K. (The two lines observed are
very broad, so that resolving them below 190'K is
impossible. )

The theoretical results expected for 100 GHz are
shown in Fig. 10. The calculations have been done in
exactly the same way, using the same values of param-
eters, as those shown in Fig. 8 for 9.44 GHz. Because of
the increased frequency, the separation between the
two fields at which fur(0) matches the signal frequency
is decidedly greater than for 9.44 GHz. Thus, it might
be possible to resolve two separate resonances in the
hard-axis resonance experiment for some range of
temperatures for either of the two approximations
shown. However, for either approximation the lower of
the two resonance fields varies quite strongly with
temperature and goes to zero field at a temperature well
below that of the observations of Stanford and Young.
Thus, the observations of Stanford and Young are at
variance with the existing theory. It is conceivable that
some of the resonance effects observed may be caused
by geometric effects and could be associated with the
excitation of magnetostatic modes.

In this regard, it would be interesting to see if the
observed behavior was sensitive to sample size. (The
experiments' were performed on a Rat disk approxi-
mately —, in. in diameter and having a diameter-to-
thickness ratio of 4.2.) Also, it would be worth rotating
the direction of the dc field to be along the easy axis.
This would clarify the role played by hexagonal anisot-
ropy in the behavior observed by Stanford and Young.

8. CONCLUSIONS

As discussed in the previous section, the results of
neutron". ')inelastic scattering experiments'r i' and of
ferromagnetic-resonance~experiments' ""point quite

strongly to the conclusion that the frozen-lattice approx-
imation for treating magnetoelastic effects on spin-wave
energies is not applicable to Dy and Tb. Presumably the
inapplicability of the frozen-lattice approximation is
related to the low value of fuo(0) relative to the Debye
temperature. Vibrational modes are available whose fre-
quencies are high compared with ~0(0), so that the
strain can accommodate itself to the instantaneous
motion of the magnetization. It would be interesting to
consider the intermediate case where some vestige of
the frozen-lattice effect remains due to relaxation-time
effects for the strain following the motion of the
magnetization.

As already noted in the Introduction, the most
striking point found in the present work is the contrast
between the behavior of Dy and that of Tb with regard
to understanding the long-wavelength spin-wave be-
havior using values of parameters for the anisotropy
obtained from static macroscopic measurements. As
shown in Fig. 5, for Dy one obtains very good agree-
ment between the experimental values of the hard-axis
ferromagnetic-resonance field and the results of an
absolute calculation using the experimental value of
the macroscopic planar anisotropy constant. On the
other hand, for Tb the value of planar anisotropy
constant necessary for agreement with the spin-wave
experiments, both neutron scattering and ferromagnetic-
resonance, is about four times that obtained in static
measurements. It should be stressed that any mecha-
nism intended to resolve the discrepancy between static
and dynamic values of planar anisotropy in Tb should
be consistent with the lack of any discrepancy in Dy.
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