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The ground state of solid He' is investigated using a new method. The procedure begins with a Gaussian-
Jastrow trial wave function, and calculates the energy expectation value using a cluster development that
takes into account the short-range two-particle correlations between u// particles in each order of the ex-
pansion. This enables a wide range of correlation functions to be used and also permits a simultaneous
treatment of the liquid and the solid phases. Numerical results are presented to illustrate this method and
to demonstrate the above assertions. More precise numerical calculations, which will attest to the rapid
convergence of the expansion and shed light on the phase transition, and the application of this method
to the study of the lattice dynamics of correlated crystals will be given in later papers.

I. INTRODUCTION

W N account of the large zero-point motion, the
strong short-range repulsion and the very weak

van der Waals attraction, solid He' forms a quantum
crystal and cannot be treated by the standard theories
of lattice dynamics. Recent work' —4 on the calculation
of the ground-state energy of solid He' has all been
variational, employing a correlated trial wave function
of the type'

particle function 4b allows for the localization of the
atoms (n) 0). Note that f is not antisymmetrized and

p is spherically symmetric. Support for these approxi-
mations as well as the Gaussian form of 4b can be found
in Refs. 1 and 6.

We wish to report here a new method of calculation
which offers the following improvements: (1) it widens
the range of f(r)'s usable in a cluster expansion of the
energy, and (2) it permits a simultaneous treatment of
the liquid and the solid phases. Some numerical results
are given to demonstrate these improvements.

where 4(br;) is generally taken (except in Ref. 4) to be
a simple Gaussian centered about lattice site R,

II. METHOD OF CALCULATION

The Hamiltonian of a system of Ã He' atoms in
volume 0 is taken to be

~3/2

4b, (r,.) =y(lr, . R,.l) = e
—~i)a'I» —&~I'

/

(2)

and f;s(r;s) is generally taken (except in Ref. 2) to be
of the form f(r;s), independent of the lattice sites R;
and Rs. The two-particle function f(r) takes into
account the short-range correlations, and the single-

where s(r) is a Lennard-Jones 6-12 potential with
parameters determined by deBoer and Michels. The
expectation value of, H with respect to 1/r, Eqs. (1)
and (2), is then

g=jVr+jVv
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Ev QL(lb, U(r;, )p)/(lb, lb) j——

fy'(I r,—R, l)y'(I r,—R.
l ) p'(I rtv —

R~ I)f'(rts) f'(rts) . f'(r~ t.~)U(r*s.)«ts-
jqP(lrt —Rtl)ebs(l rs—Rsl) ebs(lrtt —Rtvl) f'(rts) f'(rts) f'(rz tN)«ts tv-".

f Based on work performed under the auspices of the U. S. Atomic Energy Commission.
'L. H. Nosanow, Phys. Rev. 146, 120 (1966);J. H. Hetherington, W. J. Mullin, and L. H. Nosanow, ibid 154, 175 (196.7).
s K. A. Brueckner and J. Frohberg, Progr. Theoret. Phys. (Kyoto) Suppl. , 383 (1965).
s J. Hansen and D. Levesque, Phys. Rev. 165, 293 (1968).
4 T. R. Koehler, Phys. Rev. Letters 18, 654 (1967); H. Horner, Z. Physik 205, 72 (1967).
' All indices on summations and products run from 1 to 1V unless otherwise stated.
' D. Rosenwald, Phys. Rev. 154, 160 (1967).
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where

Let
W(P) = (4, II expLP V(r*;)34)

V (r) = o(r) —(A2j2m) V' lnf(r) .

then

g'(fr~ —R~ I)+'(f r2—R2I) .qP( fr~ —R~ I)f'(r„)f'(r»). f'(r~ ~~)g eer("'~'idr&, ...&,.

Er —ln——W(p)

The task left is to evaluate W(p). In the Nosanow calculation' (NMH), an. average quantity (A(r&, r2, ~ ~ ~,r&))
is defined thus:

jr'(fr( —R&f )qP(f r2—R2I) qP( f
rN —R~f)& (r~, r2, . . .

,rI, )dr~2. ..y
(A (rg, r2, ,rk)) =

fg'(Ir~ —R&l)4"(I r2 —R2I)" y'(I r~ R~ f—)«12 N'"

where

=(e—" y'(I rg —Rg
I
)y'(I r,—R, I) (tP(f rg —Rl, I )A (r„r.. .rp)dry, ...p,

Thus,

(0= qP(f r,—R;I)dr;.

W (p) —(0 x (f2 (r1 )f2 (r1s) ' ' ' f2 (rK 1 N)g eev (ri 7 & )

A cluster expansion~ is then used to evaluate W(p), resulting in

~F +2V++ar+ ' '

fqP(I rq —Rq I )(t'(I r2—Re I) qP(f r~—R~ I )f'(r;, )V (r;;)dream. ..~

fqP(fr~ —R&f)g'(I r2—Rm I) qP(fr~ —R~ I)f'(r;;)dr~~

fg'(I r;—R, I)qP( I r,—R;I)f'(r;;) V (r;;)dr;dr;

f/'(fry —R;I)i)I (fr —R f)tf (r )dr dr"

, (f'(r')f'(r )f'( ')V(')) (f'(';)V(;;))
+BV=2 Z'

jr' 2 y. . 2 y
, etc.

E2y in the 6rst line gives the impression that it
includes all interaction energies between two atoms,
i and j, localized about sites R; and R; and correlated
through f(r,;), ie a medium formed by all the remaAsieg

(X—Z) atoms, ecch localized at a particular lattice site.
However, the second line shows that the medium is in
fact uniform (vacuous). Since the potential e(r) em-

ployed does not have a bound state, one concludes that
no localization of the atoms can be expected if one
truncates E~ at E2~ in an Nonrestricted variational
calculation. ' In other words, Er+ger does not exhibit
an absolute minimum at a 6nite o.. Upon the inclusion

' N. G. Van Kampen, Physica 27, 783 (19&&1,

«Ray, it becomes physically possible to obtain locali-
zation. NMH have found that, by restricting their class
of trial correlation functions f(r) to those for which
Z3~ is small, they can truncate their Ey at E2~ and still
obtain an energy minimum at a Rnite e, and that this
minimum is not significantly altered by the inclusion
of g3r. However, if the restrictions on f(r) are too
severe, the localizing minimum may be very far from,
and indeed quite unrelated to, the true absolute
minimum. Our method of calculation will suggest the
local nature of such a minimum and at the same time
relax some of these restrictions.

We retain Eqs. (1) through (6).To evaluate W(p), an
average quantity (A (r~,r2, r~)) is introduced, diferent
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from that of NMH:

(2 (ri r~, ,ri)) = jtj'(I ri—Ril)jt'(I r~—R2I) jjjj'(I r),—Ril)rr f'(r;;)A (ri r2, ,r~)«». ..N.

Then, we=(rr" '»

Let (I;;=—es~(v'1) for convenience. W(p) is then evaluated with the aid of the following cluster development:

w w=rr(~;;&,

(gvj(JjVi;givi)
W'"(P) = W") (P) II

(12)

W'"'()=W'" "() lI
TJ/, . (N—1)i&&vv' CiN vv i1v4 ~ .v'N.

;«) ((I1.(jj» (IN—i,N)=W (j8) = ((I»(t13' ' ' (IN 1N)—=, W(8) ~

gr (x—i)

W;„,...;„+,(") in the denominators denotes W(")(p) for a system of (n+1) atoms labeled ii, im, ~, i„+1. This
cluster development is identical to that of NMH, except for the definition of ( ). The expansion is independent
of the way in which ( ) is dehned, and the rate of convergence in either case must be established numerically.

Correspondingly, our Ez is given by

Er—Er(&)+Er(&)+. . .

fy'(I r' —R'l)4'(I »—R
I )(rri« f'(r( 1)}v(r;;)dr». ..N

Er(2) —P
f4"(Ir'—R'l)p'(Ir; —R, l)(rr(, &i f '(xqi)}dr». ..N

fjt '( I r;—R'1)(t"( I r,—Rv'
I )y'(

I
rj,—R&

I )(II«„j'(r1„)}U (r;;)dr». ..N
Ei (3) =-', Q' —(1V—2)E)», etc.

f&'(Ir' —R*I)&'(Irv—Rv l)4'(Ir.—R~ I)(II«- f'(«-) }«»- N
(13)

Comparing Eqs. (13) with Kqs. (9), we note that our E) (') differs from NMH s E;1 in that all particles are
correlated in each order of the expansion. (All integrals appearing in our expressions are subsequently many-body
integrals. ) Ei (') describes pairs of correlated atoms i and jmoving in a medium formed by the remaining (E—2)
atoms, correlated to each other and to atomics i atsd j.Although in an unrestricted variational calculation the trun-
cation of E~ at Ey(') still fails to localize the atoms, such a truncation of Ey at any stage Ey('& has included more
physical information than a truncation of Ez at a corresponding stage of the NMH procedure. Setter convergence
of the expansion is therefore expected.

Next, we define some "liquid distribution functions, "P„(ri,r2, ~,r„), in order to express Eqs. (13) in more
useful forms. Let I' be defined by

f(II*&1f'(r'1) }«-+1. N~ ~

P„(ri,rm, ~ .
,r„)=S(X—1) ~ (X—n+1)

f{II;&;f (r;;)}dr»...N
In particular, vie have

and

f(II' 'P(r'~)}« "N
P,(r, ,r,) =E(E—1) —=p'G(rim),

f(II'& f'(r' )}«» .N-
f{rr;&;f'(r;;)}«4jj...N

P4(ri, r,,r4) =Ã(X—1)(X—2)
f(II'&1 f'(r')}«» N-

The reason for naming these the "liquid distribution functions" is obvious: If one uses a Jastrow-type trial wave
function rr;» f(r,,) to describe a liquid, these functions will be recognized as the distribution functions for the
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liquid. The use of these functions greatly simplifies Eqs. (13), reducing the many-body integrals in Ev") to i-body
integrals; thus

fqP(t r,—R;()p'(~ r;—R;))V(y,,)G(y;,)dr;dr;
Ey(2) = Q

fg'(~ r,—R;()g'(~ r; R;(—)G(y;,)dr;dr,

jcgP(/r; —R;))@'()r;—;R[)y'(fr„—Rk[) V(y;;)P, (r;,r;,r))dr, dr~dr),
Ev(3) = ) P& —(1V—2)Ey('), etc.

f(tP(~ r,—R,
~ )qP(~ r;—R,

~
)g'(~ r~—R~

~
)P3(r;,r, ,r))dr dr dr),

(17)

Ez('& can be simplified further by the transformation
of r; and r; to the center-of-mass coordinates R= 2 (r;+r, )
and the relative coordinates r=r;—r, , resulting in

Likewise, all higher orders in the Ey expansion yield
zero exactly. Thus, for o,=0 our cluster expansion
converges immediately and exactly, the energy expec-
tation being given by

e(') (d; n)

=g —;nee(')(d; ()(),
E); —Ev+Ev(')—= '1Vp V(y)G—(y)dr, (23)

yV(y)G(y) sinh(n'yd)e '" '("'+"')dy
which reduces to the more familiar form

yG(y) s)nh(o2yd)e &(2~ (&+& )dy

pk
jV), —QT V lnf(y) VG(r)dr+ ~~Np v(y)G(y)dr.

where the sunimation over d is performed over all
shells about a fixed lattice site, d and n~ denoting the
radius of the shell and the number of lattice sites in
that shell.

Let us for the moment investigate the special case
n=0. Equations (1) and. (2) reduce f to a Jastrow-type
trial wave function appropriate for a boson liquid,

&).(1 2," »)=?If(y').

G(y) becomes now the radial distribution function of
the liquid described by P&;~. From Eqs. (4), (17), (15),
an.d (13),

We now return to the more general case of 6nite
o.'s. To evaluate Ey('&, we must possess the knowledge
of G(y), Pa(r(, r2, ra), etc. , corresponding to each choice
of f(y). (lt must be emphasized here that these "liquid
distribution functions" are not simply related to the
distribution functions of the crystal: They have been
introduced only for mathematical convenience. ) Of
several integral equations relating f(r) to these distri-
bution functions, we have chosen to use the BBGKY
equation

7&G(y») =G(y&,)&& lnf'(y»)

+pG(y12) G(y28)G(yal) vl in@(y18)dr3, (24)

Eg=0,

jV(y;;)G(y,;)dr,dr;
Ey(2) = Q fG(r,;)dr;dr;

fV(y)G(y)dr
=-',X(X—1)

fG(y)dr

=-',1Vp V(y)G(y)dr,

(2o)
which embodies the Kirkwood superposition approxi-
mation (KSA) for P,(r„r,,r,):

P3(r(,rg, r3) =p'G(y») G(y, 3)G(y3) ) . (25)

Upon the substitution of Eq. (25) into Eq. (17), Ev(')
takes on a usable form. In fact, g~('~ and E~&'& are
identical to NMH's E2v and Eqv, with f'(y) replaced
by G(y). However, f'(y) still enters our energy formulas

(21) through V(y).

f(g&& f'(y& )) V(y;;)dr». ..~
Ev(&) =L P&

J(Q, f&'(y,„))dr;. ..x

III. RESULTS AND DISCUSSION

The simultaneous solution of Eqs. (24) and (25)
starts with a parametrized G(y). A complicated but

—(X—2)Ey()=0. (22) efficient numerical procedure described in an earlier
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paper is then used to carry out an iterative solution
for f(r). The form of f(r) is dictated by that of G(r),
given in Ref. 8, which involves Ave independent
parameters and is consequently rather flexible. We
have carried out an extensive investigation of the
truncated energy

g(s) =gr+gv(s) (26)

In Fig. 1, we exhibit a set of 8(')(ns) curves for a
family of q at the experimental density of the solid
p= 0.0244 A ' (nearest-neighbor distance equal to
3.76 A), » being one of the five parameters, the most
important in that it determines the scale of the wave
function. For each g, the curve shown corresponds to
having the remaining four parameters optimized for
the boson liquid, i.e., E"' at o.=0 is minimized. %hile
varying these parameters independently over wide
ranges, we have found that such a choice of these
four parameters invariably gives the best energy
minimum, even when the minimum is not at 0.=0.
For small c( (say, n(1), the energy curves become
gradually inaccurate (indicated by broken lines), as the
single-particle functions p become more spread out,
so that (1) the exchange effect is no longer negligible,
(2) the surrunation over d in Eq. (18) needs to be
extended far beyond the 38 shells that we have used
for all our calculations, and more importantly (3) the
truncated form of Ez becomes progressively inaccurate.
The latter two sources of error are absent for +=0,
for we have shown in Eq. (21) that all shells have been
accounted for, and in Eq. (22) that Ev('&=0, i)2.
However, these energies at m=0, indicated by circles
in Fig. 1, must be corrected for the exchange effect.
Ke have shown in a previous paper' how the eGect
of statistics may be incorporated in this approach for
liquid He .Using that method, the boson liquid energies
have been adjusted to give energy expectation values
for the corresponding fermion liquid. These values are
shown as crosses in Fig. 1. Based on the all-important
assumptions that the exchange energies are insigni6-
cant for large n', and that the cluster expansion con-
verges well for large (r (the latter to be discussed
presently), we note then that in spite of the localizing
minimum of approximately 5'K at n=1 (»= 1.70), the
absolute minimum occurs at a=0. This shows that
at p=0.0244 A ' the liquid phase is preferred in our
theory. It is, however, expected on physical grounds
that an extension of this calculation to higher densities
will yield absolute energy minima corresponding to
solidlike wave functions.

NMH also obtain a localizing minimum of 4.8'K
at cP=1.30. Furthermore, if the NMH calculation is
extended beyond their restricted range (by letting their
parameter o become large), one finds that the (Zr+ Esv)
versus o,' envelope shows a similar behavior to Fig. 1;

%'. E. Massey, Phys. Rev. 151, 153 (1966).' C. W. Woo, Phys. Rev. 151, 138 (1966).

0,55) x

s

0"

xl.55
(1.70) X

(y~ 1.70 &

/
w~ /

(1.85) X

2.15

1.85

(2.00)
(230
(2,15)

y//g//

in particular, as 0. increases, the localizing minimum
gradually disappears. The inaccuracies mentioned above
for small n are likewise present in their expansion;
these inaccuracies in fact persist at n=0. Therefore, a
comparison between the liquid and solid minima is not
possible. Since our classes of f(r) do not include the
NMH f(r), we have not simulated their calculation
within our theory. This, however, can be done by
simply obtaining a G(r) corresponding to NMH's f(r)
through an integral equation or a Monte Carlo type
calculation.

Justification for the neglect of our Er(') (and higher-
order terms) in our cluster expansion of the energy
can of course come only from an exact evaluation.
However, support for the assumption that Ey(3~ is
small within the range of functions studied here comes
from the following analysis. In Ref. 1, NMH discussed
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Fio. 2. The correlation function f (r) and the distribution
function G(r) for g=1.70. fNMH'(r) is the optimum NMH corre-

lationn

functio(n.
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FIG. 1. E&'&(n') versus n' for several values of the parameter
q at p=0.0244 A. . Circles indicate mass-3 boson energies, crosses
indicate liquid He' energies.
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TABLE l. Shell-by-shell contribution to Ez&') and
Zmy at a=1.2, in 'K.

Shell No.
Contribution

to g~(2)

—3.8—43—1.6—1.4—0.3—0.1

Contribution
to NMH's E2y

303

49—1.8—1.3—0.3—0.1

in detail the factors which affect the size of E3v (and
higher-order terms) in their expansion, the most
important being that f'(r) be of short range and close
to unity in the region where the single-particle Gaussians
are large. This condition applies not to our f'(r) but
to G(r) as is evident from the structure of our energy
formulas. In Fig. 2, we show an NMH f'(r) which
satisfies this condition and for which the third-order
energy Eaz has been calculated explicitly to be smaller
than E&2 by two orders of magnitude. Also shown in
Fig. 2 are our f'(r) and the corresponding G(r) for
p=1.70. The qualitative similarity between NMH's

f (r) and our G(r) is evident. Quantitatively, this
similarity is strengthened by the comparison of the
shell-by-shell contributions to the energy in Table I.
Thus Ey&'~ is expected to be of the same order of
magnitude as NMH's Say.

We have investigated a large class of f(r), among
which are those meeting NMH's criterion and those

which obviously do not (e.g., Fig. 2). However, in our
procedure each of these f(r) generates a G(r) that
qualitatively satisfies the condition for quick con-
vergence. Hence, as indicated earlier, our procedure

permits a wider variation in f(r)
Now' a word about the application of the KSA. The

magnitude of the error introduced by the use of this
approximation can be estimated in the following
manner. Note that the substitution of Eq. (24) in
Eq. (4) allows e"~(d; a) in Eq. (18) to be written as
a sum of two terms, denoted as eg('& and eg('). The
KSA. enters only through e&('), which for the classes
of f(r) considered is invariably smaller than ez"' by
a factor of 5. Thus, an error of as much as 20% in
e&&'& due to the KSA will shift Ev'2'/1V by only about
0.5'K.

We are continuing this investigation along the
following lines: (1) the numerical evaluation of Er &'&,

(2) a calculation of G(r) for NMH's f(r) and the
subsequent application of the G(r) to our energy
formulas, and (3) an extension of this calculation to
higher densities to observe the possible occurrence of
the phase transition.
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