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Photo-Ionization Cross Section of Beryllium near Threshold*
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The 'P continuum wave functions of beryllium with energies from 0 to 3.5 eV above the 2s threshold
are calculated with the inclusion of auto-ionizing lines by configuration interaction. These functions are
then combined with a ten-configuration ground-state function to compute the photo-ionization cross
section which is found to be dominated by auto-ionization from the 2pns and the 2pnd series. The energy
region studied contains the first three 2pns lines, which have widths of a significant fraction of a volt,
comparable to their separation; and the first two 2pnd lines, which are about a thousand times narrower.
There are no experimental measurements of the cross section for comparison; however, the computed
phase shift agrees reasonably well with recent close-coupling calculations.

I. INTRODUCTION

HERE has been considerable investigation lately,
both theoretical and experimental, of resonances

that occur in the electron-scattering or photo-ionization
cross sections of atomic systems. ' In application to
helium, it has previously been shown that the location
and shape of these resonances or auto-ionization lines
can be found using the method of con6guration inter-
action in the continuum, ' as well as the close-coupling
approach. '

In this paper, a calculation of the photo-ionization
cross section of beryllium from the 2s threshold to

3.5 eV above threshold is made using configuration
interaction. In this region are five auto-ionizing levels
arising from 2prts and 2prtd conlgurations which are
analyzed. The general procedure is the same as was
followed for helium in I.

The nature of the results, however, is quite different
from helium where the resonances are narrow and
isolated, and contribute a negligible amount of oscillator
strength to the background continuum. In beryllium,
the auto-ionizing series and the continuum both arise
from the rt= 2 shell resulting in strong coupling (broad
lines) for the 2prts series; also the oscillator strength of
this series predominates over the weak strength of the
continuum. These two effects form a cross section which
is completely dominated by auto-ionization and in
which the lines are so broad that the cross section loses
the appearance of lines superimposed upon a back-
ground. In fact, though, auto-ionization is known to
dominate the near-threshold cross section for other
alkaline earths through measurements on calcium by
Ditchburn and Hudson, 4 strontium by Garton et al. , '
and barium by Garton and Codling. 6

*This research was supported in part by the National Aero-
nautics and Space Administration under Grant No. NGR-29-
001-008.

' A review of the subject along with earlier references may be
found in the article by P. G. Burke, Advan. Phys. 14, 521 (1965).' P. I. Altick and E. N. Moore, Phys. Rev. 147, 59 (1966),
hereafter called I.

s P. G. Burke and D. D. McVicar, Proc. Phys. Soc. (London)
86, 989 {1965).

e R. W. Ditchburn and R. D. Hudson, Proc. Roy. Soc. (London)
A256, 53 (1960).
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Though there are no measurements on beryllium, it
was selected for study as the simplest of the alkaline
earths and also as a natura1 extension of the helium
work in that, in the core approximation (which is ex-
pected to be very good here), the problem is formulated
as a two-electron calculation with one continuum and
two auto-ionizing series.

In the following three sections, the theory, the
numerical techniques, and the calculational results are
presented. The results include the photo-ionization
cross section from 0 to 3.5 eV above threshold, the 'I'
phase shift in the same region, and the locations of the
five lowest 'I' and 'I' resonances calculated with a
discrete matrix.

II. THEORY

In this section, the equations which are used to 6nd
the excited-state functions and the expression for the
cross section are presented. The excited states of
interest are all 'I' in Russell-Saunders coupling and, to
be definite, the projection quantum number M is chosen
equal to zero. Since all the states have the same sym-
metry, it will not be specifically noted.

The configurations to be included are conveniently
classi6ed into three categories —bound, continuum, and
auto-ionizing. For the region of the spectrum considered
here, there is just one continuum, 1ss2sep. (From here on
the is2 notation will be dropped, since, in the core
approximation, this shell is occupied in all con6gura-
tions. ) The continuum and bound configurations, desig-
nated P, and i4'r;, respectively, represent the 2s continuum
and the 2s Rydberg series. In the above, the notation i
or c denotes all quantum numbers necessary to specify
a particular configuration. The auto-ionizing configu-
rations, designated X;, are configurations in which both
electrons are in bound orbitals but which lie energeti-
cally above the 2s threshold. Two series of auto-ionizing
levels are included: 2prts and 2prtd, where rt~& 3.

~%'. R. S. Garton, K. Codling, %.M. Parkinson, E. M. Reeves,
and G. L. Grasdalen, Harvard College Observatory Scientific
Report No. 21, 1967 (unpublished).

W. R. S. Garton and K. Codling, Proc. Phys. Soc. (I.ondon)
75, 87 (1960).
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The Hartree-Pock basis set chosen for this calculation
yields a diagonal matrix in the 2s channel. This point
will be discussed in more detail in the next section, but
accepting it for now, the only nonzero interaction
matrix elements couple the 2s and 2p channels or, to put
it another way, couple auto-ionizing configurations with
the bound and continuum configurations. Thus the
matrix elements are denoted as follows:

(P, la ly, )= b,,e, ,

(4'I & [4.)=0,
(O'I&l»)= v',

(p, [II [P, )=B(e e')e—,
(O, I

~
I
~;)= v„,

(x, Ia [x,)= U...
where B is the Coulomb Hamiltonian for the beryllium
atom.

The excited-state wave function, for energy E, is
expanded as

+z=E e'4'i+2 fi&.+ d~ ee'4'e'.

The coeScients a, , f;, and a, also depend on E, but for
simplicity of notation, this dependence is not explicitly
shown. The equations for the coeScients are then

This substitution alters Eqs. (5) to read

(E U—"')f' 2—U'~'f~

V,.;b,.P—de' P(E—)be V;~ 0, ——(6a)

b, QV—„f,=0, (6b)

where
V)iV)j

U'~'= U'~+2
(E—eg)

The ground-state wave function %g needed to com-
pute the cross section was also found by configuration
interaction in the usual manner. A description of this
function is given in Sec. IIl.

Kith 0'g and % g known, the cross section, in the
dipole length formulation, follows by evaluating

is a matrix element modified by the Rydberg series of
states P~. The sum over / includes the entire series, and
its evaluation is discussed in Sec. III. Equations (6) are
now in a form amenable to numerical solution which
was carried out for various energies yielding excited-
state wave functions %s, and also the phase shift 8(E),
with respect to the basis, given by

b(E)= —tan-'I n/P (E)j.

(e,
I
z

I
e,) g=(e,

I
z

I x,)f,+g (eg
I
z

I A)~;

(E U, ~)f, P—U—;;f, QV;,a;—

d Ve...u, =0, (3b)

(+Gl~lk")
+P lE. b,.

(E—e')

+~(E)b (~.[&[4.), (9)
(E—.)a,—P V„f,=o. (3c)

where Z is the s component of the total dipole operator
for the atom. Again eliminating the amplitudes ajThe singularity in a, is treated by introducing a
leads to

smoothly varying coefficient b„where

a,=P)b,/(E e))+P(E)b~b(E—e) . —(e [zlzz )=P(e Izlx~)f, .

With Eq. (4), Eqs. (3b) and (3c) become

(& U, ')f' ZU' f—EV;—.~—
where

,(+.I
z

I t")
+P de' b,

(E e')—
+P(E)b (e,[zlzz,), (10)

V, , ,b, .Pde' P(E)bgV—;g=0, (Sa)— ( I'o
I
~ I X;)= (+o I

~
I «)+2 v~'(+~ I

z
I 4 t)

(11)
(E—e ))

b, QV„f,=0 (5b—).
To reduce the size of the final matrix and to include
implicitly the infinite number of bound configurations,
the a; amplitudes are eliminated by using Eq. (3a).

is a dipole element modified by the Rydberg series. The
expression for the cross section in Mb (10 "cm2) with
the excitation energy hE in a.u. is

(r (E)= 8.067AE
I (e~ I

z
I +~) I

'.
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The physical constants in this expression were taken
from Du Mond and Cohen. ~ Throughout the paper
atomic units are used unless otherwise noted, and no
reduced mass corrections are made.

IIL NUMERICAL TECHNIQUES

The numerical work consisted of: (1) generation of
the basis set; (2) computation of Coulomb and dipole
matrix elements; (3) diagonalization of the energy
matrix and computation of the cross section. These
phases of the calculation will be discussed in turn.

The explicit configurations used for the excited-state
calculation are: 2srsp, is=2, 9; 2skp, k=0, 1.6 with a
mesh of 2 0=0.2; 2pris, I= 3, 6; and 2prsd, I= 3, 6. The
momentum k is used here instead of the energy e because
the integrals over the continuum were performed with
k as the variable. The kinetic energy of the free electron
at a great distance from the atom is, of course, ~~k'. The
configurations used for the ground-state calculation are
2s' 2s3s, 2s4s, 3s' 4s', 2p' 3p' 4p' 3d' and 4d'. This
particular choice was taken from the work of gneiss.

The orbitals composing these conhgurations were
computed in two distinct potentials. First, the 2s and all
other orbitals used in the auto-ionizing configurations
and in the ground-state calculation were computed in
the Hartree-Fock field of the 1s electrons only, i.e., the
field of Be++. Second, the p orbitals to form the bound
and continuum conhgurations were computed in the
Hartree-Fock field of the 1s core and the 2s electron such
that the over-all state is a singlet. The 1s orbital used
was taken from the Hartree-Fock calculation of the
ground state of Be++ by Roothaan et al.' and was not
varied during the calculation.

The virtues of such a basis are: (1) There is no
coupling of the bound and continuum con6gurations
among themselves resulting in far fewer matrix elements
to compute. This follows from the observation that the
variational principle applied to a wave function with all
orbitals Axed but one yields the Hartree-Fock equation
for the unspecified orbital that is solved here. (2) The
orbitals used for the auto-ionizing con6gurations and
the ground state are drawn in toward the nucleus com-
pared to a screened set and are thus expected to provide
faster convergence for the configuration interactions.
This basis is still orthogonal in the two-electron space
because of the orthogonality of the s orbitals, but not in
a one-electron space. Thus matrix elements of one-
particle operators will contain overlap integrals.

The numerical integration method used to find the
Hartree-Fock orbitals is basically the same as used
earlier by Altick and Glassgold and is discussed there. "
This method was extended to include nonlocal po-

' E.R. Cohen and J.%. M. Du Mond, Rev. Mod. Phys. 37, 537
(196S).

8 A. W'. Weiss (private communication).
C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.

Phys. 32, 186 (1960)."P. L. Altick and A. K. Glassgold, Phys. Rev. 133, A632 (1964).

tentials by employing, with a few modifications, the
noniterative approach of Marriot. "

The Coulomb matrix elements needed, as well as
dipole-length matrix elements and overlap integrals,
were performed numerically using Simpson's rule.

The evaluation of the sums appearing in Eqs. (7) and
(11) was accomplished as follows: Terms up to and
including 2s9p were found explicitly. For the remainder
of the sum, the relations

V;; /ni d-'~'

V i in; d—
(13a)

ei= Ep —1/2(rsi —d)' (13b)

were employed, where e& is the principal quantum num-
ber of the p orbital in the lth configuration, d is the
quantum defect of the series, and Eo is the energy of the
ion which is lacking the running electron. These rela-
tions are valid if e~ and sz; are much larger than the
principal quantum number of any other orbital ap-
pearing in the element. Equation (13a) is also used with
the dipole elements. Writing E=Ep+ isa', the sum to be
evaluated, lacking a constant multiplier, becomes

n=lp (rr —d)sos+ 1/(ri —d)'7

(14)
~=is (~—g)Ps(ri —d)s+17

pi g x(k x +1)

1
=in +1 . (15)

k'(101—d)'

Since for all energies studied here, the integral con-
tributes a small amount to the entire sum, and the
Rydberg approximations of Eq. (13) are valid to a high
degree, this procedure which allows the inclusion of all
bound configurations should yield sums accurate to at
least a few percent.

With the matrix elements known, the next step is the
formation and diagonalization of the energy matrix.
This is accomplished just as in I and need not be
described further. Once the matrix is diagonalized, the
6nding of the cross section proceeds also as in I.

IV. RESULTS

Before presenting the results of the calculation, a
resume of approximations will be made. (1) Configura-

» R. Marriot, Proc. Phys. Soc. (London) 72, 121 (1958).

This expression was evaluated by explicit summing up
to e= 100 and replacing the remainder with an integral,
1.e.)

00 1

~=ipr (n d) P.'(n —d)'+—17
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Fro. f. A plot of some sample matrix elements coupling the
continuum to the auto-ionizing states in beryllium and helium.
The much greater strength of the coupling in beryllium is
noteworthy.

tions involving the excitation of 1s electrons out of the
core are neglected as the processes under study here
involve energies much less than the binding energy of
the 1s shell. The effect of this neglect was looked into by
calculating some sample interaction matrix elements
between core con6gurations and auto-ionizing con-
figurations. It was found that coupling of the core con-
figurations is down by two orders of magnitude from the
mixing of auto-ionizing configurations among them-
selves. Of course, the shell structure of beryllium is
particularly favorable for the core approximation and
that is one reason why it was selected for study. (2) All
auto-ionizing series with limits at the e&~ 3 shells were
omitted. This omission is based on the fact that reason-
able results were obtained without these series in the
helium calculation, and the energy separation between
the m= 2 and e= 3 shells is about the same in both cases.
(3) Members of the 2pls and 2pld series with n&6
were not included. This cutoff was chosen because such
a truncated set gave positions of 'P auto-ionizing levels
which agreed well with experimental data (to be
described later), and also because a similar cutoff in
helium led to satisfactory results. However, in the next
section, a demonstration of the eBect of this truncation
on the phase shift will be given. (4) The continuum was
cut o6 at —,'&2=1.28 (4= 1.6) above threshold because
computer limitations made it difhcult to generate
numerical wave functions of higher energy. Reducing
the cutoG to k=1.2 changed the cross section in the
region of interest by at most 5%, so this is an indication
of the cutoff error. (5) The net error incurred in the
evaluation of the sums over bound conhgurations, Eqs.
(7) and (11), is felt to be negligible. (6) The ground
state used for the computation of the dipole elements
yields a high percentage of the correlation energy as-
sociated with the 2s electrons. Using a similar function,
%gneiss' was able to compute oscillator strengths using

the length and velocity expressions which agreed to
3%, so this function is not expected to be a significant

source of error.
The computed ground-state energy of the e= 2 shell

is —1.0030. Combining this with the core energy taken
from Ref. 9 yields a total ground-state energy of
—14.6143 compared to gneiss's value of —14.6188.'
%eiss used one additional configuration and his basis
was diferent. The Hartree-Fock energy of beryllium is
—14.5730;r thus the correlation energy for the present
calculation is —0.0413, which is principally due to
correlation among the 2s electrons. This may be com-
pared with Kelly's perturbation theory result for the 2s
correlation energy, which is —0.0439,"although the two
numbers do not represent exactly the same quantity
because the 1s function in the two cases differs. In the
following, the gneiss value for the ground-state energy is
used because the core is appropriate to the ground-state
configuration. The excited states, on the other hand, are
built upon a core appropriate for Be++. Thus, in this
manner, the diGerences in core energy between ground
and excited states, although small, are largely allowed
for. For the computation of the dipole elements, how-
ever, the function computed here is used.

As an aside, the basis set itself, without conhguration
interaction, is expected to give reasonable excitation
energies for the 2sep configurations especially as m gets
large because then correlation effects are less important,
and the np orbitals are found in the Hartree-Fock 6eld of
1s'2s Be+. Table I compares some of these excitation
energies with experiment and bears out the above
remarks.

As a preliminary to obtaining the solution to Eq. (6),
the matrix of the auto-ionizing configurations alone was
diagonalized for both 'P and 'P symmetries. This
calculation is analogous to earlier work on helium, "and
the eigenvalues of the matrix should give the positions
of the resonances except for the shift due to the con-
tinuum. The lowest five eigenvalues of the 'P and 'P
matrices are given in Table II along with some experi-
mental data and the recent close-coupling results of
Moores, ' which, of course, implicitly include the con-
tinuum shift. (Moores gives these energies with respect

TABLE I. Excitation energies of I levels in beryllium. The
experimental numbers were taken from Moore. '

2$2p
2$3p
2s4P

2s limit

Present paper

0.2244
0.2857
0.3098

0.3415

Expt.

0.1939
0.2742
0.3063

0.3426

a C. Moore, Atomic Energy Levels, Natl. Bur. Std. (U. S.), Circ. No. 467
(U. S. Government Printing Ofhce, Washington, D. C. , 1949).

"H. P. Kelly, Phys. Rev. 136, B896 (1964)."P. L. Altick and E. N. Moore, Phys. Rev. Letters 15, 100
{1965).

~ D. L. Moores, Proc. Phys. Soc. (London) 91, 830 (1967).
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TABLE II. 'p and p auto-ionizing levels in beryllium. The
energy is given in eV above the ground state. The experimental
data is from Moore. ' The close-coupling results are from Ref. 14.

Desig-
nation

2p3$
2p3d
2p4s
2p4d
2p5s

This paper
'P 3P

10.77 10.64
11.86 11.81
12.07 12.03
12.47 12.44
12.60 12.58

Close coupling
lp 3p

10.99 10.65
11 93b 11 87
1'2.13 12.05
12,52b 12.48
12.60 12.57

Expt.
3P

10.61
11.80

a C. Moore, Ato~nic Energy Levels, Natl. Bur. Std. (U. S.), Circ. No. 467
(U. S. Government Printing Once, Washington, D. C., 1949).

b These levels were found by an extrapolation prot:edure,

to threshold so the experimental ionization potential
was added in to give the numbers in the table. )
The diGerences between the close-coupling and the
discrete matrix energies then are a measure of the con-
tinuum shifts which are generally an order of magnitude
larger than in helium because of the much stronger
coupling in this case. Figure 1 compares coupling matrix
elements in helium and beryllium. An especially large
shift is apparent for the 2p3s level which is coupled
most strongly to the continuum (I'=0.4 eV). (The
reader may question why a larger shift is not observed
also for the 2p3s'E level. This level seems to have
anomalous features such as a very narrow width; see
Ref. 1 for a discussion. )

Because the widths of the 2pes levels are comparable
to their separation, analysis of the levels as isolated
resonances becomes tenuous and instead of assigning
parameters to these resonances, the entire phase shift
will be displayed. First, however, the 2pmd resonances
will be parametrized since their widths are three orders
of magnitude less than the 2pes and satisfy the isolated
resonance approximation. Also, Moores's values for
these widths are obtained by extrapolation rather than
direct calculation. The resonance position E„and width
I' are found in the usual manner, i.e., by fitting the
phase shift 8 to

8= const+tan 'Pi'/(E„—E)j
in the vicinity of the resonance. The results for 2p3d and
2p4d are shown in Table III where they are compared
with the extrapolated values of Moores who lists two
sets of data, using different numbers of terms in the
extrapolation. There is a large discrepancy for the 2p4d
resonance wherein this calculation predicts a larger
width than for 2p3d. This occurs because —although
both widths are small due to cancellations in the matrix
elements —it happens that the cancellations are not so
severe for 2p4d as for 2p3d.

The phase shift, with respect to the Z=1 Coulomb
wave, is shown as a function of energy in Fig. 2. Also
shown is the close-coupling phase shift. " (In the figure
the 2pld resonances are not included. Their effect would

be, of course, to raise the phase shift by m over a very
narrow region. ) The truncation in the 2p channel, i.e.,

ll i l » l I I / I

IO-
1 i' C

r
I

8—
7
6—

LLI

5
CQ

the inclusion of only eight configurations, causes the
positions of the members of the auto-ionizing series to
lie higher in energy and further apart than would be the
case with no truncation. Cooper and Fano" have argued
that in a Rydberg series of resonances, the ratio of
width to the energy interval between members should be
approximately constant. Thus the truncation also causes
a broadening of the widths. Both of these effects are
apparent in Fig. 2. Finally, note that the configuration-
interaction phase shift just crosses the close-coupling
phase shift at 0.05 a.u. whereas one expects from bound
theorems that no crossing should occur. This is believed
to be due to the different cores used in the two calcula-
tions which destroy the strict validity of the bound
theorem in this case.

Before discussing the photo-ionization cross section,
it is instructive to observe the high sensitivity to several
approximations of the dipole matrix element at thresh-
old. The crudest approximation is to compute

(~s lr I v.,)= «'« ~s.(r) ~.&(r), e=o (17)

using the basis functions. This is a poor procedure be-
cause the 2s function is not found in the potential ap-
propriate for the ground state. It gives an element of
—3.05 resulting in a cross section of 25.3 Mb. As an
improvement, the Hartree-Fock 2s function appro-
priate for the ground state couM be used in Eq. (17).
This was essentially done by Kelly, yielding a cross
section of 0.9 Mb." Yet a better approach is to
compute

as the dipole element. Such a procedure is analogous to
the calculations of Stewart and Wilkinson, and Stewart

"U. Pano and J. W. Cooper, Phys, Rev. 137, A1364 (1965).

t t I I l l I I I

.Ol .02.05.04.05.06.07.08.09 .IO .I I .I 2
Energy above Threshold (a.u. )

I'xG. 2. The 'p phase shift for electron scattering on Be+ with
respect to the Z=1 Coulomb wave. Shown also are the close-
coupling results of Moores (Ref. 14). The eifect of the 2Ped levels
is omitted.
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and Webb on helium ""The result is an element of
0.330 and a cross section of 0.295 Mb. Thus from the
crudest to the best approximation the cross section
changes by almost two orders of magnitude, and ground-
state correlations alone lower it by a factor of 3.

The photo-ionization cross section is shown in Fig. 3.
The 2pmd line profiles are shown as insets as these lines
are much too narrow to appear on the main curve. They
display the familiar Fano shape' and, treated as iso-
lated resonances, have q values of +5.0 and —3.1,
respectively, for 2p3d and 2p4d. The 2p3d profile is so
narrow that only a crude fit could be obtained. The
change in sign of the q values occurs because the domi-
nant contribution to the background in either case is the
closest 2pns resonance, but the dipole moment of 2p4s
has the opposite sign from that of 2p5s.

On the other hand, the 2ptss levels are so broad com-
pared to their separation that nothing resembling lines
superimposed upon a background is apparent. The two
"peaks" are due to the 2p4s and 2p5s levels, respec-
tively, but where a large peak due to 2p3s is expected,
the cross section is monotonically decreasing. This be-
havior can be traced to the combined eGect of the first-

TAnxz III. Positions (eV above the ground state) and widths
(eV) of some 2pnd 'P resonances in beryllium. Two different sets
of extrapolated results (P~ and Ps) due to Moores (Ref. 14) are
also included.

Desig-
nation

2p3d
2p4d

11.91
12.49

5.94X10—o

1.93X10-4
2.68X10 4

2.97X10-5
3.95X10 '
1.72X10 '

"A.L. Stewart and W. J. Wilkinson, Proc. Phys. Soc. (London)
75, 796 (1960).

"A. L. Stewart and T. G. %'ebb, Proc. Phys. Soc. (London)
82, 532 (1963).

"U. Pano, Phys. Rev. 124, 1866 (1961).

0
,0 I .0 2 .0 3 334 .0 5 .06 .07 .0 8 g) 9 .IO .II & .I2

Energy (O.u. obove threshold)

rIG. 3. The photo-ionization cross section of beryllium. The
curve labeled "Hartree-Pock" was computed with the auto-
ionizing lines omitted. The insets show the 2p3d and 2p4d line
pro6les whose location is designated by the arrows.

order coupling of the 2p3s level and the second-order
coupling of the bound con6gurations 2slp. While it
might be thought that such second-order sects should
be small, the dipole moment of 2s2p is very large com-
pared to 2p3s or 2ssp, so a small coupling can result in a
sizeable effect in the cross section. (Similar conclusions
were arrived at in earlier work on beryllium. ")Thus near
the threshold, the contribution of the bound conhgura-
tions is dropping at a rate slightly greater than the rate
of increase of the contribution of the 2p3s. Eventually
both contributions decrease with energy, resulting in a
steep decline. The large increase in cross section or
oscillator strength with respect to the contribution of
the 2s continuum (which is plotted in Fig. 3 and is very
small) is therefore not due solely to the auto-ionizing
lines but near threshold is also due to transfer of
oscillator strength from bound states to continuum states
with the auto-ionizing levels acting as intermediaries.

It might be noted that the mechanism for transfer of
oscillator strength in this way is included in Fano's
treatment of auto-ionization. "

Specifically, what Fano
calls the modification of the auto-ionizing state by
admixture of states of the continuum, Eq. (17) of his

paper, contains an integral over the continuum which
can be extended to include a sum over discrete terms of
the Rydberg series. However, while Fano considered
this modification to be a small eGect, the sum makes a
large, energy-dependent contribution to the cross sec-
tion in beryllium. Therefore the line profile indices g,
Eq. (20) of Ref. 18, are not even approximately con-
stant over the width of a line, and the line shapes depart
accordingly from those shown in Fig. 1 of Fano's paper.

Another interesting feature in the cross section is the
fact that the 2p4s peak is lower than the 2p5s. This
comes about because of the sign change in the 2pfss
dipole moments mentioned above. The position of the
sign change is such that the 2p4s moment is less than
the 2p5s.

Although there are at present no measurements of the
photo-ionization cross section with which to compare,
the type of agreement on the phase shift between this
calculation and the recent close-coupling work indicates
that the peaks in the cross section should be sharper, but
no significant departure from the over-all shape is
expected.
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