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coordinates, the result is

ag(n,2)

Z

=—g(nz)N / e (X)XdX+N / dyg(y)

X f ) XX o (X)J o(n,X) / Y6 o(¥0)Jo(6n)do. (A12)
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However, by Eq. (A7), the last integral in the second
term is just §(y—n); thus

9g(n,2)

9z

gV [ (XX [To()—1], (AL3)

which is Bethe’s Eq. (4).
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A stability theory of longitudinal disturbances in a plasma is presented. The theory states necessary
conditions and a necessary and sufficient condition of the instability in terms of the mathematical nature
of linear plasma conductivities on the real w axis, by introducing an idea of passive and active conductivities
combined with Nyquist diagram techniques. It is applied to obtain conditions of instability in both collision-
dominated and collision-free plasmas in the presence of a uniform magnetic field. Effects of drift, density
gradient, and temperature anisotropy appear as the causes of the active conductivities, whose presence is
shown to be the basic necessary condition for an instability. Each of these effects contributes differently
to the conductivity, giving a different necessary and sufficient condition for the associated instability.

I. INTRODUCTION

HE study of longitudinal plasma instabilities may

be dated from Hahn’s space-charge wave theory*

in 1939, Since then, the development of traveling-wave-

type amplifiers® and, more recently, research on

nuclear fusion, have led to almost innumerable examples
of such instabilities.

Although there are many instabilities, the basic
causes are limited by the way in which a plasma can
depart from thermal equilibrium; there may be drift,
density, or temperature gradients, and temperature
anisotropy. In an actual plasma, these not only may be
coupled with each other, but may be coupled with many
different kinds of stable plasma waves, and hence may
lead to many different instabilities.

Ordinarily, an instability can be found from the
zeros of the dispersion relation D (w,k) =0 in the complex
w plane. For a phasor of form expi(k-r—wf), each zero
in the Im(w)>0 plane corresponds to an unstable wave.
However, this method requires solution of the disper-
sion relation for each different case and sometimes ob-
scures the physical origin of the instability. One alter-
native to this method is the use of energy principles.
Since the causes of instabilities are limited, these
methods may have more general meaning and, in addi-
tion, may be useful in understanding the physical
mechanism. For example, the small signal-power

1W. C. Hahn, Gen. Elec. Rev. 48, 258 (1939).
], R. Pierce, Traveling Wave Tubes (D. Van Nostrand, Inc.,
New York, 1950).

theorem?® and the principle of the negative-energy wave,*
which is an alternative expression of the power theorem
in (wk) space, are powerful methods for finding the
necessary conditions for instabilities in a dissipation-
free system. The variational principle,® which examines
the change of potential energy, is also helpful in macro-
scopic instabilities, where conversion of the potential
energy to kinetic energy is the essential cause. More
recently, Hall and Heckrotte® have proposed to
examine the sign of the imaginary part of the dielectric
constant to obtain the necessary condition of insta-
bility in a plasma with anisotropic temperature.

These methods, although they have individual merits,
tend to lack general applicability. In particular, the fact
that the energy methods can present only the necessary
condition for instability (or stability) is often unsatis-
factory. In this paper, after noting that the dispersion
relation of a longitudinal wave resembles the impedance
function of an ordinary electrical circuit, we shall apply
the well-established theorems in that field to our models.
The reasoning for this possibility is based on the fact
that even in a system with retardation or propagation,
i.e., a system with a nonzero value of wave number k,
the existence of a zero of the dispersion relation in the
Im(w)>0 plane is necessary and sufficient for an in-

3L. J. Chu, in Proceedings of the IRE Conference on Electron
Devices, Durham, New Hampshire, 1951 (unpublished).

4 A. Bers and S. Gruber, Appl. Phys. Letters 6, 27 (1965).

5 I. Bernstein, E. Frieman, M. Kruskal, and R. Kulsrud, Proc.
Roy. Soc. (London) A244, 17 (1958).

S L. S. Hall and W. Heckrotte, Phys. Rev. 134, A1474 (1964).
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stability.” We can treat k in the dispersion relation as
merely a parameter.

We start by defining an active plasma conductivity
on an energy basis in Sec. II, and show that its presence
is the basic necessary condition of an instability by
applying the classic theorems of electrical-circuit
theory. The activeness of an equivalent conductivity
can be stated purely in mathematical form, which can
be reduced either to the form obtained by Hall and
Heckrotte for a dissipative (nonconservative) system
or, by the use of Foster’s reactance theorem, to that of
Bers* for a dissipation-free (conservative) system. The
theorem is developed further to obtain a necessary and
sufficient condition for instability by the use of a
Nyquist-type criterion.® This condition can be stated
in a form that requires only the solution for the real
roots of an equation of much lower order than that of
the original dispersion relation. These conditions give a
fairly clear picture of the mathematical process of
creation of unstable roots, which can be related to the
physical causes of instability. For example, in a system
of drifting electrons and stationary ions, we can show
that the electrons contribute to the active conductivity,
and we can obtain the frequency range over which the
conductivity becomes active. Then the mathematical
nature of the active conductivity automatically gives
the mathematical condition on the conductivity of the
ions that can lead to an instability. This condition can
be related to physical behavior, such as ion-collision
rate or temperature, etc.

In Sec. III, we give an application of the theory to
both collision-dominated and collision-free plasmas in
the presence of drift, density gradient, temperature
anisotropy, and uniform magnetic field. We omit tem-
perature gradients because they are not well defined
physically. We show the cause of the active conduc-
tivities and their mathematical nature, and predict, or
in some cases derive, the instability conditions. The
purpose in Sec. III is not to derive all possible insta-
bility conditions, but rather to point out types of active
sources. Once these types become clear, it is then suffi-
cient to know which stable longitudinal waves are
coupled in to predict instabilities.

Although we treat only instabilities of longitudinal
disturbances, the method may be applied to those of
more general disturbances, where the conductivity
becomes a tensor.

II. STABILITY THEORY

We use the equivalent plasma conductivity given as a
function of the angular frequency w, the wave vector k,
and the various plasma parameters. We shall first define
an active conductivity in terms of its behavior on the
real w axis. The presence of an active conductivity is
essential for an instability ; hence this definition is quite

7 P. A. Sturrock, Phys. Rev. 112, 1488 (1958).
8 See, for example, J. D. Jackson, J. Nucl. Energy 1, 171 (1960).
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useful in finding the conditions on parameters in a
plasma that lead to an instability. The second step is to
obtain a necessary and sufficient condition by using the
known nature of the active conductivity relative to a
passive conductivity in the plasma. A Nyquist-type
criterion is used to obtain this condition. Using the
active and passive conductivities so found, the condi-
tion is stated in a unique form, which can also be
written in several different forms if we use the arbi-
trariness of the choice of the active and passive conduc-
tivities in a given system.

We consider only longitudinal disturbances propa-
gating in the x direction. The dispersion relation may be
obtained in the following form:

—iweo—|~z oi(w,k)=0, (2.1)

where o; is the conductivity of the jth species and a
phasor of form expi(%-x—wt) is used. Even for a group
of electrons (or ions), we take the drifting part, for
example, as different from the nondrifting part as long
as it is possible to separate these. Thus the species type
7 is also based on its physical state. We treat k as a real
constant or parameter, and therefore consider o; only
a function of w. We assume nonzero collision or re-
combination dissipation, which can sometimes be
vanishingly small, in all the species, so that neither the
poles nor the zeros of ¢;(w) lie exactly on the real w axis.
Furthermore, we assume that none of the ¢;(w) has
poles in the Im(w)>0 plane. Thus a system with any
one of the o;is always stable when it is short-circuited,
which is true in most cases in plasma conductivities.
The conductivity shown in Eq. (2.1) may be ob-
tained by transforming the ordinary conductivity
tensor ¢° obtained in coordinates with one of its axes
directed along the magnetic field, to coordinates with
one of its axes directed along the propagation vector Kk,
by
o=[(Te%k)- (Tk)J/%*, (2.2)

where T is the transforming matrix. Alternatively, the
conductivity ¢ may be obtained from the ratio of per-
turbed density #; and potential ¢, as

(2.3)

We now introduce the idea of passive and active con-
ductivities as used in electrical-circuit theory.? These
are convenient to use because they lead immediately to
a necessary condition for instability. 4 passive con-
ductivity o p(w) has

Re[o,(w)]>0, Im(w)>0. (2.4)

It can be shown that if a conductivity satisfies the above
condition, it can be constructed from a combination of
passive elements, i.e., resistors, capacitors, and induc-

g= iwenl/k2¢1 .

? Concerning theorems used in relation to circuit theory, see,
for example, W. Cauer, Synthesis of Linear Communication Net-
works (McGraw-Hill Book Co., New York, 1958).



206

tances, which cannot provide any energy to an ex-
ternal element. Furthermore, it can be shown that such
a conductivity possesses neither a zero nor a pole in the
Im(w)>0 plane. Thus a system with only passive con-
ductivities is always stable.’ An active conductivity
o.(w) has

Re[o.(w)]<0 for at least some region of Im(w)>0.
(2.5)

If 5, (w) is regular in the Im(w) >0 plane as assumed, and
also because o (w) will become the conductivity in free
space as w — o, the definitions in Egs. (2.4) and (2.5)
may be written as follows: A conductivity is passive if
and only if for all real w,

Re[o(w)]>0. (2.4)

A conductivity is active if and only if for at least some
real w,
Re[o(w)]<0. (2.5")

If a conductivity is active, it can be shown that energy
can be delivered to an external element; or, an active
conductivity implies a source of free energy. The
presence of an active conductivity presents the possi-
bility of instability. Thus we have the following
theorem:

Theorem 1. A plasma is always stable when all of its
conductivities ¢; as shown in Eq. (2.1) are passive.

A plasma can be unstable only when at least one of
its ¢; is active, which is the basic necessary condition
for an instability. When Re(o,) is negligibly small, that
is, when the system is conservative, this condition can be
shown to be the same as that of the negative energy de-
rived by Bers® by the use of Foster’s reactance
theorem.® Namely, for a conservative system, an active
conductivity has

9 Im[o(w)]/dw>0 for at least some real . (2.5")

The active conductivity in a conservative system as
defined by Eq. (2.5") is reactively active. On the other
hand, a conductivity that is active in a nonconservative
system is dissipatively active. The physical meaning of
these two active conductivities will become clear when
we consider the equation of energy conservation for
linearized quantities in a system with only one of these
active conductivities. Such an equation, after integra-
tion over a unit volume taking into account our
assumption of real wave number %, can be written in
the following form:

ad
— [wwav= / 8dv. (2.6)

d¢

For a conservative system, the source term § in
Eq. (2.6) is zero, and hence the conductivity in such a

10 Actually, Eq. (2.5") is not exactly the form derived by Bers,
who included the space conductivity. If it is included, Eq. (2.5")
gives 8 Imo/dw— €o>0, reducing to his result.
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system can become active only when the energy W
itself is negative. An example of such a case was derived
by Chu? for an electron beam. On the other hand, the
conductivity of a system can become active even when
the energy W is positive, if (and only if) there exists a
source term § which is positive. Such a case we call
“dissipatively active.” An example is a collision-
dominated drifting beam with drift velocity smaller
than the thermal velocity. The reactively active con-
ductivity corresponds to a system with a negative-
energy wave. For such a system dissipation will con-
tribute to a positive-source term, but, because the wave
energy itself is negative, the positive-source term con-
tributes damping to the wave, while the same positive
source would cause a positive-energy wave to grow.
The first step to be taken in studying the stability of
a plasma is to find an active conductivity and the fre-
quency at which it becomes active. The existence of an
active conductivity can be found physically by con-
sidering the way in which a plasma is away from its
thermal equilibrium, such as those associated with a
drifting part, a nonuniform part, etc. One of the merits
of doing this is that we can find a parameter (or pa-
rameters) in a plasma that causes the instability. Once
this is done, we can write the dispersion relation (2.1) as

Wo=04(w)+op(w)=0. 2.7

Note that the space conductivity —iweo is included in
op(w) in Eq. (2.7), following the definition of Eq. (2.5").
Mathematically, to escape from unnecessary complica-
tions, € should be assumed to possess a small positive
imaginary part.

Now, it is well known that the simple presence of an
active element does not necessarily give rise to an in-
stability when the whole system is considered. Insta-
bility occurs only when a suitable feedback is provided
by the passive part of the conductivity, ¢p,. Depending
on the type of o4(w), the o,(w) that leads to an insta-
bility may either be inductive, resistive, or capacitive,
or a combination of these. In many cases, o, should
either be inductive or resistive for an instability, but
there are cases where the system is unstable when o, is
capacitive. Instability occurs when and only when at
least one zero of Wy in Eq. (2.7) exists in the Im(w)>0
plane. The number of zeros in the Im(w)>0 plane may
be found by the Nyquist theorem. The theorem states
that when w moves on the boundary of the Im(w)>0
plane as shown by ¢ in Fig. 1, the number of times that

I

F1c. 1. Contour ¢, showing
the boundary of the Im(w)>0 c
plane.
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the locus in the W, plane encircles the origin gives the
number of zeros in the Im(w)>0 plane, provided that
Wy does not possess any poles in the Im(w)>0 plane.
The proof can be easily made by considering the Cauchy
integral of 1/W, along the contour in the W, plane cor-
responding to the locus ¢ on the w plane. The Nyquist
method has the merit that the stability of a system can
be found simply by an explicit process, i.e., there is no
need for solving for roots of a complex function, which
is an implicit process. However, it fails to give the rela-
tion of the parameters to the stability of the system.

If we combine an implicit process, we can use the
Nyquist theorem in a somewhat more useful way. For
example, for the locus to encircle the origin in the W,
plane, it should cross a radial axis in that plane at least
once; by solving for such a condition, we may be able
to obtain the stability condition without an actual plot
of the locus. Now, what radial axis will be most suitable
for this reference axis? In view of the fact that the locus
can enter into the Re(IW) <0 area only in the presence of
an active conductivity, some axis existing in that plane
may be suitable. If we choose negative Re(W,) axis as
the reference, the condition that the locus crosses the
axis may be stated as at w on ¢, such that Im(W)=0,
Re(Wo)<0. But, why not choose some other axis? We
shall show that a suitable axis may be chosen if we take
advantage of the presence of the passive conductivity
G p.

Since we know that the passive conductivity o, does
not possess any zero in the Im(w)>0 plane, we can
apply the Nyquist criterion to a new function W defined
as

7a(w)
1

W(w)= =1

=U+1iV, (2.8)

0'17(“’)

and the number of zeros in the Im(w)>0 plane is given

by
1 d (o oo\ !
[
27t J o dow\op op
1 aw

=— - (2.9)
i) ew W

where ¢y is the locus of ¢ on the W plane. Thus the same
criterion used in W, applies to the new function W, and
the number of times that the locus c¢w encircles the
origin gives the number of zeros in the Im(w)>0 plane.

As can be seen from Eq. (2.8), the arcs of W and W,
are related through arc (¢,) as

arc (W)=arc (Wo)—arc (o,), (2.10)

where
larc (‘Tp)l <3w;
therefore, when arc (¢,) varies in its full scale as w

moves along contour ¢, there is only a single radial axis
in the IV plane which can stay in the Re(W,) <0 plane,
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Fi16. 2. W and W, planes and the circle E, given by |[W—1|=1.
If the locus remains inside the circle, the system is always
stable.

that is, the negative U axis. Hence the negative U axis
may be most suitable for the reference axis in the W
plane.

Now we study the relation between the encircling of
the origin and the crossing of the locus with the negative
U axis. One of the great benefits that the transformation
(2.8) has is that we can apply Rouche’s theorem to the
function W. As can be immediately seen in Eq. (2.8),
if |oa|/|os| <1, the locus stays always inside the circle
|W—1| =1, shown by E in Fig. 2; hence the locus can
never encircle the origin. This applies even for a range
of w such that Re(s,)<0; thus the theorem may be
used as a higher necessary condition for stability of a
system. An interesting point here is that if o, itself does
not possess a zero in Im(w)>0, which can be made so
in most cases, we can apply the same argument to a
function W’, which is obtained by

Wo (w)

@)

o»(w)

Oa (w);

thus, if |o,|/|ea| <1, the locus can never encircle the
origin. Therefore, we obtain the following theorem:

Theorem 2. A plasma is always stable when, for all w
on ¢, |op|>|0.|. In particular, if o, does not itself
possess any zero in the Im(w)>0 plane, the plasma is
stable when, for all & on ¢, |o,| | 0al.

For example, we can see that if ¢, does not possess
any zero in the Im(w)>0 plane, and if Re(o,)<0
occurs for only one continuous range of w on ¢, the
plasma can be unstable only when |a,| = || forsucha
range of w.

Next we study the way in which the locus encircles
the origin. Suppose we follow the locus starting from
w=w; on ¢, such that the corresponding point on the W
plane, as shown by S in Fig. 3, does not lie exactly on
the negative U axis. As is obvious from a topological
consideration, for the locus to encircle the origin, it
should cross the negative U axis at least once. When the
locus starts from S, and crosses the negative U axis only
once, one can see that the locus encircles the origin once.
When it crosses twice, there are two possibilities:
Either it encircles the origin twice, or it does not en-
circle the origin as shown by 4 and B in Fig. 3. To dis-
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F1G. 3. Possible locus in W plane. When the locus encircles the
origin, the system is unstable, which may be found by the way it
crosses the negative U axis.

tinguish these two possibilities, we return the locus to
S artificially, when the locus meets the negative U axis
at the second time without letting the return path cross
the negative U axis and create a closed loop, as shown
by the dashed line BS in the figure. We can see that if
the locus crosses the axis twice in opposite directions,
the closed loop can never encircle the origin; if it crosses
the axis twice in the same direction, it encircles the
origin once. If we define a number X such that when the
locus crosses the negative U axis once in the positive
direction (counter clockwise), A=1, and when it crosses
the same axis once in the negative direction, A\=—1,
the total number of times IV that the locus encircles the
origin is consequently given by

N=3\.

Thus we have the following theorem:

Theorem 3. A plasma is unstable when and only when
> \is not zero.

The above theorem gives a form of the necessary and
sufficient condition for an instability. The condition
that the locus crosses the negative U axis is given by the
following: For w=wy on ¢ such that

arc [, (wo) J—arc [o,(wo) ]
= 2n+1)=,

(2.12)

7 is an integer, (2.13)

and
loa(wo)| > |op(wo)| . (2.14)

Or, as an alternative form: For Re[g,(wo) ]<0 and

Re[o4(wo)] Im[o5(wo) ]

—Re[op(wo)] Im[oa(wo)]=0, (2.13)
—Re[g4(wo) ]>Re[ap(wo) ]
or
|Tm[oa(wa)]| > |Imop(wo)]] . (2.14)

In many cases, Re[o,(w)] becomes negative only for
one range of frequency w, say, wi<w<ws. For an in-
stability in such a case, |o,(w)| should be equal to
|op(w)] at least once, for w in this range. We shall see, in
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Sec. I1I, that there are many problems in which this is
true. Let us classify the types of o, into four groups,
depending on the behavior of the locus on the ¢, (w)
plane when w moves along on ¢ in the w plane. We
assume that ¢,(w) does not itself have a zero in the
Im(w)>0 plane; thus the locus does not encircle the
origin in g, plane.

Type 1. The locus crosses both the negative Im(o,)
axis and the negative Re(s,) axis [but does not cross
the positive Im(o,) axis because of the assumed nature
of o, [Fig. 4(1)].

Type 2. The locus crosses the negative Im(o,) axis
but does not cross the negative Re(o,) axis [ Fig. 4(2)].

Type 3. The locus crosses the positive Im(s,) axis
but does not cross the negative Re(o,) axis [Fig. 4(3)].

Type 4. The locus crosses both the positive Im(c,)
axis and the negative Re(o,) axis [Fig. 4(4)].

We know that for an instability to occur, arc (o)
—arc (¢,)=m; hence, depending on the types of a,, we
can find the type of ¢, that leads to an instability. If
we define o, as inductive, resistive, and capacitive if
Im(s,)>0, Im(s,)=0, and Im(o,) <0, respectively
[note that we use a phasor of exp(—iwf)], the pair of
o, to each type of o, that leads to an instability is given
by Table I.

Here the following remark may be worth making. As
has been stated previously, the grouping of ¢; in
Eq. (2.1) into ¢, and o, can be done in an arbitrary
fashion, as long as g, and ¢, satisfy the conditions of the
active and passive conductivities, respectively. De-
pending on the choice of ¢, and o, the function W
changes; thus the form of the condition of crossing of
the locus with the negative U axis changes. For example,
if we include the Im(o,) into o5, Im(s,) becomes zero
in the new o,; thus the crossing condition becomes
Im(oy)+Im(o,)=0 and —Re(o,)>Re(o,), which is
the same condition obtainable from the condition of
crossing of the locus with the negative Re(W,) axis in
the W, plane as shown previously.

III. LONGITUDINAL PLASMA INSTABILITIES

In this section, we give applications of the stability
theory. The objectives are to show examples of the way

1 (0a) 2

\:‘* Re(0a) C

0| UO

F16G. 4. Possible behavior of the locus of active conductivities.
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in which the theory is applied to obtain instability con-
ditions, to study the nature of the instabilities based on
our definition, and to obtain hints for their stabiliza-
tion. This section consists of two subsections. In sub-
section A, we treat collision-dominated plasmas, and we
discuss the effects of drift and density gradient of elec-
trons, using the diffusion equation. In subsection B, we
treat collision-free plasmas, and we consider the effects
of drift, stream, density gradient, and anisotropy of
temperature, using the Vlasov equation.

We shall derive only the necessary and sufficient con-
ditions of these instabilities in terms of the related
plasma parameters. The instabilities treated cover many
of the longitudinal instabilities so far found by many
authors. Some results are previously found conditions,
but reconfirmed with our method, and some, to the
author’s knowledge, are new.

A. Instabilities in Collision-Dominated Plasmas

Here we consider instabilities in collision-dominated
plasmas, where wr, (7. is electron-collision time) is
much smaller than unity. We assume that the plasma
is imbedded in uniform magnetic and electric fields B
and E,. The plasma has its density gradient in the di-
rection transverse to the magnetic field. We take B, in
the z direction, as shown in Fig. 5. The electric field Fy,
is applied to maintain the discharge. The transverse
electric field Eo,, which exists in the direction parallel
to that of the density gradient, is either an ambipolar
field or that plus a field applied from an external source.
We consider a longitudinal wave propagating in an arbi-
trary direction in such a plasma.

First, let us study the behavior of electrons. The
density gradient and the drift may contribute to create
an active conductivity. The equations are the equation
of motion

nv=—um(E4+vXB)—D Vn 3.1)
and the equation of continuity
on
—+V-(nv)=—dn, 3.2)
ot

where u, is the electron mobility (=e/vm), D, is the
electron-diffusion constant (=vr%/v.), v, is the electron-
neutral collision rate, vr is the electron thermal velocity,
and 8 is the recombination frequency, which we assume
to be negligibly small but not zero.

TaBLE I. Kinds of passive conductivities that lead to insta-
bility in the presence of different types of active conductivities
(see Fig. 4).

Type of g 1 2 3 4

Inductive Inductive Capacitive Capacitive
Resistive

Can become
unstable only Resistive
when o, is
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The unperturbed quantities, for which we use suffix
0, are obtained from Eqgs. (3.1) and (3.2) as

V0= — Moz, (3.3)
kDo~ peFoz
Yoz = P (3.4)
1+I402302
Voy= /J.eBo?)o, ) (35)

where k shows the magnitude of the density gradient:

d(Inmn,)

>0. (3.6)

K=—

dx

For the perturbed quantities, we assume a phasor of
expi(k-r—wt), and use subscript 1. The assumption of
a longitudinal disturbance allows us to use a scalar po-
tential ¢, for the electric field:

Ey=—ikey. 3.7)

Then we can solve Egs. (3.1) and (3.2) for the perturbed
density #, in terms of the perturbed potential ¢1. Sub-
stituting the result into the definition of the longitudinal
conductivity shown in Eq. (2.3), we can obtain the
conductivity of the electrons as

wew pe? (tko*+Kky/ 1eBo)
Five(w—k-vE)—vr%ket]

(3.8)

Oe¢

where wp, is the electron plasma frequency [= (e*#0/
eom)'?], vg is the unperturbed velocity due to the
electric field, namely,

KeEoz peB oeEoz
VE= —ﬂeEMez_ €z— €y,
1+Ha2302 1+lla2302
and
k+hy?
k=kit—.
+I.L32302

The active range of ¢, can be immediately obtained
from the condition that Re(oe) <0, and is given by

0<w<k-vgtw?*, (3.9
where

we* = Kszky/wce y Wee= eBo/m .
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Thus, from Eq. (3.9) we can see that both the electric-
field drift and the density gradient contribute to make
o, active. To find the type of ¢, we now look at Im(c,).
From Eq. (3.9),

Im(o.) « w[w* (k- ve—w)—kd*D2]. (3.10)

Noticing that ¢,—0 at w—0, we can see that o,
belongs either to type 1 or to type 2, depending on the
sign of Im(o,) at w — 0; namely, if

w k- vg—ko'D2>0, (3.11)
o, belongs to type 1, so that an instability occurs even
with pure resistive op. On the other hand, if

w’tk - vg—ke*D2<0, (3.12)
o belongs to type 2; thus the instability occurs only
when ¢, is inductive. Note that ¢, becomes active either
owing to an electric-field drift or to a density gradient,
but it belongs to type 1 only when both the drift and the
density gradient are present.

Let us now see if o, can become a type-1 conductivity
even in the absence of a drift parallel to the magnetic
field. Assuming p.Bo>1 and k,=k,=0, Eq. (3.9)
becomes

0<w<we*—ky(E0x/Bo) 3 (313)
while Eq. (3.11) becomes
Eoy, kStD2
— e hy—— ———>0. (3.14)

*Bo 14u2Be

Thus, if Ey, is the ambipolar field, which may be given,
say, for T;=0, by
“Bo o (3.15)

L —— .

© B(tuuBd)
then o,, though it can be active, can never become
type-1 conductivity. However, if we apply an electric
field externally in the negative x direction, then o, can
be made to belong to type 1.

Now, what kinds of instability will be expected to
result from the active conductivity ¢,? We presume that
cold ions in the plasma will constitute the passive con-
ductivity; by assuming a quasineutral condition, we
can ignore the conductivity of the space. First, we con-
sider a low-frequency instability, where w<<w<<v;
(we; is the ion cyclotron frequency and »; is the ion-
neutral collision frequency). For such a case, ions con-
stitute a simple resistive medium whose conductivity is
given by
(3.16)

0= €Wp/ Vi,

where wp; is the ion plasma frequency [ = (e20/ el )V/2].
Instability is only possible when ¢, is a type-1 conduc-
tivity, requiring the presence of both the density gra-
dient and the drift, The condition for the instability is
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given from Eq. (2.12) as

—Re(oe)> ewpd/v;, atIm(e,)=0, for ws0;
or, explicitly, as
wpk? fw kv Wpi
i °( —1)— “s0. (317
Vekz k()‘iDe2 Vi

When E,, is the ambipolar field, Eq. (3.17) reduces to
the condition of the helical instability as derived by
Kadomtsev.!! Note that an instability is possible even
in the absence of Eo,, if Eo, is applied externally. The
related instabilities have been discussed by Buneman!?
and by Sato and Hatta.’

Next, we consider a relatively higher frequency
region : v >w.i, but w<wp;, where the ions constitute
an inductive medium whose conductivity is given by

7:60(01)122
w—l—illi

If w<wyi, we can still use the quasineutral assumption,
and then o; contributes to the passive conductivity o.
Because o, is now inductive, instability occurs even
with type-2 conductivity, which means that conduc-
tivity with “drift” or “density gradient” is sufficient to
cause an instability. Let us first consider the effect of
the density gradient, and assume that there exists no
electron drift parallel to B,. Because Re(o,) is very
small under our assumption, the condition of the cros-
sing of the locus with the negative U axis is given by

|Im(es)|>|o:|, at Re(s,)—0.  (3.19)

From Eq. (3.9) we can see that there are two o’s that
satisfy Re(s,)=0, i.e.,

0=

(3.18)

w=0 (3.20)
and

w=k-vgtw>*. (3.21)

At w— 0, as can be seen in Eq. (3.8), o.— 0, while
o;—> 0 ; thus the above condition, Eq. (3.19), can never
be satisfied. This shows that at w— 0 the locus on the
W plane can never cross the negative U axis. If
Eq. (3.19) is satisfied at the frequency given by
Eq. (3.21), the locus crosses the negative U axis only
once, and hence it gives the necessary and sufficient
condition. In the absence of the parallel drift and with
only the ambipolar electric field perpendicular to B,
Eq. (3.21) becomes

BipeBo?
W=,
14 pipeBo?

Consequently, the instability condition is given by

*, (3.21")

u B. B. Kadomtsev, Plasma Turbulence (Academic Press Inc.,
New York, 1965), p. 13.

120. Buneman, Phys. Rev. Letters 10, 285 (1963).

3 N. Sato and Y. Hatta, J. Phys. Soc. Japan 21, 1801 (1966).
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Egs. (3.19) and (3.21') as

(3.22)

’_"—‘-‘_we*> kycs 3
14+piucBed

where ¢, is the ion sound velocity [ = (mvs?/M)V2]. The
related instabilities have been discussed by Timofeev
and by Moiseev and Sagdeev.!s

We next consider the effect of drift alone. We neglect
the density gradient, and instead introduce a uniform
electric field E, in the x, 2z plane. The same argument as
used in the derivation of Eq. (3.22) gives the condition
of instability as

T He (E()zkz"!‘EOzky/.ueBO) > (k=2+ky2)1/268 . (323)

Ordinarily, the excitation of the ion sound wave due to
an electron drift is considered to be caused by resonant
interaction'® (contribution of the Landau pole); how-
ever, our analysis shows that excitation is also possible
with a collision-dominated electron drift. Under the
fluid approximation, a collision-free electron stream can-
not become active unless the drift velocity exceeds the
thermal velocity; hence it cannot cause the present in-
stability. In this sense, the collisions in the electron
stream are helping the instability. We shall see in the
next subsection, however, that in a collision-free stream
the Landau damping creates an effect similar to that of
collision damping and can cause this instability. Exci-
tation of the sound wave due to the collision-dominated
stream has been discussed by Kuckes for gaseous
plasmas and by White'® and many others for solid-state
plasmas.

B. Instabilities in Collision-Free Plasmas

We take a coordinate system similar to that shown in
Fig. 5. We have a density gradient in the x direction and
a magnetic field in the z direction. We assume no un-
perturbed electric field in this case. We use the Vlasov
equation to describe such a plasma. For a density func-
tion f(v,r,f) of a species with charge ¢ and mass m, and
in the presence of a longitudinal disturbance, the equa-
tion may be written as

a a e do d
—f—i—v-—f-l——(——-I—VXBo) ._f= 0.
at ar m\ Or av

(3.24)

For the unperturbed density fo(x,v), we take, as a solu-
tion of Eq. (3.24),

fola,v) =n(x) fou[ (2:—0)%, v242,2](1—kv,/w0) ,

4 A V. Timofeev, Zh. Tech. Fiz. 33,909 (1963) [English transl. :
Soviet Phys.—Tech. Phys. 8, 682 (1964)].

15 S. S. Moiseev and R. Z. Sagdeev, Zh. Eksperim. i Teor. Fiz.
44, 76% (1963) [English transl.: Soviet Phys.—JETP 17, 515
(1963)7.

16 See, for example, T. Stix, The Theory of Plasma Waves
(McGraw-Hill Book Co., New York, 1962), p. 213.

17 A. Kuckes, Phys. Fluids 7, 511 (1964).

¥ D, L. White, J. Appl. Phys. 33, 2547 (1962).

(3.25)
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which is valid only if kv,/w.<1 and if the “tempera-
ture” is constant in space. The equation for the per-
turbed density f; is obtained by linearizing Eq. (3.24):

at ar m av

e [0for O » 0P
- (—ff’—-—i"—‘—g"———‘)n(x). (3.26)
dv dr w, 0y

m

Using a phasor of expi(k-r—wtf), and considering a dis-
turbance propagating in the y, z plane, we can integrate
Eq. (3.26) easily and obtain the perturbed charge

density en; as
eni=e f fadv.

In particular, when fo, has a Maxwellian distribution
along the direction of the applied magnetic field,

Jot () exp[— (vz—%)z], (3.28)

(27!')1/2'1)11 27)”2

(3.27)

va (V) =

the result can be expressed using the plasma dispersion
function Z.* Using the perturbed density, we can write
the conductivity as follows. For electrons:

— IWEW el
Te=——
k27)|[2
hd w'—we*"‘kzvo_‘mce(l_vllan/‘vJ.z)
£ o1
Lo V2k.o

W— W ce— k500
XZ(—-——————):I. (3.29)
ﬂkzvll

For ions, by assuming »=0 and using capital letters for
the thermal velocities:

— TW e pi
e
i 7 l:l—*_w-l—w,-*—nwci(l— V[[ZRn/V12)
X )
n=—® \/szvu
—NWe;
Z( )il, (3.30)
\/Q—szll
where
o kyu
Fn=[ J,F( )fol(u)Zﬂ-udu>0, (3.31)
0 We
9,2 r® kyu\1 0 fo*
Ry=—— ],F(——)—— —2rudu>,<0, (3.32)
F.Jo w./u du
ur=19,2+419,2, (3.33)

19 B. D. Fried and S. D. Conte, Tke Plasma Dispersion Fuynction
(Academic Press Inc., New York, 1961).



212

w™* is the drift wave frequency defined in Eq. (3.9), with
vr replaced by vy, and v,? is the variance of fo'(#). In
Egs. (3.29) and (3.30), it is understood that w includes
some small dissipation.

Note here that, when fo'(#) is also Maxwellian, F,
and R, reduce to

ko2 kyo,?
F,=exp| — I, ,
w? W

Ry,=1.

(3.31)

(3.32)

Note, also, that R, can become negative when 8 fol/du%
is locally positive, that is, when fot(%) has a hump at
u not equal to zero.

It is known that Im(Z) is always positive for real
argument and becomes maximum when the argument
is equal to zero; thus, to make o, active, i.e., to make
Re(o.) negative, near w~nw..~+k.vo,

w<we*+nwce(1 _‘7)“2Rn/7)12) +kz1)() .

Equation (3.34) shows that the effect of a density
gradient, the first term, the effect of anisotropy of tem-
perature, v;,2R,2/v,2<1, the second term, and the effect
of drift parallel to By, the third term, are all contributing
similarly to make o, active. We treat those effects
separately.

(3.34)

Effect of Drift Parallel to By

Let us first study the effect of the drift parallel to the
magnetic field. It is well known that such a drift gives
rise to an instability, but we wish to show that there are
two different kinds of instabilities. Assuming propaga-
tion parallel to the magnetic field, Eq. (3.29) reduces to

10 €0 pe? w—k,y fo—Fk0
aa °z( °)] (3.35)
k?v1? L ﬁkzvll \/ka‘v”

Oe= —

First, we consider the low-frequency region where
|w—F.v0| K| V2E,v11| can be assumed. For such a region,
we can use the power-series expansion of Z function,

and ¢, becomes
w——kzvo
—1 .
kz‘vu

[ o

2
WEW pe

V) |2k2

(3.36)

Te=—

Therefore, o, becomes active for w such that
0 <w< kz‘Uo b}

and it belongs to type 2 and is dissipatively active; we
can show that the wave energy associated with this
condition is positive, but ¢, becomes active because of
the nonconservative nature of the Landau damping,
producing a positive-source term in Eq. (2.6). Hence
instability can occur only with inductive o,. If, by as-
suming quasineutrality, o, is composed of cold ions, the
conductivity is given by Eq. (3.18), and the condition
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of instability can easily be obtained as

—Im(s.)>Im(c;), at w=k,vo,

or, explicitly, as
(3.37)

which is the well-known result.!® Here it is worth noting
that the condition is exactly the same as the case for
collision-dominated drift. In fact, o, obtained in
Eq. (3.36) can be reduced exactly to the same form as
that obtained for the collision-dominated example
Eq. (3.8) by expanding in powers of (w—k.v,)/kvr, and
by simply equating the collision term v,/kvr to (3)!/?
in Eq. (3.36).

Next, we consider a higher-frequency region where
|w—F.v0| /| V2k.0u|>3>1. We use the asymptotic expan-
sion of the Z function, finding that ¢, may be written as

V9>Cs,

iweo‘*’pg

- ) (3.38)
(w- kz'l)o)z— 3k222)| 12

Te

Because o, in Eq. (3.38) is pure imaginary, we use the
criterion of Eq. (2.5”); the o, is shown to become

active when
|| <[k2(ve2—3vi2) JH2.

Thus, unlike ¢, in Eq. (3.36), o, here can become active
only when the drift velocity is larger than the thermal
velocity. Another difference between o, in the high-
frequency region and o, in the low-frequency region is
that o, here is reactively active, and the wave energy can
be shown to be negative; thus instability occurs even
with a pure resistive medium,?? as can be expected
from the argument in Sec. II. The instability caused by
oo in Eq. (3.38) is known as the two-stream instability,
and its nature has been well studied by many authors.

Effect of Density Gradient

Now we consider the effect of a density gradient,
which is responsible for the drift-wave instabilities. We
treat the interaction between the drift wave of electrons
and ions, and assume the frequency range of wwee.
For such a frequency range, the conductivity of elec-
trons may be obtained by taking only the first term in
the summation in Eq. (3.29) (an isotropic temperature is
assumed here), i.e.,

weow,,.,zl‘ 1 mw—w,,* :
o= Gm) 7.
vT2k2 k,‘UT

(3.39)

Thus o, has exactly the same form as that in Eq. (3.36),
if we equate w,* to k,vo. o, belongs to type 2, and in-
stability occurs only when o, is inductive. However,the
passive conductivity differs significantly, because here

2 C. K. Birdsall, G. R. Brewer, and A. V. Haeff, Proc. IRE 41,
865 (1953).

2 C. K. Birdsall and J. R. Whinnery, J. Appl. Phys. 24, 314
(1953).
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we should consider the conductivity of the ions with a
component of propagation perpendicular to the mag-
netic field. If we consider the frequency range of
w<w.i, we can again assume quasineutrality. The con-
ductivity of the ions may be obtained by taking only
the #=0 term in Eq. (3.30) as

w—l—w,-* kyVT w
*a o )}
V2kVr \ we V2k.Vr

(3.40)

- 7:606()(01;1:2'—
Ve L

g;

If the ion temperature is small and the ion Landau
damping is negligible, the condition of instability
becomes

_Im(Ue)>Im(°'i) ’

or, explicitly,

T; wFtw* kyVT wg*

iy F( ) Re[Z( )]>0.
T, V2k,Vr Wei V2kVr 3

The above condition is satisfied only for large values of
ky/k.. It may be worth noting that the condition is
satisfied even for cold ions. The related instability has
been discussed by Kadmtsev and Timofeev,2? but
Eq. (3.41) gives a more general form.

An interesting feature of the drift wave in a collision-
less plasma is that it presents a reactively active (nega-
tive-energy-wave) conductivity for the perturbation
propagating exactly perpendicular to the magnetic field.
Assuming an isotropic temperature (vi=v,=v7) and
no drift parallel to the magnetic field, the electron con-
ductivity given in Eq. (3.29) becomes, for the perpen-
dicular propagation,

at w=w.",

—iwepd © Wt —Nwee
To= > F,.

Bt n=—o 0—Mwe,

(3.42)

Using the criterion of Eq. (2.5”), we can obtain the
condition that o, becomes active at w~#nw,,, as®

(3.43)

Careful study of the locus of ¢, in Eq. (3.42) shows that
it is stable against a pure reactive loading, but is un-
stable against a resistive loading.*

W > Nweey, N=1,2,--.

Effect of Anisotropic Temperature

In this subsection, we consider the effect of aniso-
tropic temperature. There are two features in this
effect. One is of the case when the transverse distribu-

2B, B. Kadomtsev and A. V. Timofeev, Dokl. Akad. Nauk
SSSR 146, 581 (1962) [English transl.: Soviet Phys.—Doklady
7, 826 (1963)].

2 Exactly the same condition applies to the ion conductivity
with the propagation direction in the negative y direction.

2Tt is interesting to compare Eq. (3.42) with the conductivity
of the flute disturbance, i.e., o~—4/(w-+wo), which is also re-
actively active, but stable against a pure inductive loading.
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tion fo'(#) has a hump and R, can become negative,
while the other is when 8 fo*/d# <0 for all # and thus R,
is always positive. In both cases, the conductivity of
ions, as well as that of electrons, becomes active.

We first treat the latter case. As a typical example,
we assume a bi-Maxwellian distribution for fo,(v). We
consider only the case where the instability condition is
satisfied most easily, which is the case where the anisot-
ropy of the ion distribution contributes to create an
active conductivity, while relatively cold electrons con-
tribute to the passive part.

We assume a frequency range of w>w.;, and that Vy
is relatively small, such that w.;/k.V1i>>1. Then we can
use the asymptotic expansion of Z function in Eq. (3.30)
for all but the »=I term, and the corresponding con-
ductivity can be written as

iweowmz Vi\2? n (F,
R GEEE
k2V||2 Vj_ n#l p—| Fl
w_lwci lwci Vll 2 w_lwci
| GG
V2E Vi V2R Vu\V, V2k,V
(3.44)
The upper limit of w, such that o; becomes active, may
be obtained immediately, by using the fact that for real
argument Im(Z) is always positive, as

Vll 2
w<l¢0“|:1— (—) :I
V.
The lower limit may be obtained from the condition
that the real part of o; is cancelled by that of o;—;. Com-

bining the result with the upper limit, we can obtain
the active range of ¢; as

( -—%)wci<w<l"-’oi[1_ (VII/VJ.)Z:I;

1=1,2,---. (3.45)

This is the same relation as that of the necessary condi-
tion of instability derived by Soper and Harris.?

Now, to obtain the condition of instability, let us
study the nature of ¢;. For w at the lower limit in
Eq. (3.45), the conductivity ¢; takes the form

'iweowmz V'i\? n (Fu\7
oll=— (—-) |:2l+ > ———(——) Fi, (3.46)
k2V112 V_L 22l n—I\F/ ]
while for w at the upper limit,
1:6060(»1,;2 V|| 2 n F.n 7
o= — [1.{.(_._) S —-—(——-) F;. (3.47)
k2V 2 V/ n#stn—I\F/ |

Hence, if Im(e;!) Im(0:2) <0, o, itself possesses zero in

the Im(w)>0 plane, unlike all the previous examples.
As for o,, we consider the contributions of electrons

and the space. The effect of the temperature of electrons

2 G. K. Soper and E. G. Harris, Phys. Fluids 8, 984 (1965).
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causes the Landau damping which contributes to a
positive real part in o,. If the damping is small, and if
Im(e;!) Im(o;2) <0, we may still expect an instability.
If Im(o)) Im(e2)>0, because Im(o;2)<Im(e;') and
Im(o7?) is negative for large value of (V./Vn)? the in-
stability will occur most easily with an inductive o,
requiring relatively cold electrons for which lw.:/k.vi>>1
can be assumed. Then o, may be written as?

Tp=0,—1wey

(3.48)

iwewpfl’kz?vu? ky?)12 kzvllz:l
k21)”2 L w2

2

Wee Wpe

If we write o, at w= (I—3)w.; and w=1lw.;(1—V12/V,2)
as o' and 0,2 respectively, the instability condition can
be written as

—Im(os)>Im(0,)>0,

—Im(o") <Im(o5).

Equation (3.49) may be satisfied if o is almost zero. If
9,=0, this condition may be satisfied by lwek~wpek..
If 9,540, a large k,/k, ratio will also satisfy the condi-
tion. For example, if wpe> wee, the latter condition gives

ky ‘ZJn) M ) 1

kz (7)1_ <m l(l_V]lz/V_]_2)
Instabilities associated with anisotropy of temperature
have been discussed by many authors,?” who have de-
rived the former condition, i.e., lwyk~wyck. The con-
dition shown in Eq. (3.50) is not generally known.

We now study the case where fo'(#) has a hump at

% not equal to zero. The instabilities associated with
such a distribution have been studied by Gruber,
Klein, and Auer,?® by Hall and Heckrotte,?® and by
several others.®® The active conductivity with such a
distribution has several different features from that with
the bi-Maxwellian distribution. One interesting feature
is that it can become reactively active when the direc-
tion of propagation is exactly perpendicular to the mag-
netic field. In the same way as is used in the derivation

(3.49)

(3.50)

26 Previous authors neglect the second term in Eq. (3.48).
27 Major works are listed in Ref. 25.
(1” g) Gruber, M. W. Klein, and P. L. Auer, Phys. Fluids 8, 1504
965).
21, S. Hall and W. Heckrotte, Phys. Rev. 139, A1117 (1965).
8 H. Momota and Y. Terashima, Progr. Theoret. Phys. (Kyoto)
33, 394 (1965).
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of Eq. (3.42), assuming k,— 0, we can show that at
W~NW,, if
R.<0,

n=1,2,--, (3.51)

the conductivity becomes active.

Another interesting feature of this conductivity with
negative R, is that, when the direction of propagation
has a component parallel to the magnetic field, it
becomes active even right at w=nw,, as can be seen by
replacing (v1/9.)? by R,(vn/v.)? in Eq. (3.45). More-
over, since the Z(x) function takes its maximum value
(~1) at x~—1, if R, is negative, the imaginary part
of ¢; can more easily be made positive at w Sk, ; thus
o, may belong to type 1 easily, even for £,70. This fact
shows that an instability should be expected even with
hot electrons whose Landau damping contributes to a
large positive real part of the passive conductivity, but
helps to change it from a pure capacitive conductivity
to a capacitive-resistive conductivity. Such an insta-
bility was shown to exist by Hall and Heckrotte.?* Here
we only state the nature of the active conductivities
and do not discuss the conditions of instabilities.

Iv. CONCLUSION

We have presented a new stability theory which may
be useful in finding causes of instability and obtaining
conditions of stabilization of a plasma in the presence
of longitudinal disturbances. By applying the theory to
collision-dominated and collision-free plasmas im-
bedded in a uniform magnetic field, we have shown that
drift, density gradient, and temperature anisotropy can
all become the causes of instabilities, but under con-
siderably different conditions. These conditions, which
are stated in terms of the direction of propagation rela-
tive to the applied magnetic field, may be useful in con-
sidering methods of stabilization which use magnetic
shear.

ACKNOWLEDGMENTS

The author is much indebted to Professor T. Fujisawa
in the Department of Control Engineering, Osaka
University, for his many wvaluable suggestions on
Sec. II. Discussions with Dr. L. S. Hall of the
University of California Lawrence Radiation Labora-
tory, Livermore, on various aspects of this work have
been of great help. Professor C. K. Birdsall of the
University of California at Berkeley has kindly proof-
read the manuscript.



