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diverges logarithmically. In conclusion we note that:

(1) The contribution to transport of the recollision

part of the four-particle collision operator for real gases
had previously been shown to diverge logarithmically
for the quantum' as well as the classical case. ' '

(2) The present communication shows that the con-

tribution to transport of the WC limit of the same

recollision operator converges in the quantum as well

as in the classical case.

(3) Taken together, conclusions (1) and (2) imply

that the WC limit fails for the transport divergence
problem.

(4) A rather curious behavior is uncovered for the
quantum WC limit in which ctI(t)wo/ctt is found to grow
as t'I' and oscillate rapidly. This growth, although
faster than logarithmic in t, is due to the spatial over-
lapping of broadening wave packets, as can be deduced
with (23) and (24), and does not present any divergence
problem to transport. The overlapping wave-packet
phenomenon is clearly distinct from the logarithmic
divergence in which "information" can be carried
between separated wave packets.
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An expression is derived for the frequency spectrum of light which is scattered twice by thermal di6usion-
type density fluctuations in a Quid. In the two limiting cases of forward and backward scattering, the
shape of the spectrum is insensitive to the presence of a double-scattering component.

A S has recently been demonstrated in numerous
experimental investigations, " the spectral anal-

ysis of monochromatic light scattered by a Quid near
its critical point makes possible the determination of
the coefiicient of thermal diffusion D(T). If k is the wave
number of the entropy Quctuation producing the density
Quctuation which causes the light scattering, the width
of the Lorentzian curve which describes the Landau-
Placzek central peak is

I"g,~'i(T) =D(T)k'.

Thus the interpretation of the frequency width of the
experimentally observed spectrum of the scattered
light is unambiguous, provided that it is certain that
only one scattering process has been involved. The
purpose of this paper is to point out that in the two
limits of forward scattering and backward scattering
such a rigorous criterion can be relaxed. In these cases
the shape and width of the Landau-Placzeks central
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peak is insensitive to the double-scattering corrections,
even when the Quid is opalescent to such an extent that
the optical mean free path is comparable to the optical
path length in the sample.

The demonstration of this result will be limited. to
the calculation of the correction for double scattering.
Extension to higher multiples of scattering is straight-
forward. While no simple general result applies for
backward scattering, the case of forward scattering is
generally described by the qualitative result which we
will now proceed to establish explicitly for the limited
case of double scattering.

Successive scattering from the Quctuations of wave
number kt and ks gives an observed scattering at
wave number transfer k=k&+ks. By the convolution
theorem the doubly scattered light will have width

I'» "'(T)= I's "'(T)+I's."'(T)=D(T) (kt'+ks') (2)

It is now trivially evident that backward scattering
satisQes the condition kts+kss=k', regardless of the
actual direction of kt. Hence all of the doubly scattered
light observed in the backward direction has the same
frequency width as the singly scattered component, and
no correction is required for the frequency spectrum in
this case. (As remarked above, this conclusion is
limited to double scattering and is no longer true when
higher-order corrections are important. )

For the general case of double scattering of light of
wave number ko at net scattering angle 0, the transfer
wave number is k where k= tki =2ke sins8. Thus we
require k&+ks ——k and change variable to k'=k& —ask.
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The resulting double-scattering breadth is then propor-
tional to

k22+k22= [k'+-2'k[2+ (k' ——2'k)2

= 2k"+-',k'

=-'k'+2k '+2K' 4k—pK cosP, (3)

where iP is the angle between the vectors K=kp+-', k
and kp+k2. We now assume that the wavelength of
the light is much greater than the correlation length of
the Quctuations in the Quid and that the double-
scattering events are weighted equally in proportion
to the differential solid angle 2m. sinfdf. Thus the
frequency spectrum of the double-scattering events is
given by the integral over Lorentzians,

1
I2(4p, k) = —Im-

2Ã p

sinfdf

pp+2D(kg+ k2')

4p2+ D2P2k2+ 2 (kp+ K)2j2
ln , (4)

16~Dk K 4p2+D2L2k2+2(k K)2)2

where 4p/22r is the frequency shift of the doubly scattered
light and we have substituted from Eq. (3).As a check
on this result we note that the case of backward scatter-
ing is described by the limit K~ 0. In this case we can
neglect terms of order E' within the logarithm, which
then reduces to lnL(1+@)/(1—x)j=2x, where

x= 8D'kpkpKLcp2+ D'(-'k2+ 2k p2)j '
=SD2kpkpK (442+ D'k4) '

with k= 2kp. Equation (4) consequently becomes

1 Dk'
I2(4p, k) =-

2r 4p2+D'k4

1 1= —IIl1-
2r 4p+2Dk2

= I)(4p,k),

the frequency scattering for single scattering, Thus
there is no double-scattering correction to the spectrum
observed in the backward direction, as already remarked
above.

It is evident from Eq. (4) that the double-scattering
correction at a typical angle (e.g. , 8= 2'2r) considerably
modifies the spectrum. This correction can be avoided

not only in the backward direction, as we have seen,
but also in the forward direction. The simplying feature
of the latter case is that the doubly scattered light is
spread out over a frequency range of the order Dkp'
and is consequently very weak in the much smaller
frequency interval of half-width Dk'((Dkp', where the
singly scattered light is concentrated. In this case we
can make the approximation (kp —K)'=4kp'sin'(48)
=k'/(64kp')«k' so Eq. (4) becomes

64kp4
I2(4p, k) = —ln

162rDkp2 4p2+4D'k4
(6)

The strength of this spectrum at co=0 compared to the
central strength of the spectrum of the singly scattered
light is

I (Ok) k' kp
ln—.

I2(o,k) 4kp'

As a numerical example, for the particular case of
scattering at 8=11'=22rad, we have k/kp ——x2, and the
ratio takes on the value 10 ' ln 5=0.016. Hence, in
the frequency interval in which the singly scattered
light is concentrated, the strength of the doubly scat-
tered light amounts to less than 2%.

In summary, Eq. (4) exhibits the spectrum which
is expected for doubly scattered light when the basic
fluctuations producing the scattering are controlled by
thermal diffusion. Equation (4) simpliQes in two special
cases. In the backward direction, the double scattering
has no net effect because it has the same spectrum as
single scattering. In the forward direction (i.e., scatter-
ing angle of 11' or smaller) the double scattering has a
different spectrum but its strength in the relevant
frequency interval is sufficiently small as to be neglig-
ible. As a final remark, it should be cautioned that Eq.
(4) cannot be applied directly to directions other than
the two special cases which have led to the qualitative
conclusions presented here. This is because the geome-
trical shape of the scattering sample also contributes a
weighting factor for the individual scattering events
which would have to be included in any quantitative
application of Eq. (4). A further caution is that the
results here are limited to the case of isotropic opales-
cence. This is the case when the correlation length is
smaller than the optical wavelength, which is true
except when very close to the critical point (i.e.,
extremely small values of T T.). —


