
169 GAS PUMPING IN Ar DISCHARGE

dependence of hp/L on M may be more complicated
than Eq. (A1) indicates.

Equation (A9) predicts hp/L ccI/p, just as Rutten-
auer observed, but unfortunately the use of the high-
pressure form for Vs in Eq. (A8) Lwhich leads to
Eq. (A9)]cannot be justiled in the case of helium and.
neon. The critical value of pR separating the high-
pressure and low-pressure forms for V3 may be written

pR=1.06V,

(p in Torr, R in mm, V, in V) in argon. However, accord-
ing to Francis, V, ranges from 5 to 15 V for helium and
neon in Ruttenauer's experimen. ts. (Such high electron
temperatures have been observed by Labuda and
Gordons' in helium-neon discharges. ) Physically, this
then means that the radial 6elds are much greater in
helium and. neon than in argon at similar values of pR,
so that ion radial drift velocities are considerably
greater in the lighter gases at a given value of pR.
Thus V3 will still have its "small x" form at some values
of pR in argon but its "large x" form at the same values
of pR in neon or helium.

Specifically, one finds that the crossover from the
high-pressure form of V3 to the low-pressure form

"E. F. Labuda and E. I. Gordon, J. AppL Phys. BS, 1647
(1964).

should occur at
pR=2.02V, in neon

pR=2. 22V, in, helium

(p in, Torr, R in mm, V, in V). If the high values of
electron temperature previously mentioned occurred
in Ruttenauer's tubes, then it is clear that the ap-
propriate form for Vs in Eq. (A"/) should be the low

pressure form (the large-x limit). As previously re-
marked in the case of argon, the large-x limit of V~ is
pressure-independent, so that the 1/p dependence
found by Ruttenauer cannot be accounted for in this
case.

The resolution of this remaining disagreement must
await further work. Perhaps the electron temperature
in Ruttenauer's range of current and pressures is lower
than estimated here, in which case Eq. (A9) would still
be applicable and would account for his measurements
in helium and neon. Perhaps other pumping processes
at work in these gases make Va an incomplete descrip-
tion of the pumping mechanism. Or perhaps, because
of the small currents used by Ruttenauer, changes in
electron temperature and axial field as a function of
current obscured a true interpretation of the pressure
dependence over the limited range of parameters he
used in his work on helium and neon.
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A recently developed collective-coordinate technique is employed to calculate electric micro6eld distri-
bution functions P(e) for low-frequency-component plasmas. Values of e considered range from 10 to 50,
and both neutral-point and charged-point cases are treated. Comparison is made with appropriate asymp-
totic expressions.

I. INTRODUCTION

ECENTLY, a collective-coordinate technique has
been used to calculate electric microfield distri-

butions in plasmas; both high-frequency- and low-
frequency-component plasmas were considered. "The
distribution functions graphed and tabulated in these
papers were for values of field strength e measured in

*This research was supported in part by the National Aero-
nautics and Space Administration.

' C. F. Hooper, Jr., Phys. Rev. 149, 77 (1966).' C. F. Hooper, Jr., Phys. Rev. 165, 215 (1968).

units of the normal field strength, from zero to 10.How-
ever, for a number of practical applications such as
spectral line broadening in plasmas, there is need for
values of the microfield distribution function P(e)
for values of ~ greater than 10.

It is the purpose of this paper to calculate and discuss
the low-frequency-component micro6eld distribution
functions for values of ~ between 10 and 50. Both the
neutral- and charged-point cases will be treated. Much
of the w'ork presented in this paper is based on the
formalism developed in Refs. 1 and 2, hereafter referred
to as I and II, respectively.
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TanLE I. Probability distributions 10 P(e) at a neutral point,
for several values of u, compared with the asymptotic Holtsmark
results [see Eq. (1) in text). The electric-field strength e is ex-
pressed in units of eo. In each 10'P (e) column characterized by a
given u value, values are listed until they coincide with the corre-
sponding asymptotic result to within a few percent. Therefore,
for all 10'P(e) values not explicitly listed, the asymptotic results
should be used.
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FIG. 1. A comparison of the neutral-point electric micro6eld
distribution function calculated using the theory developed in II,
with the asymptotic Holtsmark result; e is in units of e0.
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This comparison indicated that before the point &=30
is reached, all four P(e) curves join with the asymptotic
Holtsmark expression. An example of this is graphically
illustrated. in Fig. 1. Values of P(e) calculated with the
rn.ore exact formalism are tabulated in Table I together
with those calculated with Eq. (1). In every case, with
at most an error of a few percent, neutral-point P(e)
values for e)30 can be found, using Eq. (1). In fact,
for the a=0.2 case, P(e) values for e) 20 can be found
using Eq. (1).

To calculate P(e) at a charged point (e.g., at an ion)
in the low-frequency-component plasma, use is made
of Eqs. (1), (13), (15), and (16) in II. Again, e values
range between 10 and 50. To calculate an expression

'B. Mozer, dissertation, Carnegie Institute of Technology,
1960 (unpublished).

II. RESULTS AND DISCUSSION

The results will be divided into two categories: the
charged-point case and the neutral-point case. The
latter @rill be considered Grst.

Electric micro6eld distribution functions P(e) at a
neutral point in the low-frequency-component plasma
were calculated using Eqs. (1), (16), (17), and (18) of
II, for several values of a, and for an e range of from
10 to 50. The results were then compared with the
asymptotic Holtsmark expression given by'

P(e) r~,g,t;.——1.496e 'Is+7.639e~
+21.60e ""+ . (1)

for P(e), valid for large values of e, we follow Broyles'
and Mayer' and assume that in this high-Geld region,
only the nearest neighbor to an ion makes an appreciable
contribution to the electric Geld at that ion. Thus
we can relate P(e) to the probability density P(r)
=4rr'eg(r) that an ion will be at a distance r from any
other ion; as a matter of convenience the ion at which
the Geld distribution is being calculated is located at
the origin of the r reference frame. Here, e is the ion
density in the plasma and g(r) is the well-known radial
distribution function. Rigorously, w'e should use the
probability of the nearest neighbor lying at a distance
r from the ion instead of g(r); however, when one of the
ions is close to another, resulting in a large Geld, the
difference betw'een these two probabilities should be
small. Since we are dealing with the low-frequency
component, the ions interact with one another through
a Debye-Huckel shielded potential and hence the
electric Geld due to such a shielded ion is given by

e= (1/r')[1+ar je
a=ro X,

where ro is the ion-sphere radius deGned by

3' rp 12= 1 j3 & ~

X is the Debye length de6ned by

X= (kT/4z. res)'~',

and e is measured in units of ep, the normal Geld strength,

~p=& rp

Then
de= (a/r)e «$2+ (2/ar)+ar$dr. (3)

4 A. A. Broyles, Phys. Rev. 100, 1181 (1955).
5H. Mayer, Los Alamos Scientific Laboratory Report No.

LA-647, 1947 (unpublished).
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TABLE II. Probability distributions 1(yP(e) at a charged point,
for several values of u. The electric-field strength e is expressed
in units of pp. In each of the 10'P (p) columns, all values of 10PP (p)
in italics have been calculated using the asymptotic expression,
Eq. (6), of the text. The shift from the nearly exact results to the
asymptotic involves, at most, an error of a few percent.
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5.177
3.171
2.115
1.484
1.094
0.829
0.650
0.517
0.426
0.344
O.Z83
0.19Z
0.137
0.101
0.077

a=0.4
4.481
2.730
1.816
1.265
0.928
0.689
0.546
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0.079
0.060

a=0.6
3.674
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0.054
0.040
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Again noting that e is measured in units of eo and r
in units of ro, we may write

P (e)dc =3r'g (r)dr.
0

5 lo IS 20

For g(r), we use'

g(r) —expL (as/3r)&
—vspr j

F&G. 2. A comparison of the charged-point electric microfield
distribution calculated using the theory developed in II, with the

(5) asymptotic curve generated using Eq. (6); p is in units of pp.

which is the appropriate Debye-Huckel expression.
Hence, combining Eqs. (3)-(5), we arrive at the
expression

3rs exp/ (as/3y )e cesar l—
P(e) =

L2+ (2/ar)+ar1(a/r')e '" (6)

Note that unlike the Holtsmark expression, used for
the neutral-point case, the charged-point asymptotic
expression is dependent on the appropriate a value.
Comparison of the charged-point values, calculated
from the formalism developed in II, with the asymptotic
expression calculated with Eq. (6), indicates that for
all values of a treated here, P(e) coincides with the
asymptotic expression by the time &=30, with at most
a few percent uncertainty. An example of this coinci-
dence is illustrated in Fig. 2. In all cases, the P(e)
values for e in the 30-to-50 range can be found, using
Eq. (6); in no case will these values differ by more than
a few percent from those calculated with the more exact
theory. In Table II, values of P(e) for various charged-
point cases are listed.

It is interesting to note that, contrary to the neutral-
point case, the P(e) values corresponding to the highest

a values most rapidly approach their asymptotic form.
This veri6es that the initial assumptions made in
deriving the charged-point asymptotic form are
applicable over the widest range of e values in a high-
density plasma.

Finally, as indicated in II, the asymptotic P(e)
curve can, with a high degree of accuracy, be calcu-
lated, using only the 6rst approximation to the theory:
that is, by using Eqs. (1), (16), (17) in II. Calculations
show that the correction to P(e) values, presented in
this paper, brought about by inclusion of the second
approximation to this theory does not exceed 3% for e

in the range from 10 to 30.

III. CONCLUSION

The results described in this paper mill allow lom-
frequency-component P(e) values to be calculated
accurately for e in the range 10 to 50. Both charged-
point and neutral-point cases are treated. These results
will enable more accurate calculations to be made of
plasma-broadened spectral line shapes —especially in
their wings.


