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Collisions between gas atoms and charged particles in the positive column of a dc-excited gas discharge
tend to cause an axial transport of gas between the ends of a discharge tube. Since, because of approximate
charge neutrality, essentially equal forces are exerted on the plasma ions and electrons by the axial Geld, any
net force on the gas must be balanced by an axial force exerted on the wall by the plasma. Earlier workers
have treated this pumping by assuming that ions near the wall give their cathode-directed momentum to
the wall rather than to neutral atoms, thus producing a net anode-directed force on neutral atoms close to
the tube wall, this being the predominant force. Such a treatment is shown here to be an incomplete discus-
sion of the forces acting on the neutral gas; moreover, the "wall pumping" force itself is shown to be in-
correctly considered in the earlier work. At higher pressures, the principal gas pumping force turns out to
be one which acts throughout the discharge volume, caused by the unequal radial distances traveled by ions
and electrons between collisions with gas atoms. The pressure and radius dependences of gas pumping pre-
dicted by the present treatment diBer substantially from those of earlier work.

I. INTRODUCTION II. PREVIOUS THEORETICAL RESULTS

''T has been known for more than 40 years that a
~ - pressure difference is observed between the ends of
a gas discharge tube due to net axial forces exerted on
the gas in the positive column. ' When the two ends of a
discharge tube are maintained at nearly the same pres-
sure (for example, by providing a path external to the
discharge connecting the cathode and anode regions
of the tube), the forces of the positive column instead
cause an axial Qow of gas. Early explanations' ' of this
effect gave a poor account of the observed pressure
differences, but little further theoretical work was done,
possibly because the effect was small and dificult to
measure and seemed to have no important bearing
upon other measurements in gaseous discharge tubes.

Recent work on gaseous ion lasers has stimulated
interest in high-current-density discharges in small-
radius tubes. Under these conditions the Qow of gas
through the positive column is no longer a small effect'
and often leads to visible axial nonuniformities in the
discharge. By measurement of these gas pumping effects,
one can gain insight into some of the fundamental
atomic collision processes occurring in the plasma.

In Sec. II we summarize previous theoretical results
by Langmuir' and Druyvesteyn, ' with recent extensions
by Halsted. "A correct expression for the volume
forces in the plasma is derived from basic principles in
Sec. III, Sec. IV considers forces near the wall, and
Sec. V introduces corrections due to the positive ion
sheath near the wall. In Sec. VI the results obtained
in this paper are summarized.

In this section we outline the theoretical results
obtained by Langmuir, ' Druyvesteyn, ' and Halsted, ' '
to which some minor corrections and caveats have been
added.

Let X and X+ denote the electron and ion momentum-
transfer mean free paths, with )+((R. Because of
approximate charge neutrality, ions and electrons gain
nearly equal momentum from the axial electric 6eld.
Langmuir and Druyvesteyn pointed out that the
electrons deliver a negligible amount of momentum to
the tube walls, so that essentially all their longitudinal
momentum is transferred to the gas. However, ions
within a mean free path of the walls give their mo-
mentum to the walls rather than to the gas, and so a
net force is exerted on the gas within about A.+ of the
walls due to electron collisions. There is also an opposing
force arising from the lack of strict charge neutrality.
These forces set up an anode-directed motion of the
neutral gas which is resisted by viscous damping at
the tube walls. This gas Qow is only slightly offset
by the cathode-directed motion of atoms represented
by the ion current, and causes the anode-cathode
pressure difference to build up until the net gas Qow

vanishes.
The number density of electrons, ions, and neutral

atoms is denoted N, (r,s), n;(r, s), and. N, (s). The im-
plicit assumption that the latter quantity is not a
function of radial position is well satisfied for discharges
such as that of the argon ion laser, as Webb's experi-
mental measurements~ have shown. The axial drift
velocity of the neutral atoms is e (r,s), and their kinetic
temperature is T,(s). The axial electric Geld E(s) is
assumed to be independent of radial position. Laminar
Qow of neutral atoms with viscosity q is assumed, since
the Reynolds number is typically only about unity.
Considering the total force F~ per unit volume on the

' For a bibliography of experimental work on gas pumping, see
C. C. Leiby, Jr., and H. J. Oskam, Phys. Fluids 10, 1992 (1967).' Irving Langmuir, J. Franklin Inst. 196, 751 (1923)

s M. J. Druyvesteyn, Physica 2, 255 (1935).
4 For example, see E. I. Gordon and E. F. Labuda, Bell System

Tech. J. 43, 1827 (1964)
~ W. B. Bridges and A. S. Halsted, Hughes Research Labora-

tories Technical Report No AFAL-TR-67-89, 1967, 171—209
(unpublished).

'W. B. Bridges, P. O. Clark, and A. S. Halsted, IKK
Quantum Electron. QE-2, xix No. 38-1 (April 1966).

K J. ' C. E. Webb, in Proceedings of the Nineteenth Annual Gaseous
Electronics Conference, Atlanta, Georgia, 1966 (to be published).
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Fro. 1. Plot off(y). The dashed lines are extrapolated from the
limits at small and large y.

in which

f(y) = (1/R') (dr'/r')

X rJo(2.4r/R) expL —(R r)/yR]dr. —(2.12)

The asymptotic forms of f(y) are

f(y) —& 1.2483ys, when y=—1(+/R —e 0+ (2.13)

the ions fall directly to the wall without making any
collisions. Halsted's calculation gives

Vs(z) = (2rr/r))eZ(z) (2.3163)r),(z)R4f(1(+/R), (2.11)

~p-t= ~p. (2.19)

It should be noted that when the pressure is so low
that molecular rather than viscous Qow is a more
appropriate description, Ap„t will more nearly approach
(To/T, )"'/t p, but in a&~way that depends upon the
detailed tube geometry and the temperatures of the
end bottles. ""

From Eqs. (2.17)—(2.19), one obtains

C = (To/T. )p[V)+ ,'Vs-

position s (averaged over the cross section if the
mobility varies with r) D. ryuvesteyn then makes the
approximation appropriate when the positive column
pressure difference is small compared to its mean
pressure p:

(r)/(7z) fe, (s)k T,(s)7= Ap/L, (2.16)

in which L is the length of the positive column and Ap
is the anode pressure minus the cathode pressure. In
this approximation ~g, , e, e„E, and X+ are no longer
functions of z and, by combining Eqs. (2.2), (2.15),
and (2.16), one obtains

/t.p/L= (8r)/v R4) (Vt+ Vs)
—(8))/r) J)To)rR4) (C+v R'I;vd, k To) ~ (2.17)

By applying this equation to the case e,=e,=0, one
may also obtain an expression for the pressure difference
appearing across the gas return tube:

(1pret= 8))retLretC'/&Rret '+ret~TO ~ (2 18)

In typical tube designs the end bottles offer negligible
resistance to gas Qow. This fact, plus the previous
assumption of viscous Qow, implies that

and
lim f(y) =0 0373. . (2.14) with

—(rs;/ee)vd, ~R'](1+c) ' (2.20)

c= (r)„t/r))(R/R„t)4(L„t/L)(To/T, ). (2.21)

Figure 1 is a plot of the function f(y). Because a radial
averaging is performed in the integration, it is probably
adequate to use Eq. (2.8) even at the lower pressures,
as done here, rather than the more accurate radial
profiles obtained by Tonks and Langmuir" or by
Parker. "If only the asymptotic expressions (2.13) and
(2.14) are used to approximate f(y), the appropriate
place to change from the high-pressure limit to the
low-pressure limit is y = lt~/R= 0.31; f(y) will be
overestimated by about a factor of 10 near this value.

A gas return path at temperature T0, external to
the discharge, is included as follows. Define C as the
number of atoms per second passing any point in the
gas return, multiplied by ATO, and write the continuity
equation

C+rrR'r);(z)vd(74To=me(z)7)ToV(z), (2.15)

in which vd, (z) is the axial drift velocity of ions at

'4 Lewi Tonks and Irving Langmuir, Phys. Rev. 34, 876 (1929);
see pp. 883—886.

When a gas return is used, usually c(&1, implying that
the diffusive Qow of neutral gas back through the dis-
charge is negligible compared to the diffusive Qow

through the return tube, so that gas circulates through
the system. With no gas return, Eq. (2.17) with C=0
yields Dp directly.

The theory outlined here underestimates the amount
of gas Qow and pressure difference, typically by a factor
of 4 or more; more signi6cantly, however, it predicts a
dependence on pressure and tube radius that disagrees
with experimental observations. This discrepancy was
noted by Druyvesteyn, but he was not able to remove
it. The only other theoretical treatment known to the
author is very recent work by Leiby' ";it uses a com-

5 J. P. Hobson, T. Edmonds, and R. Verreault, Can. J. Phys.
41, 983 (1963l.' T. Edmonds and J. P. Hobson, J. Vac. Sci. Technol. 2,
182 (1965)."J.P. Hobson, Vacuum 15, 543 (1965).

X-ray absorption measurements in argon by R. C. Miller
(private communication).
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pletely diBerent approach leading to a special case of
the results presented here, and will be discussed in a
following section.

V&'(s) = (27r/ri) (dr'/r')

with

dr( (r s)n, (r s,—s)eE(z)—
—(r s+)n; (r—s+, s)eZ (s)), (—3.1)

Sy 'Vd p7 y. (3 2)

This in fact turns out to be approximately correct, as
will be shown below. Note that it is not suggested that

' C. C. Leiby, Jr., and H. J.Oskam, in Proceedings of the Eighth
International Ionization Conference, Vienna, 1967 (unpublished}.

III. VOLUME FORCES

A. Kinetic Theory Derivation

The principal force obtained in previous theories,
that of Eq. (2.4), acts only within a few ion mean free
paths of the tube wall. The force treated in this section
acts throughout the volume of the discharge, and usually
causes much more gas Qow than do the forces acting
near the wall.

The principal physical process neglected in earlier
treatments is the radial motion of ions and electrons.
In the positive column ions and electrons both move
radially outward with a common average velocity due
to the combined effects of diffusion and the radial Geld.
When a charged particle collides with a neutral gas
atom, delivering to it axial momentum which it has
gained from the axial electric field, it has traveled
radially outward a distance of about ed,r since its last
collision. Here, ez„ is the radial drift velocity of the
charged particle, and r is its mean free time (which
may be controlled either by its radial drift velocity or
by its thermal velocity). Consider here only the case
of higher pressures: vd„v-«E. Then the axial momentum
delivered to atoms at radius r is characteristic of the
charged particle density at radius r —ed, 7-. Since vg,
must be nearly the same for ions and electrons (because
their wall currents are equal and their densities are
nearly equal at any radius), and since usually r Wr+
(in fact, usually r «r+), the effect on the transfer of
axial momentum to the gas is the same as that of a
radial charge separation, and so can result in a net
force on the gas. Since this type of differential mo-
mentum transfer produces an axial force on the gas
distributed throughout the discharge volume, it differs
fundamentally from the major process described by
Refs. 2, 3, 5, and 6.

This qualitative discussion indicates that the term
representing pumping throughout the discharge volume
(that is, several ion mean free paths distant from the
tube wall), Eq. (2.3), should be replaced by

the charged-particle densities at position r are simply
equal to those at radius r—s+, spread out to fill the
differential volume at r. The number of charged particles
in a radial volume element at r is indeed just rn(r)dr,
and the difference between this number and the quantity
(r—s~)e(r —s~)dr is made up for by charged particles
produced in the vicinity of that point (this serves to
give the charged particle distributions their character-
istic radial profiles). However, these particles just
produced by ionization have not yet had time to acquire
the radial and axial drift velocity characteristic of
"older" particles; thus an equation dealing with directed
momentum transferred to the atoms, such as Eq. (3.1),
is correct in omitting these particles. Usually ~&„ is
much smaller than the mean electron velocity, so that
the electro' term inside the braces may be approximated
simply by rm, (r,s)eE(s), as in Eq. (2.3). Therefore, it
will not be necessary to consider electron radial motion.

A rigorous derivation of Eq. (3.1) and the correct
version of Eq. (3.2) will now be given. Assume that
the mean free path of a charged particle is small com-
pared with the distance over which its radial drift
velocity changes:

ALdi g, (r)/drj«vg„(r) . (3.3)

The derivation will Grst be carried through assuming
that no ion-atom charge-exchange collisions occur. The
effects of charge exchange will be included later.

Consider the charged particles colliding with a
particular gas atom at time t=0, giving to that atom,
on the average, alP' of the axial momentum which they
have gained since their formation or since their last
collision. In reality, of course, the strong radial Geld
causes the charged particles to move along curved paths
between collisions and strongly alters their velocity
distribution between collisions; however, the effects
of the radial Geld will be approximated by superimposing
an average radial drift velocity ~z„on the Maxwellian
velocity distribution of the charged particles, neglecting
the more detailed effects of the radial fields. Fir'st,
obtain the force contributed by the ions to atoms at
some position r in the tube. " Let ions of velocity v
reach position r at time 1=0. Assume that if an ion
collides with a neutral atom at r, then it gives up all
of the axial momentum that it has gained since its
formation or since its last elastic collision with a neutral
atom, whichever occurred later. Let dJ denote the
flux of ions of velocity v (tolerance d'v) originating at

"It is only true "on the average" that a charged particle gives
up all the axial momentum it has gained since its last collision.
Actually, an ion still has some axial momentum following an
elastic collision, gains more during its motion, and loses about
half its totu1 axial momentum upon colliding with a gas atom; but,
in steady state, this must on the average leave it with the same
axial momentum it had following its previous collision.' This derivation is also applicable to the electron force. How-
ever, ordinarily the electrons move a much smaller distance
radially during one mean free time than the ions do, and the e6ect
considered here is negligible for electrons. This is also discussed
following Eq. (3.2).
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in which ( eEt) is t—he axial momentum gained by an
ion in time

~

t ~.
One now obtains an expression for the total rate of

origination of ions by collisions per unit volume,
R(r,v). This rate consists of the rate of formation
of ions of velocity v by ionization of neutral atoms by
electron collisions, R,(r,v), plus the rate of formation
of ions of velocity v from ion-atom elastic collisions,
R,(r,v):

R(r, v) =R;(r,v)+R, (r,v) . (3.6)

E; is simply the product of the ionization rate per unit
volume K (r) and a normalized ion velocity distribution:

R,(r,v) =K(r)fr(v). (3.7)

In Eq. (3.7) the distribution fz(v) of newly formed ions
("new" ions) will be very nearly the same as the velocity
distribution of the neutral atoms themselves.

To determine the form of the collision term E„let p
be the number density of ions in a particular volume of
phase space, dsvd'r In a st.eady-state plasma, Bp/M=0,
and the various terms contributing to Bp/Bt will be
considered.

First of all, ions enter and leave a velocity element
d'v becauase of the action of the axial and radial
electric fields in accelerating ions. However, by taking
ion velocity distributions which contain a superimposed
average drift velocity in addition to the usual thermal
velocities the average sects of the fields are accounted
for. Then Bp/Bt may be treated as if there were no
accelerating 6elds present.

Next, there are terms contributing to Bp/Bt from
newly formed ions [accounted for by the term R; of
Eq. (3.7)j. However, since the spatial ion density in
d'r does not change in time, ions must be leaving d'r
at a rate equal to the volume ionization rate, K(r).
This occurs by an outward radial drift and diffusion
of ions which causes a net ion loss rate from the volume
d'r. However, the ions newly formed by ionization have
very accurately a thermal velocity distribution at the

time t&0 (tolerance dt) which reaches position r at
time t= 0. This Aux will be equal to the number of such
ions per unit volume formed from times t to t+dt at
the originating position r+vt, multiplied by the prob-
ability exp(vt/X+) that they arrive at r without suRer-
ing a collision, multiplied by their velocity v:

dJ=R(r+vt, v)d'ddt e"'I"+v. (3.4)

In this expression, R(r,v)d'v denotes the rate of origina-
tion of iona (due to ionization or to collisions with
neutral atoms) of velocity v (tolerance d'v) per unit
volume at position r. Since the collision rate per neutral
gas atom at r is equal to the magnitude of the ion Aux

dJ multiplied by the ion-atom momentum-transfer cross
section, the total axial force F per unit volume acting
on the gas at r due to these ions is

neutral gas temperature T, (plus the small neutral gas
drift velocity); the ions leaving the volume d'r have a
thermal velocity distribution at the ion temperature
T; (plus the over-all drift velocity conunon to all the
ions in steady state). Because of the diRerence of drift
velocities, these two rates do not exactly cancel and
lead to some rearrangement of ions in velocity space.

Finally, there are two terms contributing to Bp/Bt
which are caused by ion-atom collisions. The term
giving the rate of production of ions into d'v d'r is merely
the desired term E„however, it would be difficult
to write down its form directly without a detailed
consideration of the elastic collision processes. The
other term is the rate of loss of ions in phase space due
to collisions with neutral atoms, which is the product
of the density of ions in d'v d'r, e;(r)fs(r, v), and the
collision frequency for an ion of velocity v, v/X~. The
ion velocity distribution is denoted fs(r, v), and it will
be taken as Maxwellian at the ion temperature T;,
but displaced in velocity space by the mean ion drift
velocity. Since the radial component of the ion drift
velocity changes with the radial coordinate r the velocity
distribution is therefore dependent upon position r,
as indicated in its argument. The mean free path X+
will be assumed independent of ion velocity for the
present purposes.

Thus one obtains

Bp/Bt=0
=K(r)f,(v) K(r)fs—(r,v)+R, (r,v)

—(v/~+)'(r)fs(r v) (3 8)

To compare terms in this equation, note that the
ionization rate K(r) is proportional to the local electron
density, and that its integral over the discharge volume
cross section must be equal to the ion loss rate at the
walls. With Francis's equation for the wall current"
one therefore obtains

K(r) =5.79(p~kT, /eR')N. (r),
valid in the case of ambipolar diffusion. To estimate the
size of this term one uses the Langevin expression"
for the ion mobility p+. One finds for the relative size
of the terms in Eq. (3.8) the expression

K(r)/[nn, ,(r)/X )=2.9(T,/T, )(X /R)'. (3.9)

Since X+((R was assumed for this derivation, one Anally
obtains from Eq. (3.8) the desired expression R,(r,v)
which was required in Eq. (3.6):

R, (r,v) =e;(r) (n/+) fs(r,v) . (3.10)

The ions produced by collisions described by Eq.
(3.10) will be referred to as "old" iona (in contrast to
the "new" ions just formed by ionization).

"Gordon Francis, in Bandbuch der I'hysik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1956), Vol. XXII, p. 124.

"Earl W. McDaniel, Collision I'henomenu in ionized Gases
John Wiley 8z Sons, Inc. , New York, 1964), p. 429.
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ln calculating Bp/81 above the effect of ion-electron
collisions was neglected. These do not aGect the ion
velocity distribution signi6cantly in most gas discharges,
including those of concern here, as evidenced by the
fact that the ion mobility in such discharges does
not depend upon the electron density.

The neglect of ion-ion collisions deserves some com-
ment. The most important point to notice about these
collisions is that they do not change the mean axial
momentum of a given ion, and therefore cannot greatly
inhuence the transfer of axial momentum from ions
to neutral atoms. However, one should also note that
the ion-ion momentum-transfer cross section is inversely
proportional to the fourth power of the relative ve-
locity. '4 Therefore the cross section will be greatly
reduced for a high ion kinetic temperature compared
with its value for a plasma near room temperature.

It will be shown later that the force arising from
the ionization term R; in Eq. (3.6) is smaller than the
force caused by the collision term E„and an estimate
will be obtained for its magnitude. For the present,
neglect the ionization term entirely in Eq. (3.6) and
use Eqs. (3.5) and (3.10) to write

Fd'ddt= s'n, (r+ vt) fs(r+ vt, v) ( eEt/'1t+s)—
Xexp(vt/lt+)daedal. (3.11)

Then the total force per unit volume P& acting on the
gas at position r due to ions is

Fg= d

dtv'n, (r+vt) fs(r+vt, v)

P]——eEe;, (3.13)

when e; is independent of r; that is, when the ion density
is uniform, all the force exerted on the ions by the
longitudinal 6eld is eventually passed on to the neutral
gas atoms. This is of course consistent with the previous
work, such as Eq. (2.1).

The natural approximation one would make for
fs(r, v) would be a Maxwellian distribution at the ion
temperature, displaced by the mean ion drift velocity.
Because the axial drift velocity of the ions is indepen-
dent of radius at small radii, and though variable is
much less than the radial drift velcoity at large radii,
its effect on fs(r, v) may be neglected. Thus, for ions
with radial drift velocity vd, (r), assume for fs(r, v) the

"David J. Rose and Melville Clark, Jr., Plasnsas aed Controlled
Piston (The MIT Press, cambridge, Mass. , 1961), p. 163,

X (—eEt/X+') exp(v1/X+) . (3.12)

A useful physical check is provided by the fact that

Rtot t= d SR(r v)

= X~ 'n, vd, f(1/xmas) exp( —x')

+-', (2+x ') erfxj) (3.15)

where x= vd,/st~; and stq;= (2kT,/m, )'". This has
exactly the correct limiting forms for the effective
ion-atom collision rate for momentum transfer:

and
Rtotal ~ nivdr/X~ as ed' ~ ~ (3.16)

Rt,t, t ~ (n;/X+) (2vth;/gtr) =n,v,/X+
as vd„—t 0, (3.17)

since
e.;= (2/Qtr) stan; (3.18)

when neutral-atom motion is neglected.
Now one must put in the dependence of fs on r

arising in Eq. (3.14) through the radial drift velocity.
Not only must the variation in the magnitude of vz„
with r be considered, but also the change in direction
of v~„between the position r where the force is calculated
and the position r+ vt from which the ion comes. Choose
polar coordinates e, 0, and y for the e integration, with
the polar axis directed radially outward at the point r,
and with the discharge tube axis located at q =0. Then

v—vd~ r 2=&2 &a 2 r
2vvd„(r) (st sin'8—sinsy+ vt cos'8+r cos8)

X L(vt sin8 sing)s+ (vt cos8+r)'j "' (3 19)

When X+~ V'n;(r) ~&&n;(r), as will be assumed here,
one may expand nrfs in a Taylor series about the point
r, taking n, (r) to be only a function of r:
n (r+vt) fs(r+vt, v)= (m/2kT~)sl'

Xexp( —m;(e' —2vvd, (r) cos8+ed„s(r))/2kT, j
X {n;(r)+vt cos8Ldn;(r)/dr j
+2vd„(r) t(m;vs/2k T;) sin'8 sins' Ln;(r)/rg
+2n, (r) Lded„(r)/dr j(m,/2k T;)et

Xcos8/v cos8—vd„(r)g+ }. (3.20)

Substitution into Eq. (3.12) then gives

Ft(old) =eE{n;(r)—s+(r) [dn;(r)/dr)
—s~(r) Ln;(r)/r j—Lds~(r)/dr]n;(r)+ }, (3.21)

displaced Maxwellian

fs(r,v) = (m;/2kT pr)ws

Xexp(—m,
~

v —vd„(r) ~'/2k T). (3.14)

This velocity distribution is the simplest plausible
form which, when substituted into Eq. (3.12) yields the
correct force Lgiven by Eq. (3.13)j in the limit of uni-
form density. That it is a reasonable approximation
may be seen by using it to calculate the total ion pro-
duction rate:
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!0

h(X)=(2/X~@)exp(-X )+(2-X ) erf X

position r. This should be clear, since F~ would just
be given by the average momentum transferred times
the collision rate of ions and neutral atoms at position
r, and this depends only upon their densities at r.
Thus, since Eq. (3.21) gives an expression like

g(x)
LO F, (old) = eE)N, (r)—An;) (3.27)

for the force due to "old" ions alone, the "new" ions
in that case would yield just

F,(new) =eRAe;. (3.28)

'O. I I.O
s t r I

IO

and

(3.22)

A(x)= (2/xga. ) exp( —x')+(2—x ') erfx, (3.23)

x(r)—= wq, (r)/n, j,——(rmeqg(r)/2k T)'t . (3.24)

The meaning of the designation "old" will be ex-
pla'ined shortly.

The function A(x) is plotted in Fig. 2. Its asymptotic
limits are

A(x) —+ 8x/3+a = 1.51x, when x ~ 0 (3.25)
and

A(x) ~ 2, when x —& ~ . (3.26)

A similar result is valid for electrons, but, as previously
stated, electron radial motion may usually be neglected
because r «v-+.

The changes which must be made in. Kq. (2.3) to
include this result are simply to replace the ion density
ts, (r,z) by the term in braces in Eq. (3.21), and similarly
for the electron term. This yields an equation that is
just the lowest-order expansion of Eq. (3.1) in powers
of s/r, with s~ being given by Eqs. (3.22)-(3.26). The
third term of Eq. (3.21), which leads to the cylindrical
volume element in Eq. (3.1), is of course absent in the
analogous problem using plane-parallel geometry.

B. Corrections Due to Newly Ionized Atoms

Now determine the correction which is introduced
by including the term involving ionization in Eq. (3.6).
Refer to ions arriving at r without suffering any
collisions since their formation by ionization as "new"
ions; they produce the ffrst term in Eq. (3.6). Ions
arriving at r which have just experienced an elastic
collision with a neutral atom will be called "old" ions;
they produce the second term in Kq. (3.6).

Now note this fact: If "new" ions and "old" ions
each gave the same average amount of axial momentum
to neutral atoms at r, the total force per unit volume
F& would have to depend on the ion density oddly at

Fio. 2. Plot of tt(x). The dashed lines are extrapolated from the
limits at small and large x.

in which

Physically, the volume production term consisting of
the "new" ions is responsible for the ion spatial dis-
tribution, and therefore must be just sufficient to
maintain it against the effects of drift and diffusion. If
the effects of the ionization term in Eq. (3.6) were
included accurately, but the momentum transferred
in Eq. (3.5), ( eEt), w—ere replaced by some average
value, the ion production rate could be expressed in
terms of the ambipolar diffusion coefficient and hence
in terms of the gradient of the ion density, and the
total force F~ obtained would be simply proportional
to n, (r).

The key point here, which has been overlooked in
previous theories, is that the "new" ions give much
less momentum to the gas on the average than the "old"
ions do. The new ions have not yet acquired their full
radial and axial drift velocities by the time they have
their erst collision; thus in reality the effects of the
ionization term in Eq. (3.6) only partially offset the
collision term, and quite a large residual force stil1
remains. Now estimate the magnitude of the correction
in the limits of small x and large x. The discussion will
be guided by the heuristic derivation of Eq. (3.1).

When x is small (high-pressure limit), the ion radial
drift velocity is much smaller than the average ion
thermal velocity, so that the ion thermal velocity
controls the ion mean free time. Since new ions and
old ions have approximately the same thermal velocity
(because T;= T„and the new ions have roughly the
neutral atom temperature), the average time each has
traveled when it reaches r since its origination is the
same interval r. The average old ion loses one-half its
radial drift velocity at each collision; thus it starts
with velocity —,~z„after its last collision with a neutral
atom and arrives at r with velocity —,e&„. A new ion,
on the other hand, has no radial drift velocity when
first formed and thus arrives at r with radial velocity

3e&,. It is easy to show from these considerations that
if the average old ion arrives at r having traveled
radially outward a distance s since its last collision,
the average new ion arriving has only traveled radially
a distance of xss since its formation. Thus Eq. (3.28)
should be changed by replacing s+ by tss+ fusing Eqs.
(3.21) and (3.27) to define Att~j. This would then yield
F,(new)=rseEAm;. However, another correction must
still be made. It was assumed in Eq. (3.5) that all the
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axial momentum gained by the old ion since its last
collision was transferred to the neutral atom upon
collision at r. As previously pointed out in Ref. 20,
this statement is really only true on the average, since
an old ion originates with some axial momentum, gains
more on the trip to r, and loses (on the average) half
of its total axial momentum upon making an elastic
collision, which must leave it on the average with the
same axial momentum it had following its previous
collision. However, a new ion is formed with eo axial
momentum (the small average axial momentum
carried by new ions is, in fact, just the axial momentum
of the neutral gas atoms as modified by the electron
collision producing the ionization). Therefore, instead
yielding a/l the axial momentum it has gained upon
collision at r, it can give up on the average only half
that amount. This reduces the contribution to the
force due to new ions by this additional factor, and one
6nally obtains

F,(new) = (-,')eEhe;, (3.29)

when x is small. Thus, for small x, the right-hand side
of Eq. (3.22) should be multiplied by 65 to allow for
new ions.

When x is large, which is important experimentally
at lower values of pR, the ion thermal velocities may
be neglected compared to the ion radial drift velocity,
and the correction required is larger. Now both new
ions and old ions move outward radially an effective
distance of 2k+ between their origination and their
arrival at r, as shown by Eqs. (3.1), (3.22), and (3.26).
The old ions fall through a radial potential that increases
their velocity from -', ed„ to -', tz, .The new ions are formed
with no radial drift velocity, and, falling through the
same potential, acquire a radial velocity of (2/V3)vq„.
The average time spent by the old ions in gaining axial
momentum between their last previous collision and
their arrival at r is thus t=2X+/eq, , but the new ions
spend a longer time, by a factor of V3. However, as
pointed out in the previous paragraph, the old ions on
the average give up all the axial momentum gained
during this time, but the new ions give up only one half.
Thus one obtains for the new ion contribution, at large
values of x,

F~(new) = (~~%)eEd,e;. (3.30)

Thus for large x, the right-hand side of Eq. (3.22)
should be mulitplied by (1—2'V3) =0.134.

Thus the effects of "new" ions can be allowed for by
replacing Eq. (3.22) by

s„=X,a'(x), (3.31)

in which 6'(x) is a function with asymptotic limits

6'(x) —+ —',A(x), when x ~ 0, (3 32)

6'(x) ~ (1——,'v3)h(x), when x ~ ~ . (3.33)

It will be desirable to interpolate between these
forms when predictions are made for comparison with

experiment. For this purpose the following analytic
approximation is useful:

(3.34)

This approximation not only has the correct limiting
forms, but also another intuitively correct property:
Even at the largest values of x (the largest values of
eq„), the new ions have no radial drift velocity when
erst formed, and thus at least for a short time their
differential collision rate is determined by their thermal
velocities rather than their radial drift velocity. Thus
their collision rate is slightly increased even at large
values of x over the collision rate appropriate to the
old ions, and they will not travel quite as far radially
as the old ions in a mean free time. In other words,
as the pressure is decreased (that is, as wq„ is increased),
the average radial distance traveled by the old ions
between collisions should approach the limiting value
2X+ more quickly than the corresponding distance for
the new ions (which is the mean distance they travel
radially between their formation and their 6rst colli-
sion). Since Eq. (3.34) states that old ions travel a
distance X~h(x) but that new ions travel a distance of
only lb+A(x/3V3), this feature of the approximation
(3.34) is also qualitatively correct.

Since the correction introduced by the term in-
volving new ions is appreciable in one of the asymptotic
limits (low pR), it would be desirable to give a more
exact treatment of this term in Eq. (3.6). However, it
is clear that this term depends crucially upon the
changes in the ion velocity distribution between colli-
sions. A treatment taking account of the ion accelera-
tion terms in detail and the resulting curvature of ion
trajectories would be rather dificult and has not been
attempted. It is felt that this discussion, although
heuristic, provides a good estimate for the correction
by relating the new term directly to the carefully
treated contribution from the old ions, and that there-
fore these limiting forms are probably fairly accurate.
Moreover, in argon at least, there is less than a 25/z
difference in using 6'(x) and D(x) in the region where
the viscous flow criterion is satisfied (above pR 1
Torr mm).

C. Corrections Due to Charge-Exchange Collisions

When charge-exchange collisions between atoms and
ions occur, some further changes must be made in this
analysis. For this discussion, a charge-exchange colli-
sion will be considered to change the charge state but
not the velocities of the colliding particles.

It is not a convenient approach to redefine R, (r,v)
)in Eq. (3.6)j to be the rate of formation of ions in
both charge-exchange and elastic collisions. Not only
do charge-exchange collisions produce ions with no
radial drift velocity, which must then be accelerated;
such collisions also produce neutral atoms with radial
drift velocities characteristic of ions, and these drift
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dJ=0+d/+ Gpd J. (3.35)

It may be shown from elementary considerations that
because of charge-exchange collisions an atom that
starts from r+vt as an ion has a probability

a+=-,'L1+exp( —2et/X, .)j (3.36)

of being an ion upon arrival at r, with X„deGned as
the mean free path against charge-exchange collisions.
Since ions and neutrals may have different elastic
momentum-transfer cross sections for collisions with
neutral atoms, the collision rate per neutral gas atom
at r is given now by a+de'/X, & for collisions with arriving
ions, and by apd J/X, = (1—a+)dJ/X, for collisions with
arriving neutrals produced by charge exchange. As
usual, P,i is the momentum-transfer mean free path
for ions against elastic collisions, and X, is the mo-
mentum-transfer mean free path for neutrals in colli-
sions with neutrals.

In two useful cases one can obtain a simpler expres-
sion for the collision rate per neutral gas atom. One
is, of course, when one may take 2vf«X„. In terms of

velocities must be dissipated through collisions. Treat-
ing the problem by this approach would require putting
in the acceleration of the ions produced by charge-
exchange collisions in the radial electric field, and the
resulting curvature of ion path. It would also require
treating the loss of radial drift momentum by neutrals.

Instead, continue to deGne R, as the rate of formation
of ions through elastic collisions, so that the ions this
term represents have their full share of radial drift
velocity. In Eq. (3.10), this requires using, instead of

X+, the mean free path against elastic collisions only,
P,&. Since the electric fields are included by taking an
average drift velocity for the ions, ion acceleration
need not be considered; thus those ions which are formed
without drift velocity do not acquire drift velocity and
lead to no axial force on the atoms.

Now consider what happens if an ion originating in
an elastic collision at r+vt suffers one or more charge-
exchange collisions on its way to r. Since the effects of
the accelerating Gelds have been taken out by giving
the ions an average drift velocity, charge-exchange
collisions do not affect the velocity and path of an ion,
but only its momentary charge. Thus, if the ion be-
comes a neutral atom on its way to r, it leads to the same
arrival Qux at r as if no charge-exchange occurred—
except that part of the arriving Aux now has zero charge
instead. Thus the probability of arrival at r without
loss of momentum, which was given by the factor
exp(et/X~) in Eq. (3.4), should instead be exp(rtt/lI, .~)—
thus charge-exchange collisions are not considered an
interruption of the flight of the ion.

Finally, one must consider possible changes in Eq.
(3.5). Now the arriving Gux dJ consists of two parts; a
fraction u+ consists of ions, and a fraction ao consists of
neutrals:

macroscopic discharge parameters, this requires

~ter) ~ar&&~ce/2' ) (3.37)

D. Summary of Volume Forces

In summary, we have shown in this section that a
more correct treatment of the forces operating within
the volume of the plasma is to replace Eq. (2.3) by
Eq. (3.1), using Eqs. (3.31), (3.34), (3.23), and (3.24)
to evaluate the quantity s+. When charge-exchange
collisions are important, and either Kq. (3.37) or Eq.
(3.38) holds, Eq. (3.31) is replaced by Eq. (3.39).

To do the integrals in Eq. (3.1), an expression is
required for the radial drift velocity vz, (r) appearing
in Eq. (3.24). At any radial position this velocity has
two components, arising from diffusion and from the
radial electric Geld" ":

vq„(r) = t D~/N, (r)Idler;(r—)/dr j+IJ+E,(r), (3.40)

where the ion-diffusion constant D+ and mobility p+
are evaluated at radius r. The relation" D+/IJ+ kT;/e——
(T; is the ion kinetic temperature) and Kqs. (2.7) and
(2.8) allow this to be written

rtq, ———(jr~/e) k (T,+T,)$1/n; (r)$(dN, (r)/dr)
=+~M.(r)L1+(T'/T. )3
= (2.4048/R) (IJ+/e) k (T;+T,)

X[Jr(2 4r/R)/&p(2. 4r/R) j. (3.41)
'5 Earl W. McDaniel, Collision Phenomenon in Ionized Gases

John Wiley 8z Sons, Inc. , New Vork, 1964), p. 513."Gordon Francis, in Bundbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. XXII, pp. 123—124.

with r+ the ion mean free time, as before. In this case
a0=0, a+= 1, and the neutral-atom collision rate at r is
just dJ/X, ~. The other special case (and one which

applies to argon, for example) is when

(3.38)

In this case, since up+a+ ——1, the neutral-atom colli-
sion rate is again dJ/X, ~.

The other term required to include charge exchange
in Eq. (3.5) is the average amount of axial momentum
given up per collision. This momentum is again (—eEt),
as in Eq. (3.5), since the total rate at which axial
momentum is acquired from the field is not changed,
even though part of this momentum is vested in neutral
atoms rather than in ions because of charge exchange.
Thus, when either Eq. (3.37) or Eq. (3.38) is satisfied,
Eq. (3.5) may be used even when charge exchange
collisions occur, merely by replacing X+ by ),&.

The result of including ion-atom charge-exchange
collisions is therefore to replace )+ by the momentum-
transfer mean free path against elastic collisions ),i in
Eqs. (3.4), (3.5), and (3.10), whenever either Eq. (3.37)
or Eq. (3.38) holds. Thus all the results previously
derived may be used provided that Eq. (3.31) is

(3.39)
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Close to the positive-ion sheath, vd, becomes very large,
but not infinite, of course, as discussed when treating
E, in Sec. II.

The integrals of Eq. (3.1) were performed by analytic
approximation for the two cases in which x is either
much greater or much less then unity over most of the
discharge volume, assuming s «s+«E. The result,
which is known to vary smoothly as a function of the
relevant parameters, was connected between these
limits after the manner of Eq. (3.34). This leads to the
following expressions for the gas pumping due to volume
forces in the plasma:

Vy'(s) = Vg(s)+ V3(s), (3.42)

in which Vz(s) is given by Eq. (2.9), and

Vs (&)= (2s eE/g) (2.3163)N,(0.054R9p)h'(x) . (3.43)

V&'(s) should be used in Eq. (2.2) instead of V&(s).
The mean value of x for the discharge S is dehned by

x=—vg„(0.740R)/vg„= x(0.740R) .
When evaluating x using Eq. (3.41) note that

Ji(0 74)/ Jo(0 74)= 1.66

(3 44)

(3.45)

IV. FORCES NEAR THE WALL

This section will be primarily concerned with the
forces acting on the neutral gas within a few ion mean
free paths of the tube wall.

It was stated at the beginning of Sec. III that the
principal defect of earlier theories was the neglect of
ion radial drift motion. However, another shortcoming
may be seen by examining the form of Druyvesteyn's
force, Eq. (2.1), near the tube wall.

It is easy to see that Eq. (2.1) must be incorrect,
even when radial drift motions are neglected compared
with thermal velocities. "That equation says that the
force per unit volume on the neutral gas at position r,
caused by collisions with a siege ioe at that radial
position, is the quantity

eE (s) (1—exp( —(R—r)/X+ (s))).
"This fact was first noticed by E. I. Grodon (private

communication).

The new term V3(s) is always non-negative, i.e., always
leads to a Row of neutral gas towards the anode.

A result which can be shown to be essentially equiva-
lent to the high-pressure (x —+0) limit of Eq. (3.43)
was independently obtained by Leiby" by a completely
diferent method, starting with the Boltzmann trans-
port equation. His derivation in eGect treats ion radial
motion to lowest order. However, to correctly treat the
case in which the ion radial drift velocity can be an
appreciable fraction of the ion thermal velocity it is
necessary to examine the collisions in detail, as was
done in this section.

F, (near wall) = v'dv dq
0

sin8d8 dt

/2

sin8d

0

dt v'e, (r+vt)
d/v cos8

Xf~(r+vt, v)( eEt/X~') ex—p(vt/X+). (4.1)

The calculation is simpliGed by the fact that near
the wall only the Grst term in the Taylor expansion of
e;f~ need be kept. Equation (4.1) then yields for the
ion force

F~(near wall) =e;(r)eE(1—a),
in which 0, is the dimensionless quantity

(4.2)

n= (4/~)'I' y'dy dg(1+a/I)

Xexp (—x'—2lxy —y' —a/e) . (4.3)

In this equation, x is the qunatity x(r) of Eq. (3.24),
applied in this case to the ions, and a is deGned as

a=—d/X~= (R—r)/X~. (44)

At higher pressures one may take x —& 0 and Eq. (4.2)
for the ion force becomes

F~(near wall)
=I;(r){1—2 expt —(R—r)/X+/) eE, (4.5)

which differs from Druyvesteyn's theory LEq. (2.1))

However, this force per ion vanishes as r approaches R
because of the exponential factor. But this force cannot
vanish, since even ions arriving at the wall must be
continually receiving momentum from the axial Geld
and transferring it to neutral atoms through collisions.

The correct form for the force on the neutral gas due
to collisions with ions may be obtained by a modiGca-
tion of the derivation of Sec. III. Consider Eq. (3.12),
letting the point r of that equation be a distance d from
the tube wall, with d«E. Ions arriving at r with the
radial component of their velocities directed outward
have traveled a distance ~vt~ since their origination.
Since the tube is large compared to the ion mean free
path, the limits on the t integral are essentially —~
to 0, as in Eq. (3.12).

However, ions arriving at r with the radial component
of their velocities directed inward cannot have origi-
nated further away than the tube wall, since ions lose
their axial momentum at the tube wall. Since the ion
has traveled a radial distance ~v„t~= ~vt~ cos8, the
time elapsed since its origination must be restricted to
keep this distance less than or equal to the distance d

from position r to the tube wall. Thus for ions with these
velocities the limits on the t integral must be —d/v cos8
to 0.

Thus, near the tube wall, Eq. (3.12) is replaced by

2+ — m'/2
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by the presence of the factor —,'.This not only overcomes
the objection to the use of Eq. (2.1) expressed at the
beginning of this section, but is physically reasonable,
since a neutral gas atom located near the wall only sees
ions arriving from one-half the solid angle because of
the presence of the wall.

The result expressed in Eq. (4.2) should be physically
clear to the reader in the limit that the ions have no
thermal velocities at all, but only a uniform radial
drift motion. The following observation will be found
helpful: It is true that within a mean free path of the
wall, the momentum given to the ions by the axial
field is transmitted by them to the walls rather than to
the neutral atoms. However, the axial momentum
received by ions at smaller radii will be given to neutral
atoms in the region close to the wall on their way to
the wall.

%hen the ion radial drift velocity becomes large
compared with the ion thermal velocity, as occurs at
lower pressures, x ~ oo. In this limit Eq. (4.2) becomes

F,(near wall) =n;(r)eE. (4.6)

If this limit were used for the ion force in Eq. (2.1),
the principal pumping term treated by earlier theories,
Eq. (2.4), vanishes entirely. Thus the effect of ion
radial motion can be to eliminate the wall forces pre-
viously thought to dominate the gas pumping.

By combining the treatment of Sec. III with that
presented here one obtains a more accurate expression
for the gas pumping near the tube wall. The result
is that Vs(z) in Eq. (2.2) should be replaced by V&'(z),
with

Vs'(z) = (2s/g) y/ lgyiI (dr'/r')

X (r s+)drn, (r s+, z—)net(z). —(4.7)

At lower pressures, where x may be taken large in
Eq. (4.3), V&'(z) vanishes entirely because of the factor
n. At higher pressures, where x is small, a simple change
of variables in Eq. (4.7) yields, to lowest order in
Z+/R,

Vs'(z) = Vs(s) at high pressure. (4 8)

LThe factor of rsin n turns out to be effectively canceled
by the factor of 2 in s~ which arises from Eq. (3.26).j
It can also be shown that, because Vs'(z) increases
with increasing s+, Eq. (4.8) constitutes an upper bound
for Vs'(s).

Because V&'(z) is usually much larger than V&'(z) in
practical cases, no attempt has been made to evaluate
Eq. (4.7) numerically for intermediate or low pressures.
Doing so accurately would be difficult because the
main contributions to the integral come from regions
close to the wall (r R X+), and in j—ust these regions
Eq. (3.41) for sa„(r) loses validity. Not only does the

ion mobility used in that expression become dependent
upon radial position because of the strong radial fields,
but it may be questioned whether in this region of strong
radial ion acceleration it is valid to replace the accelera-
tion by a simple average drift velocity as was done in
Eq. (3.14).

However, these objections do not apply to the case
of higher pressure, where x is small and P+«R; at such
pressures it appears to be valid to use Eq. (4.8) to
evaluate Vs'(z), with V2(s) being given by Eq. (2.11).
Thus, as far as gas pumping near the wall is concerned,
Druyvesteyn's omitted factor of ~ in the exponential
term in Eq. (2.1) is compensated by the effects of ion
radial motion, and at higher pressures Eq. (2.4) may
be retained as it stands.

V. EFFECTS OF THE ION SHEATH

An eBect which may modify the results of the previous
sections arises from the presence of the ion sheath at
the wall of the discharge tube. The manner in which
this sheath forms will be sulnmarized brieQy, assuming
that electron and ion mean free paths are both much
smaller than the tube radius, and assuming that the
ion mean thermal velocity is much less than the electron
mean thermal velocity. Kithin an ion mean free path
of the wall one may think of ions as falling freely to the
wall instead of slowly diffusing outward as they do near
the center of the tube. The ion concentration near the
center of the tube is depleted by the Qow of ions to the
wall, which is retarded only by the ion space charge
near the wall. This charge builds up until it is suKcient
to limit the ion wall current to the ion production rate
in the tube. At the same time, within an electron mean
free path of the wall electrons may fall freely to the wall,
and in fact they do so until retarded by the electronic
charge which builds up on the wall. The potential dif-
ference across the sheath is about 5kT,/e."""

Two conditions must be satisfied for equilibrium in
the tube. First, the wall charge must build up until
it is so high as to allow only the fastest electrons to
reach the wall, since the ion and electron wall currents
must be equal, and otherwise the much greater thermal
velocities of the electrons would make the electron cur-
rent much greater. Secondly, since there is approximate
charge neutrality in the central regions of the tube
(r(R—X+), the excess of ion charge near the wall must
be approximately balanced by the excess electronic
charge on the wall.

Solving Poisson s equation inside the sheath, assum-
ing the ion current to be limited only by the space
charge, yields Child's equation" for the ion wall current
per unit length of the discharge:

t's,+=2s.R(4es/9) (2s/nt )'t'Vw, ttst'lt

X L1+2.66(eVw, ~~/kT;) '"j. (5.1)
's James Dillon Cobine, Gaseols Comdttctors (Dover Publications,

Inc. , New York, 1958), pp. 125, 126, and 136.
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e/~ =0.16. (5.4)

The ion and electron density are assumed to agree
with the ambipolar case, Eq. (2.8), for r&R e. In-
the sheath region the charged-particle densities are

"James Dillon Cobine, Gaseous Condgctors (Dover Publica-
tions, Inc. , New York, 1958), p. 125.

Here, K is the distance from the wall at which the ion
density would have to become infinite to sustain the
wall current (at which distance, of course, ion collisions
must be taken into account) and is to be identified
as the approximate sheath thickness. This equation is
strictly valid only when K(&R because a factor correcting
for the cylindrical geometry has not been included. The
quantity V~,» is the potential of the wall relative to
the point r=I' —K. The sheath thickness may be either
larger or smaller than the ion mean free path. It may
be determined numerically by equating the wall cur-
rent given by Eq. (5.1) to the appropriate expression
obtained from theories of the positive column, at
low, " intermediate, "or high' pressures.

In the sheath the Bessel function distribution of
Eq. (2.8) for ions and electrons at higher pressures is
no longer valid, since the radial diGusion equation is
not valid within a mean free path of the wall. When
the sheath thickness becomes an appreciable fraction
of either the tube radius or the ion mean free path an
accurate calculation of the gas pumping force requires
a knowledge of the charged-particle densities and the
radial electric field in the sheath. The idea is that the
radial field in the sheath is very high and thus ions move
through this region very rapidly on their way to the
wall. Since they have not had as long an exposure to
the axial electric field, they therefore arrive at the wall
with less axial momentun1 than one would have expected
in the absence of an ion sheath (process A). Moreover,
charge neutrality does not hold in the sheath region,
and because of the excess of ions there is a net force
toward the cathode on the neutral gas in the sheath
region (process B).

In the free-fall limit (low pressure), recent numerical
computations by Parker" have yielded accurate curves
for the potential and the charged-particle densities
everywhere in the discharge, following the transition
through the sheath in detail.

For the high-pressure case, as considered here, take
for the electrostatic potential

y(r) = (kT,/e) lnJO(2. 4r/R), r&R e(5—.2)

as in Eq. (2.7), and for the sheath solution2'

(p(r) = Vw, ~pic '(r R+a) I'+ V„, R—e(—r&R. (5.3)

In the latter expression, V„ is the potential at r =2—K

relative to r =0, and Vw, ii is the potential of the tube
wall relative to the potential at r=R—K. The value of e

is chosen to make the radial electric 6eld continuous
at r=R —z. If the typical value""" Vw, »=5(k2', /e)
is chosen, this yields

with
n, (r) =0, R—e(r(R (5.6)

v= (4«/9)(Vw. »/~) "'. (5.7)

This is the simplest form for the charged-particle
densities which appears to retain the essential physics
of the sheath.

The eGects of the ion sheath on gas pumping may
now be determined by calculating V~, V~, and V3 from
Eq. (2.3), (2.4), (3.1), and (3.42), but using Eqs. (5.5)
and (5.6) rather than the ambipolar solutions whenever
r&R—e. The quantities so obtained will be denoted
V~„V2„and V3, to indicate that the sheath correction
has been included. This paper will treat only the higher-
pressure case, where )+«R and K((E, but will not
restrict the ratio K/X+. At lower pressures usually

K&(X+, and the ion-sheath corrections may be neglected
entirely.

As in Sec. II, V&, (z) is calculated from Eq. (2.6)
rather than directly from Eq. (2.3). The result is that

V~, (z) =Dn(R/e) —1.02]Vg(z)/4. 07, (5.8)

yielding a major change in the small term V&(z).
However, even with this change V&, may usually be
neglected.

For V2, one obtains the somewhat more complicated
foITl1

V2, (z) = —0.0025 Vx(z)

+V2(z) (1+d ~ '+0.5&9+—') exp( —e/X~) . (5.9)

The term involving V& in this equation represents
process B Ldescribed preceding Eq. (5.2)] and the term
involving V2 and the exponential factor arises from
process A.

Finally, as a consequence of the fact that h(x) can
never exceed 2, one may show that

~
Vs, (z)—Vg(z)

~
(

~

0.22(Xp/~) Vg(z)
I

(5 10)

In the frequently encountered case that V&(z) is
much less than U2(z)+ V3(z), Eqs. (5.8)—(5.10) show
that the ion sheath essentially aGects only the gas
pumping term V2(z), and that the effect of the ion
sheath upon that term is a function only of the quantity
e/X+=0. 16~/X+. In the case of charge-exchange colli-
sions X+ should be replaced by X,&, as before.

VI. SUMMARY

The principal result of the work reported here is
the discovery of a new physical eGect, caused by the
radial motion of ions, leading to gas pumping in gas
discharges. This new eRect, as well as those previously
recognized, were treated in some detail in Secs. III
and IV, and corrections due to the ion sheath were

instead assumed to be

e, (r) =y(r+x —R) I' R—e(r(R (5.5)
and
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introduced in Sec. V. The result of this work is to
replace the Druyvesteyn' expression, Eq. (2.2), by

J'(z)= J r.(z)+J s (z)+J s.(z)
—(2z/16rl) R4(8/Bz) Pe (z)k T,(z)g (6.1)

Evaluating the quantities appearing in this expression
requires Eqs. (5.8)-(5.10), (2.9), (2.11), (2.12), (3.43),
(3.34), (3.23), (3.24), and (3.41). The gas flow and
pressure difference between the ends of the discharge
tube may then be obtained from Eqs. (2.15), (2.18),

and (2.19). The following paper" compares the theory
developed here with experimental results in gas
discharges.
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Measurements have been made of the pressure difference between the cathode and anode bottles of a
standard cw argon ion laser tube, with a positive column of 30-cm length and 1.25-mm radius. At several
amperes current the pressure diBerence (anode minus cathode) is approximately constant at 0.25 Torr below
1.2 Torr, and is inversely proportional to pressure above that pressure. The results are compared with the
predictions of various theories. The theory presented in the preceding paper accurately predicts both the
magnitude of the pumping effect and its dependence upon pressure and current.

I. INTRODUCTION
' 'T is well known that a pressure difference is developed
& ~ between the anode and cathode in a dc gaseous

plasma, but at the current densities usually used in

past work this has been a small effect and dificult to
measure. However, in high current density discharges

(1 A/mm') in small bore tubes (a few millimeters

radius) gas pumping by the plasma is so strong that
an external gas return' connected between cathode and

anode must be used to keep the discharge from extin-

guishing itself. Even with such a return path for the

gas, the pressure at the anode often builds up to several

times the cathode pressure.
Recent discharge diagnostic work on the argon ion

laser provides a unique opportunity to study the gas

pumping effect in detail at high current densities in

small-radius tubes. Various groups have recently mea-

sured electron, ion, and neutral-atom kinetic tempera-

tures, number density and radial distribution of ions and
neutral atoms, and axial electric field under a great
variety of discharge conditions. Such data make it
possible to compare experimental measurements in

argon with the predictions of various theories in some

detail.

r E. I. Gordon and E. F. Labuda, Bell System Tech. J. 43, 1827
(1964).

In Sec. II we discuss the range of discharge parame-
ters for which theoretical treatments of the gas pumping
effect should apply; these considerations show that the

theory presented in the preceding paper should be

applicable to the argon discharge. In Sec. III we gather
together certain experimental measurements of dis-

charge parameters which are seen to be necessary in

calculations using the theory, and in Sec. IV we give

specific numerical predictions for argon discharges in

various pressure regimes. In Sec. U we describe the
experimental tube used in the present investigation
and compare measured gas pumping with the predic-

tions of various theoretical models. A long-standing

discrepancy between theory and early experimental

measurements in argon is examined in the Appendix.

II. VALIDITY OF THEORETICAL MODELS
IN ARGON DISCHARGES

It is desirable to determine the ranges of pressure,

current, and tube radius for which various theoretical
models for the gas pumping effect may apply, since

direct comparison of theory and experiment is to be
undertaken. Relevant theoretical treatments of the

problem have been given by Langmuir, ' Druyvesteyn, '

s Irving Langmuir, J. Franklin Inst. 196, 751 (1923).
3 M. J. Druyvesteyn, Physica 2, 255 (1935).


