
P EI Y8 I GAL R EV I EW VOLUME 169, NUM BER 1 5 MAY 1968

Finite-Size Effects in Rayleigh Scattering
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Experimental studies of Rayleigh scattering show an asymmetrical scattering cross section which has
been attributed to the 6nite size of the scattering volume. The scattering cross section is computed as an
asymptotic series in a size parameter and it is shown that Gnite-size effects cannot account for the experi-
mental results.

I. INTRODUCTION
' ' NTKNSE light beams of the laser have made possible

the experimental measurement of the differential
cross section for scattering of light from gas molecules.
Such measurements have been made by George,
Goldstein, Slama, and Yokoyama. ' ' The experimentally
determined differential cross sections for argon and
xenon show a pronounced deviation from the form pre-
dicted by the simple linear theory due to Rayleigh. '
The Rayleigh theory predicts azimuthal symmetry
about the polarization vector of the incident beam
while the experimental results show a forward en-
hanced asymmetry which is greater for xenon than argon.
The intensity of scattered light was found to vary
linearly with the pressure and therefore with density
in agreement with the Rayleigh theory.

On the basis of the preliminary report given in Ref. 1,
a theoretical explanation was offered by Theimer. ' The
scattered intensity w*s computed as a function of the
relative wave vector p=ks —k between the incident
and scattered wave. The Gnite dimensions of the scat-
tering volume and the detector relative to the observa-
tion distance were then taken into account simul-

taneously by averaging the scattered intensity over a
range of p. This amounted to simultaneously summing
the contributions to the scattered intensity from the
various subvolumes of the scattering volume over the
subsurfaces of the detector. In principle such a pro-
cedure is not correct for coherent scattering and would

be indicated only if the light being scattered from the
various subvolumes were incoherent. Since the scatter-
ing is coherent one must first sum the contributions to
the scattered electric Geld. Only then should the inten-

sity be computed and summed over the face of the de-

tector. The purpose of the present work is to compute
the scattered intensity in this manner. Furthermore in

the calculation of Ref. 4 the Gnite-size correction is
obtained only approximately with no estimate of the
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accuracy of the approximation. The present calculation
will make systematic use of the asymptotic expansion
of integrals so that the magnitude of the next correction
can be estimated.

The correction to the Rayleigh theory computed in
Ref. 4 is an additive asymmetric factor which arises
from the interference of light scattered from diferent
atoms of the gas. The asymmetric factor is quadratic
in the density and when normalized by the Rayleigh
term depends only on the number density of scattering
particles and the geometry of the scattering volume.
This is not in agreement with the observed linear de-
pendence of the scattering cross section on density.
Furthermore, it cannot account for the increased asym-
metry of the scattering from xenon over argon since
under the conditions of the experiment the number
density of atoms was less for xenon than argon. Finally,
it should be noted that although no other diGerential-
cross-section measurements have been made for ele-
ments of high atomic number, light-scattering experi-
ments for other gases and liquids~' have failed to
observe any deviation from the Rayleigh theory.
Nevertheless, it seems appropriate that Gnite-size
eGects be carefully evaluated since all experimental
equipment is of necessity Gnite in size.

II. DERIVATION OF THE SCATTERED
INTENSITY

For the purpose of this calculation three assumptions
are made:

(i) The irradiated gas or liquid is in thermal equilib-
rium. The special case where the gas is ideal will be
considered in more detail.

(ii) The induced electric-dipole moment per unit
volume is given by the linear theory

y(r, t) = rrtt (r,t)E(r,t), 0)
where cr is the eGective single-particle polarizability and

rt(r, t) =Q b(r —R;(t))
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Phys. Rev. Letters 14, I (1965).

R. D. Watson and M. K. Clark, Phys. Rev. Letters 14, 1057
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is the number density of atoms. R;(t) is the position
vector of atom i at time t.

(iii) The incident laser light is well represented by
the electric field of a plane wave

E(r [) E &t(ko r-otot) (3)

8 For a review of the ruby laser see the article by V. Evtuhov
and J. K. ¹eland, in Lasers, edited by A. K. Levine (Marcel
Dekker, Inc., New York, j.966), Vol. 1.' For a discussion of the coherence properties of optical Gelds
see L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965)."D.F. Nelson and R. J. Collins J. Appl. Phys. 32, 739 (1961).

"Michael Hercher, Appl. Opt. , 665 (1962)."D. A. Berlrley and G. J. Wolga, Phys. Rev. Letters 9, 479
(1962),

The first two assumptions are supported by experi-
mental evidence reported in Ref. 2. The density of the
irradiated gas and the amplitude of the incident laser
light were varied without measurable changes in the
differential scattering cross section. The third assump-
tion depends on several experimentally observed
properties of the incident ruby-laser beam. Among these
are the spatial and temporal coherence, the time which
characterizes the spontaneous Quctuations in the in-

tensity, and the dispersion of the incident wave vector
in direction and magnitude. Since the scattered intensity
depends on the square of the scattered electric field,
only second-order coherence' is of importance here. That
the second-order spatial coherence properties of the
ruby-laser beam are in agreement with a plane-wave
description was demonstrated by Nelson and Collins"
for spatial separations of 0.0054 cm and by Hercher"
for separations of 0.35 cm. Temporal coherence is of
importance because of the time delay due to the dif-
ferent path lengths of light scattered to the detector
from diferent subvolumes of the scattering volume.
Berkley and volga" have shown that the double slit
diffraction pattern for a path difference of 700 cm shows

little deviation from the pattern obtained with no path
difference. Thus for a path difference of only 1 or 2 cm
one expects the second-order temporal coherence

properties of the beam to be well represented by the
plane wave. The intensity of the ruby laser is known to
pulsate with somewhat irregular time intervals. s

However these time intervals are of the order of 1 or
2 psec. The frequency of the principal line is about
4.3X10" sec ' and thus the field oscillates about 10'
times during each spontaneous pulsation of the inten-
sity. This means that the fluctuations of the amplitude
of the wave can be treated as adiabatic relative to the
plane-wave oscillations of the field which in turn are
being treated as adiabatic oscillations relative to the
electronic motions in the scattering atom. The apparatus
used in Ref. 2 allowed for incident wave vectors which
had a maximum half-angular spread of less than 2'.
Thus the dispersion in the direction of ktt is comparable

to the half-angle subtended by the detector and
negligible compared to the 15' intervals at which the
intensity is measured. The detector was Gtted with an
interference filter centered about 14 400 cm ' and 100—
125 cm ' wide. The filter prevented all the lines reported
by Porto and Rood" except the lattice band lines near
14 400 cm ' from reaching the detector. The linewidth
of the lattice band lines of the ruby laser is reported to
be very narrow, of the order of 0.2 cm ' or less, com-
pared to a wave number of about 14400 cm ' for the
principle line. Thus for a discussion of light intensity
the incident laser beam is well represented by a mono-
chromatic plane wave.

The scattered electric field at the observation point
R is given by

8
E(R,t) = grad divZ(R, t)———Z(R, /),

c2 Bt2
(4)

where the Hertz potential Z(R, t) is determined from'4

8
~r"Z(R, t) ———Z(R, [)= —4~y(R, &) .

c' ()]

The solution can be written in the form

1
Z(R, /) =— dr

2Ã v

u(r, t')
&tt»[t' t+{1/c)[R——r[l (6)

/R —rf

E(R,t) =
2' C

dl' df dc'

ot'rt(r, [')
X

/R —rf
0

)Eo (R—r)j(R—r)

/R —r('
get[[to. r+[e—too) v—&tt+(ra/c)[R —r[l (7)

In deriving Eq. (7) terms of order X/~R —rI compared
to 1 have been dropped from the integrand, where
X=c/ot is the wavelength of the scattered field divided
by 2x.

The intensity of scattered light at the point R is

~'S. P. S. Porto and D. L. Wood, J. Opt. Soc. Am. 52, 251
(1962).' W. Panofsky and M. Phillips, C/assi'/ 2/ectricity am' 3EIag-
netism (Addison-Wesley Publishing Co., Inc., Reading, Mass. ,
i9SS).

where V is the scattering volume. Making use of this
result along with Eqs. (1), (3), and (4) one obtains an
expression for the scattered electric held
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by letting R~~ with a; held 6xed the resulting ex-
pression for the interference term is again proportional
to a b function in the forward direction b(f). In this
limit the interference term does not contribute to the
observed scattering.

For 6nite scattering volume and observation distance
the integrals Q, can be evaluated as asymptotic expan-
sions in (R/Kp) ', the first terms of which are obtained
in the Appendix. When these expressions are substituted
into Eq. (29) and averaged over AP the oscillatory
factors contribute little to the observed intensity given
by

s.P,p/R)' cscg f'+at
J2 =Gap Spkp

atapap f (f ai )—
As discussed in the evaluation of Qi this result applies
only for scattering angles P for which f& ai, a condition
which is well satisfied for angles greater than 15' in
the experimental arrangement of Ref. 2 where c~=a2
=0.068, ap ——0.076. The next correction to Eq. (31) is
of the order of (a'R/Ko) '= (A'/KpR) '~1/1300.

Using the experimental parameters already given,
the relative contribution of the interference term

4/J t= Jp/top'

at room temperature of 300'K is given in Table I for
argon at 1 atm and xenon at 140 mm Hg.

III. CONCLUSIONS

By evaluating the integrals Q; asymptotically instead
of passing to the limit E~~, the forward-direction 6

function is spread over the forward hemisphere.
,However, the contribution of the interference term is
still negligible for scattering angles greater than 60'
and thus cannot account for the reduced intensity in
the backward direction relative to that at right angles.
The situation is even worse for xenon where the inter-
ference term gives a correction of less than 5% for all
experimentally observed scattering angles. This is in
contrast to the experimental results which show an
increased scattering asymmetry for xenon. It should be
noted that the numerical results of this calculation as
expressed in Table I depend on the size of the scattering
volume. Increasing the effective dimensions of the scat-
tering volume decreases the effect of the interference
term for angles greater than 45' (f&0.4) as long as

at&0.2. Since at=Hi/R=0. 068 was determined from
the half-width of the relative response curve for the
photomultiplier tube, one expects the numerical values
given here to serve as an upper bound to the experi-
mental values.

More generally, the results expressed by Eqs. (27)
and (31) take on a common angular dependence when
f'))ai'. In terms of the scattering volume V= 8A

idols

p

Xcscg these two results can be written in the form

Jp= 2pop BP,p X cot (pQ) csc (pQ),
where

X= 23p9,p/V, A p'/KpR«1

= m RKoo/V, 2 po/KpR))1.

This suggests that neglecting the volume effect, the
angular dependence of the interference term is given by
cot'(oP) csc'(-', P) in all cases. This angular distribution
does not 6t the shape suggested by the data of Ref. 2.

As indicated by the results given in Table I, the effect
of the interference term for light scattering in gases is
small for all but the smaller scattering angles. Since the
relative effect of this term is proportional to the number
density of scattering molecules one expects the inter-
ference term to give measurable contributions to light
scattering from liquids provided the geometrical factor
X is not too small. The theory cannot be compared with
published results such as those given in Ref. 5 since the
dimensions of the scattering volume are not provided.
However, it is a simple matter to determine if either
Eq. (27) or Eq. (31) applies to a given experimental
apparatus, and if so, to compute the interference term
once the geometry is determined.
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APPENDIX

Write the integral

2R
(f+x)(a I xI)—

-~ f+p }to

in the form

2E.
sin u(b+u),

b+u KpJ(~)
0.414
0.577
0.768
1.00
1.302
1.732
2.414

P (degrees)

45
60
75
90

105
120
135

Ar

0.275
0.057
0.016
0.005
0.0007
0.0006
0.0002

0.05
0.01
0.003
0.001
0.0001
0.0001
0.00004

where f is given by Eq. (26), u=a —y, and b= f a. —
F(f) is the imaginary part of the integral

2R
exp i u(b+u)

XQ

with
TAnLz I. Relative contribution of the interference term (j co2/)o

for argon at 1 atm and xenon at 140 mm Hg.
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which by contour integration can be written in the form

H(f) =i
dZ 2R

exp i Z(Z+ib)
o b+iZ Xp

Complex U

2R
i—exp i a(b+a)

o b+a+iZ

2R
&(exp — Z(b+ 2a+iZ)

Xp

For scattering angles greater than 45' (2R/Kp)b&1. 5
&(10'; the exponential factors are rapidly decreasing
and H(f) can be approximated by

00

H(f) = dZ ex—p
p

2Rb i
Z +

Kp b+a

2R
exp i a(b+a)

X,p

Fzo. 2. Contour for the evaluation of the integral Qo.

00 2R
X dZ exp — (b+2a)Z

Q XQ

The resulting integrals can be evaluated and the
imaginary part taken to give

1 cos(2R/Xp) a(b+a)
F(f)= +ol

2R b' (b+a)' (2R~

The third integral

2E.
~(a- lyl)

—a P ~p

can be written in the form

Thus to first order in Kp/R Qo=2 Im
dl

pic (B—y)

I
&o f'+a' 1 2R

Qi(f) =— ——cos af
(fo a2)2 f2

For smaller angles this expression diverges as f +a. -
Returning to the original integral expression one sees
that as f +a, a point o—f stationary phase approaches
the range of integration. This means that the resulting
value of the integral will contain one less factor of
(Kp/R)'~' and thus will be somewhat larger but never-
theless remains Gnite. This region is not of much experi-
mental interest since for most arrangements a(f for
all experimentally observed scattering angles.

The second integral can be evaluated directly:

cfp 2R
Q = — f( lxl)—

—a Xp

AQ 1 2R
1—cos fa

R f' Kp

where 8=a(2R/Kp)'~p and u=(2R/Kp)'~'y Using the
contour shown in Fig. 2 and taking the limits 8 —+0,
2'~~ an exact expression for Qo is obtained:

c sto+u(-'8)'j„u'+(-,'8) '

sinu' 8 cosu' —I sinn'
+2 du + 8'+u'

In the case of interest B=(2Aoo/XpR)'"))1 and the
remaining integrals can be evaluated by the method of
stationary phase. To erst order in 8 ' the result is

2(2or) I (Kp) I a R a R
cos —sin

a ER& 2lto 2Xo


