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Experimental studies of Rayleigh scattering show an asymmetrical scattering cross section which has
been attributed to the finite size of the scattering volume. The scattering cross section is computed as an
asymptotic series in a size parameter and it is shown that finite-size effects cannot account for the experi-

mental results.

I. INTRODUCTION

I NTENSE light beams of the laser have made possible
the experimental measurement of the differential
cross section for scattering of light from gas molecules.
Such measurements have been made by George,
Goldstein, Slama, and Yokoyama.!? The experimentally
determined differential cross sections for argon and
xenon show a pronounced deviation from the form pre-
dicted by the simple linear theory due to Rayleigh.?
The Rayleigh theory predicts azimuthal symmetry
about the polarization vector of the incident beam
while the experimental results show a forward en-
hanced asymmetry which is greater for xenon thanargon.
The intensity of scattered light was found to vary
linearly with the pressure and therefore with density
in agreement with the Rayleigh theory.

On the basis of the preliminary report given in Ref. 1,
a theoretical explanation was offered by Theimer.* The
scattered intensity was computed as a function of the
relative wave vector u=ko—k between the incident
and scattered wave. The finite dimensions of the scat-
tering volume and the detector relative to the observa-
tion distance were then taken into account simul-
taneously by averaging the scattered intensity over a
range of w. This amounted to simultaneously summing
the contributions to the scattered intensity from the
various subvolumes of the scattering volume over the
subsurfaces of the detector. In principle such a pro-
cedure is not correct for coherent scattering and would
be indicated only if the light being scattered from the
various subvolumes were incoherent. Since the scatter-
ing is coherent one must first sum the contributions to
the scattered electric field. Only then should the inten-
sity be computed and summed over the face of the de-
tector. The purpose of the present work is to compute
the scattered intensity in this manner. Furthermore in
the calculation of Ref. 4 the finite-size correction is
obtained only approximately with no estimate of the

* The Radiation Laboratory of the University of Notre Dame
is operated under contract with the U. S. Atomic Energy Com-
mission. This is Atomic Energy Commission Document No. COO-
3815%1.“ George, L. Goldstein, L. Slama, and M. Yokoyama,
Phys. Rev. Letters 11, 403 (1964).

#T. V. George, L. Goldstein, L. Slama, and M. Yokoyama,
Phys. Rev. 137, A369 (1965).

¢J. W. Strutt, Phil. Mag. 41, 107 (1871); 41, 274 (1871); 41,

447 (1871).
O. Theimer, Phys. Rev. Letters 13, 622 (1964).
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accuracy of the approximation. The present calculation
will make systematic use of the asymptotic expansion
of integrals so that the magnitude of the next correction
can be estimated.

The correction to the Rayleigh theory computed in
Ref. 4 is an additive asymmetric factor which arises
from the interference of light scattered from different
atoms of the gas. The asymmetric factor is quadratic
in the density and when normalized by the Rayleigh
term depends only on the number density of scattering
particles and the geometry of the scattering volume.
This is not in agreement with the observed linear de-
pendence of the scattering cross section on density.
Furthermore, it cannot account for the increased asym-
metry of the scattering from xenon over argon since
under the conditions of the experiment the number
density of atoms was less for xenon than argon. Finally,
it should be noted that although no other differential-
cross-section measurements have been made for ele-
ments of high atomic number, light-scattering experi-
ments for other gases and liquids®™7 have failed to
observe any deviation from the Rayleigh theory.
Nevertheless, it seems appropriate that finite-size
effects be carefully evaluated since all experimental
equipment is of necessity finite in size.

II. DERIVATION OF THE SCATTERED
INTENSITY

For the purpose of this calculation three assumptions
are made:

(i) The irradiated gas or liquid is in thermal equilib-
rium. The special case where the gas is ideal will be
considered in more detail.

(ii) The induced electric-dipole moment per unit
volume is given by the linear theory

p(r,)=an(r)E(r,1), 1)

where « is the effective single-particle polarizability and

w5 =1 6e—RA) @)

5R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. E. Ripper,
Phys. Rev. Letters 14, 7 (1965).
( 6 l§) D. Watson and M. K. Clark, Phys. Rev. Letters 14, 1057
1965).
7R. R. Rudder, D. R. Bach, and R. K. Oshorn, Bull. Am. Phys.
Soc. 12, 891 (1967).
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is the number density of atoms. R;(f) is the position
vector of atom ¢ at time 2.

(iii) The incident laser light is well represented by
the electric field of a plane wave

E(1,t) = Bogithor—eun) @3)

The first two assumptions are supported by experi-
mental evidence reported in Ref. 2. The density of the
irradiated gas and the amplitude of the incident laser
light were varied without measurable changes in the
differential scattering cross section. The third assump-
tion depends on several experimentally observed
properties of the incident ruby-laser beam.® Among these
are the spatial and temporal coherence, the time which
characterizes the spontaneous fluctuations in the in-
tensity, and the dispersion of the incident wave vector
in direction and magnitude. Since the scattered intensity
depends on the square of the scattered electric field,
only second-order coherence? is of importance here. That
the second-order spatial coherence properties of the
ruby-laser beam are in agreement with a plane-wave
description was demonstrated by Nelson and Collins!®
for spatial separations of 0.0054 cm and by Hercher!
for separations of 0.35 cm. Temporal coherence is of
importance because of the time delay due to the dif-
ferent path lengths of light scattered to the detector
from different subvolumes of the scattering volume.
Berkley and Wolga'? have shown that the double slit
diffraction pattern for a path difference of 700 cm shows
little deviation from the pattern obtained with no path
difference. Thus for a path difference of only 1 or 2 cm
one expects the second-order temporal coherence
properties of the beam to be well represented by the
plane wave. The intensity of the ruby laser is known to
pulsate with somewhat irregular time intervals.’
However these time intervals are of the order of 1 or
2 psec. The frequency of the principal line is about
4.3X10" sec™? and thus the field oscillates about 108
times during each spontaneous pulsation of the inten-
sity. This means that the fluctuations of the amplitude
of the wave can be treated as adiabatic relative to the
plane-wave oscillations of the field which in turn are
being treated as adiabatic oscillations relative to the
electronic motions in the scattering atom. The apparatus
used in Ref. 2 allowed for incident wave vectors which
had a maximum half-angular spread of less than 2°.
Thus the dispersion in the direction of ko is comparable

8 For a review of the ruby laser see the article by V. Evtuhov
and J. K. Neeland, in Lasers, edited by A. K. Levine (Marcel
Dekker, Inc., New York, 1966), Vol. 1.

9 For a discussion of the coherence properties of optical fields
see L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).

10D. F. Nelson and R. J. Collins, J. Appl. Phys. 32, 739 (1961).

11 Michael Hercher, Appl. Opt. 1, 665 (1962).

(191;213 A. Berkley and G. J. Wolga, Phys. Rev. Letters 9, 479

F. D. FEIOCK

169

to the half-angle subtended by the detector and
negligible compared to the 15° intervals at which the
intensity is measured. The detector was fitted with an
interference filter centered about 14 400 cm™! and 100~
125 cm~* wide. The filter prevented all the lines reported
by Porto and Wood® except the lattice band lines near
14400 cm™! from reaching the detector. The linewidth
of the lattice band lines of the ruby laser is reported to
be very narrow, of the order of 0.2 cm™ or less,8 com-
pared to a wave number of about 14 400 cm™ for the
principle line. Thus for a discussion of light intensity
the incident laser beam is well represented by a mono-
chromatic plane wave.

The scattered electric field at the observation point
R is given by

2

1
E(R,))=grad divZ(R,))—— —Z(R,?), 4)
c? o2
where the Hertz potential Z(R,?) is determined from™
1 92
VZR)—— —LZR,))=—4rpR,1). ©)
c? 912
The solution can be written in the form

1 00 00
Z(R)=— f dr / v / do
271' 14 —0 —0

p(r,t)
|R—1|

gielv—t /IR ()

where V is the scattering volume. Making use of this
result along with Eqgs. (1), (3), and (4) one obtains an
expression for the scattered electric field

a 0 0
ERf)=— dr/ dt’f dw
2mc? 14 — —o0

ey (B G0N
|R—r]| |R—r|2

Xei[kg~r+ (w—wo) t/—wt+(w/c)| R—r|] . (7)

In deriving Eq. (7) terms of order A/|R—r| compared
to 1 have been dropped from the integrand, where
A=c/w is the wavelength of the scattered field divided
by 2.

The intensity of scattered light at the point R is

(151)362?) P. S. Porto and D. L. Wood, J. Opt. Soc. Am. 52, 251
H w. Panofsky and M. Phillips, Classical Electricity and Mag-
%?g« (Addison-Wesley Publishing Co., Inc., Reading, Mass.,
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given by
F®= Jim — [ a([ERp)[?)
'(R)=— lim — 1 Y’
87!' Linad 2T -7
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c n(rt )n(',t")
= hm—— dt fdr/ ar' / dt’/ dt”/ dw/ do'w? )
8w T 2T J_r 4n%* — —» —w —w |R—r| |[R—1'|

[Eo- (R—r)J(R—1')

LEo- (T{I;_f)r::iR"r)} ) {Eo"

X {Eo—

where () denotes an ensemble average appropriate to
the thermodynamic state of the gas or liquid.

The Van Hove space-time correlation functions'® are
defined by

Gi(rt; 1Y) =% é 3(r—Ru(®))s(r'— Rf(l'))> )

1
Gao(r,t; v/t )=;V- :E,- s(x—R,(1))s(r'—R;(¢ ))> ,

where N =,V is the number of atoms in the volume V
and 7, is the average density. In terms of these functions

Gt v )= (n()n( 1))
=N{Gi(r,t; v,/ )+Ga(r,t; ¥ ,1)}. (10)

Komarov and Fisher'® have used these functions to dis-
cuss the theory of Rayleigh scattering in liquids neglect-
ing finite-size effects.

For a system in thermal equilibrium the Van Hove
functions are functions only of the differences |r—1’|and
(t—?). In particular, it can easily be shown that for
an ideal gas

i1 g
G(le—r], (z—t'))——[ ”

1 z(f-ﬂ) ]3’2

- 472 —r’)2
X g~ lBml2(t—t")? (-—1") s

GZ([ Il ( />) 2
r I ’ ! ? )

where 8 is the product of the Boltzmann constant and
the absolute temperature and m is the atomic mass.
Using the difference property of the function G(|r—r'],
(¢—1)) and the change of variables

s=t—1', =141,
16 L. Van Hove, Phys. Rev. 95, 249 (1954). Actually the func-
tions defined by Van Hove are obtained from those used here by
integrating over the relative coordinates (r-+r’) in the limit of
large volume, neglecting finite-size corrections in Eq. (8). For this
reason the normalization of the G functions differ by a factor of
V-1
18 L. I. Komarov and I. Z. Fisher, Zh. Eksperim. i Teor. Fiz.
‘(139 {3%%7 (1962) [English transl.: Soviet Phys.—JETP 16, 1358
196

|R—r'|2

w o’
] exp{i[ko- (r—r)+—|R—r|——|R—r|
c ¢

+ (w—wo)t'— (w’—wo)t”—(w—w')l]} , (8)

the s integration of Eq. (8) can be done. The result is
21 §(w—w’), which allows one to perform the o’ inte-
gration. This drops all ¢/ dependence of the integrand
making it possible to perform the ¢ integration and the
T — oo limit. The result is

dr/dr/ ds/ dw

WG(|r—1,5) {E _[EO'(R—I)](R—I)}

I’(R)=—— —

2mct 8w

|[R—r| |[R—1| |R—r|?
. {EO_EEO- (R—r')](R—r’)}
|[R—r'|2

X gilko- (=1 )+(@/e) (IR—r|—| R—r' )+ (u—wo) o] |

(12)

The retardation factor which appears in the exponen-
tial can be expanded in powers of R~ The finite obser-
vation distance R relative to the linear dimensions of the
scattering volume is taken into account by keeping
terms first order in R™!
|[R—r|— |R—¥|=—R-(xr—7)

+(/2R){(e+r)~[R- (e+1)IR}- (e—7). (13)
This is in contrast to the usual radiation zone approxi-
mation which neglects finite-size effects by keeping only
the first term on the right. ‘

The remaining part of the integrand of Eq. (12) can
also be expanded in powers of R~ When terms to
first order are retained the result can be written in the
form

I'R)= (Na2Io/c'R?) | é— (& R)R[*{J1+ T2}, (14)
where for j=1, 2

1 S
Ji=— / dr / dr’ / dt / dw W*Gi([r—1'|, )
21!' 14 14 —® -

X ei(w—-wo)l etK- (r—r’) /%0 { 1+

2
|e— (¢ R)R|?
. . —+r’
x[(é-R)é+R—2(é-R)2RJ-(%)}. (15)
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Here, Iy=cE#/8n is the incident light intensity,
¢=Ey/| E,| is the electric polarization, and

S R e

In Eq. (14) the direct scattering term J; is the contribu-
tion to the scattered intensity which results from the
self-interference of the electric field which is scattered
by each individual atom. The interference term J, is
due to the interference of the electric fields scattered by
two different atoms.

If the scattering gas or liquid is static so that the
individual atoms are at rest, the function Gi1(|r—r'[, £)
reduces to (1/V)3(|r—r’|) and the evaluation of the
direct scattering term is simplified, yielding just the
Rayleigh result w¢®. The term linear in (r4r')/2R con-
tributes nothing in the static limit. Furthermore, the
finite-size corrections of this term will be reduced relative
to the unit term by a factor proportional to the linear
dimensions of the scattering volume divided by the
observation distance and hence may be neglected. In
the dynamic case the integral over Gi(|r—1’|, #) takes
into account the thermal motion of the atoms during the
scattering process. Since collisions tend to restrict the
range of atomic motion, the ideal gas provides a system
for an estimate of an upper bound on the size of correc-
tions due to thermal motion. To make this estimate it
is convenient to introduce the dimensionless variables

(17

Experimentally a filter is often used to restrict the range
of frequencies which contribute to the scattered in-
tensity. The range Aw is assumed centered about w.
The dimensionless parameters

o=|Aw/wo|, M=31Bmc

T=wot, ll/= (w—wo)/wo.

(18)

have typical values of c=4X1073 for the experimental
setup of Ref. 2 and M=7.2X10" for argon at room
temperature. In terms of these quantities the direct scat-
tering term for an ideal gas can be written in the form

co04 0 0

Ji= f dr / dr’ / dr / A(1+y) ke
2rVAd Jv v —0 —
2

1 M32 -1
X[— _:I e—M/ﬂ( )eiK-[(r—r')/M]_ (19)

T T2 Ao

The volume integrations are more easily done in terms
of the relative coordinates r—r’ and r+r’. To the extent
that the dimensions of the scattering volume are infinite
compared to the wavelength of the incident light, the
r—r’ integration is just the Fourier transform of a
normalized Gaussian, which gives e=X**/4¥_ The finite-
size corrections are of the order of the wavelength
divided by a linear dimension of the scattering volume
and can be neglected. The same result is obtained if the
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radiation zone approximation and the thermodynamic
limit are made simultaneously, i.e., if the linear dimen-
sions of the scattering volume and the observation
distance R are allowed to become infinite with the corre-
sponding ratios held fixed at the experimental values.
It should be emphasized that not all finite-size effects
are lost in this limit since relative directions are pre-
served. In this approximation the 7 integration can be
done exactly to give

7 ‘2% / " /_ (1) M /2K () ]2
X exp[— My?/ K2 )].

For scattering angles of interest for the purpose of
measurement and reasonable frequency ranges o, the

function
. r+1’
e (2)-
2R

ek

is well behaved and the ¢ integration can be evaluated
as an asymptotic series in M. Because of the extremely
large value of M the only significant term of the series
is the first, for which the remaining volume integration
is easily done to give the simple Rayleigh result Ji=wo".
As already mentioned, this is exactly the result one gets
for the static system neglecting finite-size effects. The
interference term J, is somewhat more interesting in this
respect.

The direct scattering term J; has given the entire
Rayleigh expression with negligible corections of the
order of Xo/R and M, Since finite-size corrections to the
Rayleigh results are being sought, it will suffice to
consider only the first term of the integrand of Eq. (15)
for the interference term Jo.

Except for a factor of V=, the function G2(|r—1'], t)
gives the average density of particles at the point ¢’ at
time ¢ excluding one particle under the circumstance
that the excluded particle was initially at the point r.
It follows from the defining Eq. (9) that

/dr/ dr' Go(|r—1'|,))=N—1,
tim Gu(le—r )= (1/ Nlle=r' D), (220)

(20)

=

K2(I',l[/)=

2

@1

(22a)

where g is the well-known pair distribution function,
normalized so that it is equal to the average density 7,
in the case of an ideal gas. For large spatial separations
or long times ¢, Go(|r—1r'|,t) — no/V for arbitrary
fluids which are not near the critical point or in a state
of collective motion.” Except in these cases, where long-

7 For a discussion of these important cases see the article by
R. D. Mountain, Rev. Mod. Phys. 38, 205 (1966).
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range correlations may be established, the function
[g(|t—1"|)—no] is short range and vanishes for |[r—1’|
greater than a few times the range of the intermolecular
forces. Even in the case of collective motion, as, for
example, the passage of a sound wave through the fluid,
the deviation of g(|r—1’|) from a constant background
density is either short range or small compared to the
average density #o. For these reasons one expects the
magnitude of the interference term to be well estimated
if Go(|r—r'|,t) is replaced by the ideal gas value
no/V. In this approximation the ¢ and w integrations
of Eq. (15) can be done immediately to give

n”
]2=w0..?f dl‘/ ar’ eiKo'(r—r’)/)\g’ (23)
Viv v
where
Y o 4 r+r'\7 .
Ko=k0—R+<——)—[R-(———)]R. (24)
2R 2R

The volume integrations of Eq. (23) are made
specific if the scattering volume is approximated by a
parallelepiped as shown in Fig. 1 as the intersection of
the incident and scattered beam. In this approximation

A3 A2 (A1/sing)+rz cate
[ dr— / drs f drs / dri,
14 —Ag —A2 —(A1/sing)+r2 cotd
and the scattering volume is V=_8414243/sing. The
three integrations composing the integration over the

scattering volume are made independent by the linear
transformation

p1=r18ing—rz COSP, pa=rs, ps=rz.  (25)

For the purpose of later comparison it is interesting
to compute the interference term in the radiation zone
approximation R—co. In this limit Ko r= f(o1—p2),
where

f= (1—cosg¢)/sing. (26)

If the infinite volume limit is also taken the resulting
expression for the interference term is proportional to
a § function in the forward direction () and contributes
nothing to the observed scattering. However, the finite
volume integrations can be done exactly to give

Jo=wo'noko* (84 sko/A145)(csce/ f*)
Xsin?(fA1/Ae) sin2(fA42/Ao).

The intensity measured by the photomultiplier tube is
obtained by averaging this expression over a small
range A¢ or by a change of variable over an interval
Af= f cscpA¢p. Using the relation sinZr=3(1—cos2x)
it is clear that owing to the extreme size of 4;/%, the
major contribution to the average comes from the two
factors of 7 to give

j2=wo4%07\o3(2A 3Xo/A 1A 2)(CSC¢)/f4. (27)
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From Eq. (23) one expects this result to be a
good approximation to the observed intensity when
exp(ir2/AsR)>1 for all points 7 in the scattering volume.
This means 42/A,R<1, where 4 is a typical dimension
of the scattering volume. In the experimental arrange-
ment of Ref. 2 the dimensions of the scattering volume
can be estimated from the half-width of the response
curve for the photomultiplier tube (Fig. 15 of Ref. 2)
and the cross section of the laser beam. The approxi-
mate values are A;=A43=0.18 cm, A4.=0.20 cm,
R=2.65 cm and for the ruby laser Xp=1.105X10% cm.
For these values A42/A\¢R~1.3X10% which does not
meet the requirement and hence Eq. (27) does not
apply.

The large size of the parameter A2/X.R suggests
that one use the methods of asymptotic series to
evaluate the integrals of Eq. (23). Since the variables
rand r’ and thus g and ¢’ appear only in the combination
of sum and difference it is convenient to make a second
transformation to the dimensionless variables

y=(o+¢)/2R, x=(0—0")/Ro.
In terms of these variables

1 Ao csco 8 aj (2R/No0) (aj—|yil)
— / dr / dr' — I f dy; / dx;,
Viv \4 18203 =1 ) _q; —(2R/\o) (aj—1yj1)

where a;=A4;/R. The x integration can be done to give

(28)

7oho® CSCP 3
Je=wit———1II Qj, (29)
ai1aq2a3 =1
where
si dy; 2R
Qi= f — sin—K(a;— [;]). (30)
—a; K Ao

Here K= (f4y1, — f, ¥3) is the image of K, under the
change of variables and f is given by Eq. (26).

If one simultaneously makes the radiation zone ap-
proximation and takes the thermodynamic limit, as
described in the discussion of the direct scattering term

Photo multiplier

2

¥

A
Incident / ) ‘2
Beam / "

F16. 1. Geometry of the scattering volume for scattering angle
¢. The polarization vector is along ko XR.
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by letting R — with ¢; held fixed the resulting ex-
pression for the interference term is again proportional
to a 8 function in the forward direction 6(f). In this
limit the interference term does not contribute to the
observed scattering.

For finite scattering volume and observation distance
the integrals Q; can be evaluated as asymptotic expan-
sions in (R/A¢)~Y the first terms of which are obtained
in the Appendix. When these expressions are substituted
into Eq. (29) and averaged over A¢ the oscillatory
factors contribute little to the observed intensity given
by

- 7l'(7\0/R)2 CSC¢ f2+ 0,12

J o no o .
2 (f-a?)?

As discussed in the evaluation of (Q; this result applies
only for scattering angles ¢ for which f>a,; a condition
which is well satisfied for angles greater than 15° in
the experimental arrangement of Ref. 2 where a1=a,
=0.068, a2=0.076. The next correction to Eq. (31) is
of the order of (a2R/Xo)~1= (42/X,R)"1~1/1300.

Using the experimental parameters already given,
the relative contribution of the interference term

jz/j1=j2/wo4

at room temperature of 300°K is given in Table I for
argon at 1 atm and xenon at 140 mm Hg.

(31)

a1a2a3

III. CONCLUSIONS

By evaluating the integrals Q; asymptotically instead
of passing to the limit R — o, the forward-direction &
function is spread over the forward hemisphere.
However, the contribution of the interference term is
still negligible for scattering angles greater than 60°
and thus cannot account for the reduced intensity in
the backward direction relative to that at right angles.
The situation is even worse for xenon where the inter-
ference term gives a correction of less than 5%, for all
experimentally observed scattering angles. This is in
contrast to the experimental results which show an
increased scattering asymmetry for xenon. It should be
noted that the numerical results of this calculation as
expressed in Table I depend on the size of the scattering
volume. Increasing the effective dimensions of the scat-
tering volume decreases the effect of the interference
term for angles greater than 45° (f>0.4) as long as

TasLE L. Relative contribution of the interference term (Js/wo?)
for argon at 1 atm and xenon at 140 mm Hg.

¢ (degrees) f(o) Ar Xe
45 0.414 0.275 0.05
60 0.577 0.057 0.01
75 0.768 0.016 0.003
90 1.00 0.005 0.001
105 1.302 0.0007 0.0001
120 1.732 0.0006 0.0001
135 2414 0.0002 0.00004
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@1<0.2. Since a1=41/R=0.068 was determined from
the half-width of the relative response curve for the
photomultiplier tube, one expects the numerical values
given here to serve as an upper bound to the experi-
mental values.

More generally, the results expressed by Egs. (27)
and (31) take on a common angular dependence when
J2>a;2 In terms of the scattering volume V=8414:43
Xcsce these two results can be written in the form

J2=2we*nekho®X cot2(3¢) csci(3e),
where
X=24 327\0/V, A 32/XOR<<1
=7RR2/V, A2/AR>1.

This suggests that neglecting the volume effect, the
angular dependence of the interference term is given by
cot2(3¢) csct(3¢) in all cases. This angular distribution
does not fit the shape suggested by the data of Ref. 2.

As indicated by the results given in Table I, the effect
of the interference term for light scattering in gases is
small for all but the smaller scattering angles. Since the
relative effect of this term is proportional to the number
density of scattering molecules one expects the inter-
ference term to give measurable contributions to light
scattering from liquids provided the geometrical factor
X is not too small. The theory cannot be compared with
published results such as those given in Ref. 5 since the
dimensions of the scattering volume are not provided.
However, it is a simple matter to determine if either
Eq. (27) or Eq. (31) applies to a given experimental
apparatus, and if so, to compute the interference term
once the geometry is determined.
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APPENDIX
Write the integral

a

01=

in the form

dy 2R
By }I; Sln;;(f +3)(a—|y])

O1=F(f)+F(=f)

()= /

where f is given by Eq. (26), #=a—y, and b= f—a.
F(f) is the imaginary part of the integral

()= /

with

sm——u(b—{—u) s

exp {z——u(b-}—u) }



169

which by contour integration can be written in the form

© d7
H(f)=i f :
o b+iZ

2R
exp {i—x—Z(Z—i—ib) ‘l

0

2R ®  dZ
—iexp {i———a(b—l— a) } / —_—
X() 0 b—l—a—f—zZ

2R
Xexp { ——X—Z(b+2¢z+iZ) } .

0

For scattering angles greater than 45° (2R/A¢)6>1.5
X105; the exponential factors are rapidly decreasing
and H(f) can be approximated by

exp {i—zga(b—f—a) }

0

a0 i de { ZRbZ}—l— 7
f_b/; 1T R e
® 2R
X/ dZexp{——x—(b—{—Za)Z}.
0

0

The resulting integrals can be evaluated and the
imaginary part taken to give

cos(2R/%o)a(b+a) } + <7&0 )2

F(f)zﬁ{i_ 2R/

2R |52 (b+a)?
Thus to first order in A¢/R

o) 7&0{ fA+ae* 1 2R f}
1(f)=—{——————cos—af;.
RI(P=a £ o

For smaller angles this expression diverges as f— a.
Returning to the original integral expression one sees
that as f— @, a point of stationary phase approaches
the range of integration. This means that the resulting
value of the integral will contain one less factor of
(Ro/R)Y? and thus will be somewhat larger but never-
theless remains finite. This region is not of much experi-
mental interest since for most arrangements a< f for
all experimentally observed scattering angles.

The second integral can be evaluated directly:

a

B y 2R
Q2= 751n'7'\—f(a“lyf)

—a 0
—Cos—jJay¢ .
Xof

R f?
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Fic. 2. Contour for the evaluation of the integral Q.

The third integral

“dy 2R
Qs= | —sin—y(a—|y])
—a y 7\0

can be written in the form

Bdu
Q3=2 Im - ezu(B—u) 5
o U

where B=a(2R/A¢)1/? and u=(2R/%Xo)!/2y. Using the

contour shown in Fig. 2 and taking the limits § — 0,
T — an exact expression for Qs is obtained:

b du
Q3=7r—B ‘/;wmcos u2+(%B)2]

® sinu? B cosu?—u sinu?
+2 / du { } } e~ Bv,
0 u B2+-u?

In the case of interest B=(243%/A,R)/2>1 and the
remaining integrals can be evaluated by the method of
stationary phase. To first order in B! the result is

2(21r)1/2<)\o)1/2{ @R a"R}
Qs=m— — cos——sin— .
a R 2Ro 2%




