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The steady-state energy distribution of free electrons in a gas subjected to a constant electric field has
been simulated stochastically. The effects of the thermal motion of the gas molecules, inelastic collisions,
and the energy dependence of the collision cross sections have been included. Under appropriate limiting
conditions, the stochastically generated results reduce to the analytical results of Maxwell, Davydov,
and Druyvestian. Use of this technique, along with values of cross sections reported in the literature, has
made possible the calculation of the drift velocities and diffusion coefficients of electrons in helium, hydrogen,
and nitrogen as a function of the ratio £/P. The calculated results agree well with experimental values
given in the literature over a range of £/P from 0.002 to 0.20 V/cm mm Hg.

I. INTRODUCTION

HE energy distribution and transport coefficients
of free electrons in a gas under the influence of an
external electric field have been the subject of intensive
investigation. Analytical expressions for the distribu-
tion function have been obtained by Druyvestian! and
by Morse, Allis, and Lamar? in the absence of inelastic
collisions and thermal motion of the gas molecules, and
by Davydov,® who included the effects of molecular
motion. Approximate account has been taken of in-
elastic collisions by Smit,* and by Druyvestian and
Penning,® and the distribution function in a high-
frequency discharge has been described by Holstein.®
In addition, Carleton and Megill” have solved the
Boltzmann equation for the electron distribution func-
tion in crossed magnetic and electric fields.

If the electron distribution function can be found it is
possible to compute transport coefficients and related
average quantities which may be compared with ex-
periment. In this manner, estimates have been made of
the drift velocities, diffusion coefficients, mean energies,
and Townsend ionization coefficients of electrons in a
number of gases.®~'3 Furthermore, it has been shown
that it is possible to use transport coefficient data to
deduce cross sections which are consistant with ob-
servation.'*~16 Most of these investigations are based
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on the Lorentz approximation, an assumption whose
validity has been questioned,*® and in some cases make
use of the Townsend energy factor D/%, which has also
been shown to be approximate.!” The present investiga-
tion is based on a stochastic technique similar to those
employed by Yarnold!® and Wannier®® in the study of
the motion of ions, and by Itoh and Musha? in the
computation of the drift velocity of electrons in helium.
The present method takes into account the thermal mo-
tion of the scattering molecules, the bending of the
electron trajectories by the electric field, and the
variation of the collision cross section with energy along
an individual electron free path. This technique readily
permitted the calculation of the energy distribution,
drift velocity, and diffusion coefficient of electrons in a
diatomic gas as a function of the experimental parame-
ter E/P over a range of energies from thermal to the
threshold for vibrational excitation. In addition to pro-
viding a simple method for solving the Boltzmann
equation, this stochastic approach has also made pos-
sible the computation of a number of related physical
quantities without additional labor. Thus, for example,
information concerning the fraction of energy absorbed
by rotational states, the mean cosine of the collision
angle, the mean electron kinetic energy, fluctuations in
the drift velocity, and the steady-state momentum
balance has also been obtained.

The system under investigation consists of a gas
contained between two large uniform parallel plates
across which is applied a constant electric field. It is
assumed that the density of electrons is sufficiently low
that electron-electron collisions can be neglected. It is
well known that, since the electrons can gain large
amounts of kinetic energy between collisions as a result
of the accelerating action of the field, and since they can
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lose only a small fraction of their total kinetic energy in
an elastic collision, the electrons may be far from
thermal equilibrium with the gas.

We would like to find the steady-state electron
velocity distribution function f(v) for such a system.
The form of the Boltzmann equation which describes
the steady-state electron velocity distribution is2!:22

a-g%;zv / f f f f L/ V)= F3) £V ]

Xgo(g¥)avi, (1)

where V is the velocity of the gas molecules, v is the
velocity of the electrons, o(gy) is the differential cross
section for all types of scattering events, and NV is the
number of gas molecules per unit volume. From the
electron velocity distribution function the drift velocity
can be determined:

we [ [ @

II. CALCULATION OF ENERGY DISTRIBUTION
AND DRIFT VELOCITY

Rather than attempt to solve Eq. (1) numerically for
the general case, a stochastic procedure was developed
by which it was possible to generate the required dis-
tribution function and drift velocity by simulating the
motion of the individual electrons. In these calculations
the orbit of the electron between collisions was computed
classically, and the length of the orbit, the free path, was
determined from elastic and inelastic cross sections re-
ported in the literature.'6:2*-25 The range of E/P in-
vestigated was such that rotational excitation and de-
excitation of the diatomic molecules was the only
inelastic process which needed to be considered. Cross
sections for these inelastic events were based on the
formalism of Gerjouy and Stein,?® using quadrupole
moments of 0.49¢a,? for Hy and —1.10ea¢? for N,.26 Lane
and Geltman?®” have shown that scattering in H, in the
energy range being considered is almost entirely s-wave;
hence the angular distribution of scattered electrons was
taken as isotropic. The possibility of electron loss from
the system was not considered, thus restricting the
results to gases in which electron attachment is not
important. Two methods were used to compute the
electron energy distribution and transport coefficients
with satisfactory results. In the first method (method A)
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the energy and direction change in an elastic collision
was determined by selecting a collision partner from an
isotropic Maxwellian velocity distribution, transform-
ing to center-of-mass coordinates, selecting polar and
azimuthal scattering angles from an isotropic distribu-
tion, and returning the final electron velocity to the
laboratory system. The new electron trajectory was
followed to the point of the next collision which was
determined by computing the optical path traversed by
the electron. This procedure gave satisfactory results
for nitrogen, but was found to require excessive com-
puting time for gases in which inelastic collisions did
not occur or occurred only infrequently. In these in-
stances an alternative procedure (method B) was em-
ployed which was quite useful in accelerating converg-
ence of the stochastic program.

In the case of an elastic collision where scattering is
isotropic in the center-of-mass frame of reference, and
where the struck particle has a Maxwellian kinetic-
energy distribution at temperature 7' and the incident
particle has a specified kinetic energy, Wigner and
Wilkins?® have calculated the Boltzmann-equation ker-
nel, which gives the kinetic-energy distribution of the
incident particle after the collision. In the special case
where the mass of the incident particle (electron) is
much less than the mass of the struck particle (atom
or molecule), it has been shown that the energy dis-
tribution of the incident particle after numerous mul-
tiple collisions is determined by the mean energy change
and the mean-square energy change of the incident
particle in a single collision.??:30 Thus, to calculate the
energy change of the electron in an elastic collision
using method B, an approximate form of the Wigner-
Wilkins kernel which had the same mean energy change
and mean-square energy change as the exact kernel was
used in the computer program. Then, using standard
stochastic procedures,®! the electron energy after the
collision was determined by a random number. In
addition, the point of the next collision was determined
by considering the collision cross section to be constant
over an individual path. Itoh and Musha® have dis-
cussed a method which could be used as an alternative
in the case of rapidly changing cross sections. Finally, it
was found that for y=m/M<K1 and for a fixed tem-
perature, the drift velocity and energy distribution
function depends upon the two dimensionless groups

A =B yk*T2N2(kT)o(kT) !
and
B=gi(kT)[yoe(kT) 1,
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Fi1c. 1. Normalized collision density of electrons in He at
300°K as a function of energy for E/P of 0.016 V/cm mm Hg.
Solid curve is the analytical expression of Davydov.

particle to that of the diluent gas, and ¢; and ¢, are the
cross sections for inelastic and elastic scattering (0:<K0),
respectively. Thus, changing v, the magnitude of the
cross sections, and the field strength, but keeping 4
and B constant, did not change the drift velocity or the
energy distribution function, but improved the con-
vergence of the stochastic program. To check the pro-
cedure, energy distributions and collision densities of
elastically scattered electrons were computed for various
field strengths. In each case excellent agreement with
the analytical expression of Davydov was obtained; a
typical result is shown in Fig. 1.

The above information was used to compute stochas-
tically the electron collision density and the drift
velocity in He and H, by method B, and the diffusion
coefficient for electrons in Ny by method A. The elec-
tron collision density, which is the number of collisions
per unit volume, time, and energy interval, is obtained
directly from the stochastic computer program and may
be used to calculate other quantities, such as the electron
number density (which is the number of electrons per
volume and energy interval, and is equal to the electron
collision density divided by the electron collision fre-
quency). The He case was primarily a test to insure that
the distributions obtained in the absence of inelastic
collisions agreed with the analytical expressions men-
tioned above. The procedure consisted of starting out
a single electron with an arbitrarily assigned initial
kinetic energy in a direction which was randomly
selected from an isotropic angular distribution. The
movement of this electron along its parabolic path in the
field was followed until it has traversed a distance
equal to a randomly selected free path ! determined
from the cross-section data and a random number.?! The
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energy at this point was computed and recorded in a set
of equally spaced energy intervals, indicating that a col-
lision had taken place in the interval. The distance
travelled by the electron in the direction of the field
and the time taken to traverse the path were also re-
corded. The type of collision event was determined by
use of another random number and the ratios of the
cross sections for the various events. If the event proved
to be an elastic collision, the new energy and direction
of the electron was determined by one of the two
methods described above, and the entire process re-
peated. Runs varied from 10* to 10° collisions as neces-
sary to attain the steady state.

The quantities generated by this procedure are the
electron collision density and the drift velocity. A
number of related quantities, such as the distribution of
energy between translation and rotation, the mean
cosine of the collision angle, the mean energy of the
distribution, the time behavior of the drift velocity, and
the momentum balance in the field direction were also
recorded to provide additional information and to act
as checks on the accuracy of the program.

III. RESULTS AND DISCUSSION

The stochastic program described above was em-
ployed to compute the collision density and drift
velocity of electrons in He and H at 77 and 300°K
over a range of E/P from 0.002 to 0.2 V/cm mm Hg by
method B. In this paper, values of E/P for the sto-
chastic results are expressed in units of V/cm mm Hg
for an equivalent density at 273°K. Over this range of
E/P the collision density in He varied from very nearly
a Maxwellian distribution to a Druyvestian distribu-
tion. A typical stochastically computed collision density
for electrons in He at 300°K and an E/P ratio of
0.016 V/cm mm Hg is shown in Fig. 1. Also shown for
comparison is the analytical result of Davydov, given
by the solid curve, which was obtained by numerical
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Fic. 2. Drift velocity of electrons in He as a function of E/P.
Solid curve is taken from J. L. Pack and A. V. Phelps, Phys. Rev.
121, 798 (1961).
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Fi1G. 3. Normalized collision density of electrons in H, at 77°K
as a function of energy for an E/P of 0.063 ¥V /cm mm Hg. Solid
curve is the analytical expression of Davydov, which neglects in-
elastic collisions.

integration using the total elastic scattering cross sec-
tion of Golden and Bandel. The average energy of both
the stochastic distribution and the Davydov energy
distribution was computed to be 0.050 eV. The sto-
chastic distribution was generated with 5X 10* collisions
using a value of v equal to 40 times m./ My, and with
the electric-field strength adjusted accordingly to keep
the dimensionless parameter A constant. Shown in
Fig. 2 are the values of the drift velocities of the elec-
trons in He at 77 and 300°K for a range of values of
the ratio E/P. These drift velocities were obtained
using method B with the values of the mass ratio and
the square of the electric field strength increased to
accelerate convergence of the stochastic program. Values
of v that were equal to 10 to 40 times the actual value
of the electron-helium atom mass ratio were used to
generate the results in Fig. 2. The solid curve in Fig. 2
is taken from the experimental results reported by Pack
and Phelps.®

Having tested the validity of the stochastic pro-
cedure by obtaining agreement with both the energy
distribution and the drift velocity for He, one may now
investigate these quantities in Hy. Shown in Fig. 3 is a
typical computed collision density for electrons in H,
at 77°K and E/P of 0.063 V/cm mm Hg. This result

32 J. L. Pack and A. V. Phelps, Phys. Rev. 121, 798 (1961).
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was computed with 4X10* collisions and a value
of ¥ equal to 10 times the actual mass ratio (the
cross sections and electric field strength having been
adjusted to hold the dimensionless parameters 4 and B
fixed). Also shown for comparison is the Davydov result,
which neglects inelastic scattering. The inelastic col-
lisions alter the collision density substantially, lowering
the mean energy of the distribution to 0.039 eV from
the 0.063 eV given by the Davydov expression, a result
indicating the effect of inelastic collisions on an energy-
dependent quantity such as the drift velocity. Figure 4
presents the stochastically generated drift velocities of
electrons in H, at 77°K as a function of E/P. These
results were obtained with a value of v equal to 10
times m¢/Mu, The computed results are again com-
pared with the experimental data summarized by Pack
and Phelps.

The electron collision density depicted in Fig. 3 is in
agreement with the suggestion of Gerjouy and Stein
that the large fractional energy losses observed in swarm
experiments in diatomic gases are the result of rota-
tional excitation. A further piece of information which
supports this viewpoint is the fraction of energy gained
from the field which is absorbed by rotational energy
states; for example, this fraction has been found to be
0.5 for a value of E/P of 0.020 V/cm mm Hg. The agree-
ment of the computed drift velocity values with the
experimental results indicates that the Gerjouy and
Stein treatment of rotational transitions can be a useful
formalism over the range of E/P investigated, although
investigations!#1%:26:27 gver a larger range of E/P have
indicated that the Gerjouy and Stein cross sections
may be too small by about 50%,.

Similar results for the collision density and drift
velocity have been obtained for electrons in nitrogen.
Figure 5 presents the collision density for electrons in
N, at 300°K and E/P of 0.04 V/cm mm Hg. Again the
shifting of the electron energy distribution toward the
Maxwellian as a result of the inelastic collisions is ob-

Drift velocity (cm/sec)

1 1
03 02 o

E/p (vAm mmHg)

Fic. 4. Drift velocity of electrons in Ha as a function of E/P
at 77°K. Solid curve is taken from experimental results sum-
marized by Pack and Phelps.
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F16. 5. Normalized collision density of electrons in Ny at 300°K
as a function of energy for E/P of 0.04 V /cm mm Hg. Curve M is
the Maxwell-Boltzmann distribution for 300°K and curve D is the
Davydov distribution for these conditions.

served. In nitrogen more than 959, of the energy gained
from the electric field is lost to rotational excitation.
In addition, the diffusion coefficient in the direction
perpendicular to the electric field was computed for
nitrogen. This quantity was obtained by recording the
mean squared distance travelled along an axis per-
pendicular to the electric field during a fixed time
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interval. From the theory of the one-dimensional ran-
dom walk, one then obtains® D= (X?)/2t. Figure 6 pre-
sents the results of the drift-velocity computation for
four values of E/P in nitrogen at 300°K. The error
estimates shown are the 689, confidence limits which
have been obtained by assuming that the diffusion
coefficient parallel to the field is equal to that perpen-
dicular to the field and hence the variance is equal to
2D/t. Recent experimental results indicate that this
assumption may overestimate the actual error.?*

The drift-velocity values shown in Figs. 2, 4, and 6
have been computed by two independent methods. The
more straightforward method is the simple division of
the total distance travelled by the electron parallel to
the field by the time required to traverse this distance.
The second involved the use of Eq. (2), which, when
rewritten in terms of averages over the collision density,
becomes vp={(u/a)/{(va)~); here u is the cosine of the
collision angle measured with respect to the field direc-
tion. When the steady-state distribution had been ob-
tained, the values of these two quantities differed by
only a few percent, which can be attributed to stochastic
fluctuations. This comparison was one of the tests used
to insure that the steady state had indeed been reached.
A second such test was a momentum balance in the field
direction, where the net momentum gained between
collisions in the direction parallel to the field was com-
pared to the net loss of momentum along the same direc-
tion due to collisions. At steady state these two quan-
tities differed by less than 19%.

Important additional information which may be
gained from the present type of analysis concerns the
influence of the electric field on the angular part of the
electron velocity distribution. The individual electron
paths, although randomly distributed in direction by
collisions with the gas molecules, will be deflected by
the electric field, and, at the time of a subsequent col-
lision, have acquired a component of momentum parallel
to the direction of the electric field. The Lorentz approxi-
mation is an attempt to represent this effect by a two-
term expansion in Legendre polynomials.? It has been
observed that this technique is invalid at extremely
high E/P, as in the case of breakdown.!?:3 The present
method provides a means of investigating the electron
distribution function which does not depend on an ex-
pansion in Legendre polynomials. In fact, detailed in-
formation concerning the degree of polarization of the
electron paths has been obtained in the form of the
average cosine {(u) of the angle between the direction of
the force on the electron and the electron velocity at
collision. This quantity for electrons in nitrogen at
300°K is given for several values of E/P in Table I. The

4 6 8 0?2 2 4 6 8 !

E/p (V/ecm mmHg)

Frc. 6. Drift velocity of electrons in N as a function of E/P
at 300°K. Solid curve is taken from experimental results sum-
marized by Pack and Phelps.

33 S. Chandrasekhar, in Selected Papers on Noise and Stochastic
Processes, edited by N. Wax (Dover Publications, Inc., New
York, 1954), Chap. 1.
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47, 3138 (1967).
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TaBLE I. Stochastic parameters computed by method A for electrons in N at 300°K and 55 mm Hg as a function of E/P.

E/P 9D D (E) ) )
(V/cm mm Hg)  (10%cm/sec) (10%cm?/sec) (eV) (104 cm) (u) fr (1010 sec™?)
0.01 0.84 3.4 0.038 9.6 0.002 .o 1.1
0.02 1.4 3.5 0.039 9.6 0.011 0.99 1.1
0.04 2.5 3.8 0.053 8.8 0.017 0.97 1.4
0.08 3.3 4.2 0.085 7.7 0.018 0.97 2.0

cosine of the collision angle is seen to be quite small in
each case, indicating that a two-term expansion in u
should be adequate to represent the distribution func-
tion at these pressures and field strengths. This con-
clusion is also supported by the excellent agreement of
the stochastic results with the Davydov distribution
function for electrons in helium as demonstrated in
Fig. 1, and is in agreement with earlier observation!3:3
that over the range of E/P investigated the Lorentz
approximation is a satisfactory assumption. The present
method also provides a simple tool for extending the
investigation to higher E/P where the Lorentz approxi-
mation is no longer valid.

In addition to drift velocities, diffusion coefficients,
and collision angles, a number of related parameters

have been calculated and are also presented in Table I.
These are the mean energy (E) of the stochastic dis-
tribution, the mean free path (\) for the entire elec-
tron distribution, the fraction of energy f, transferred
to rotational excitation, and the mean collision fre-
quency (v} for the entire electron distribution.
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The recombination coefficient a(NV,,T,) of He,* is measured in helium afterglow plasmas (12 Torr<p<20
Torr; 21 msec) as a function of electron density and gas temperature under conditions where the tem-
perature of electrons and ions equals that of the neutral gas (2.5X102 cm—2< N, <2X 108 cm™3; 900°K<T
<2200°K). The recombination coefficient is found equal to the theoretical collisional-radiative recombina-
tion rate of He*. In spite of the high vibrational excitation of the recombining He,*, corresponding to the
high gas temperatures, there is no evidence for dissociative processes. In particular, the time decay of the
recombination light cannot be reconciled with collisional-dissociative recombination.

1. INTRODUCTION

TUDIES of the recombination of electrons and

molecular ions have improved the knowledge of the
structure of the participating molecular particles. In
most ionized gases capable of forming molecular ions
the recombination has been found to proceed by the
fast dissociative mechanism*

(AB)*+e— A+B. (1)

This process occurs as a result of a radiationless transi-
tion to a repulsive state of the neutral molecule, which is
formed by electron capture, leading to dissociation into

1D. R. Bates and A. Dalgarno, in Atomic and Molecular
Processes, edited by D. R. Bates (Academic Press Inc., New York,
1962), p. 262.

(possibly excited) atoms. It has been pointed out
especially by Ferguson ef al.2 that process (1) is unlikely
to play an important role in helium plasmas, mainly
because the recombination rate here is much smaller,
and because the afterglow light resulting from recombi-
nation shows different characteristics.

The deionization in low-pressure (p <51 Torr) helium
afterglow plasmas containing predominantly atomic
ions has already been successfully explained by the
collisional-radiative recombination process®*

Het+te+e— Hete, 2)

2E. E. Ferguson, F. C. Fehsenfeld, and A. L. Schmeltekopf,
Phys. Rev. 138, A381 (1965).

3 E. Hinnov and J. G. Hirschberg, Phys. Rev. 125, 795 (1962).

* Reference 1, p. 253,



