Possible Measurement of the Nucleon Axial-Vector Form Factor in **Two-Pion Electroproduction Experiments**

STEPHEN L. ADLER Institute for Advanced Study, Princeton, New Jersey 08540

AND

WILLIAM I. WEISBERGER*† Palmer Physical Laboratory, Princeton University, Princeton, New Jersey 08540 (Received 8 December 1967)

Current-algebra techniques and the hypothesis of partially conserved axial-vector current are used to derive a low-energy theorem for the reaction $e+N \rightarrow e+N+\pi+\pi$ (soft). Particular attention is paid to satisfying the requirements of gauge covariance. Except for recoil corrections, the resulting matrix element is proportional to the nucleon axial-vector form factors, and we suggest that this electromagnetic process may be used to measure $g_A(k^2)$.

I. INTRODUCTION

EASUREMENT of the momentum-transfer dependence of the nucleon axial-vector form factor $g_A(k^2)$ would clearly be of great interest, since it would give information about the spectrum of axial-vector mesons, just as our experimental knowledge of the nucleon electromagnetic form factors has provided much useful information about the vector mesons. Unfortunately, the elastic and inelastic weak-interaction experiments¹ to measure $g_A(k^2)$ are much more difficult than their electromagnetic counterparts, and as a result very little about $g_A(k^2)$ is known at present. Clearly, it would be useful to have alternative, even if very indirect, methods of measuring $g_A(k^2)$. We discuss in this paper the possibility of measuring $g_A(k^2)$ in the electroproduction reaction

$$e + N \rightarrow e + N + \pi + \pi (\text{soft}),$$
 (1)

assuming the validity of the current algebra and of the partially conserved axial-vector current (PCAC) hypotheses. This possibility is suggested by the recent work of a number of authors,² showing that when current-algebra-PCAC methods are applied to the photoproduction reaction $\gamma + N \rightarrow N + \pi + \pi(\text{soft})$, which is the $k^2 = 0$ case of Eq. (1), the results of the old Cutkosky-Zachariasen static model³ are obtained, with the dominant term coming from the matrix element of the axialvector current $\langle N\pi | J_{\lambda}{}^{A} | N \rangle$.

In Sec. II we apply soft-pion methods to the reaction of Eq. (1), and get a relation between the matrix element for this process and the matrix elements for single-pion weak production and electroproduction, $\langle N\pi | J_{\lambda}^A | N \rangle$ and $\langle N\pi | J_{\lambda}^{EM} | N \rangle$. By carefully keeping all pion pole diagrams, we eliminate some discrepancies noted in the previous work on two-pion photoproduction. The matrix element $\langle N\pi | J_{\lambda}^{A} | N \rangle$ can be related, in turn, to the axial-vector form factor $g_A(k^2)$, using models analogous to the very successful CGLN⁴ treatment of pion photoproduction.

In Sec. III we retain only the $I=J=\frac{3}{2}$ partial wave, treated in the CGLN approximation, and discuss the possibility of measuring $g_A(k^2)$ in the reaction $e+N \rightarrow N$ $N_{3,3}^{*}(1238) + \pi(\text{soft}).$

II. DERIVATION

We will consider the electroproduction reaction

$$e(k_1) + N(p_1) \to e(k_2) + N(p_2) + \pi(q) + \pi^s(q_s)$$
, (2)

with the superscript s an isospin index. Letting $k = k_1$ $-k_2$ be the four-momentum transfer between the electrons, the hadronic matrix element for Eq. (2) is

$$M_{\lambda} = \int d^{4}x d^{4}y \ e^{ik \cdot x} e^{-iq_{\theta} \cdot y} (-\Box_{y}^{2} + M_{\pi}^{2})$$
$$\times \langle N(p_{2})\pi(q) | T(\phi_{\pi} \cdot (y) J_{\lambda}^{\text{EM}}(x)) | N(p_{1}) \rangle.$$
(3)

We wish to find the limit of Eq. (3) when π^s is soft, that is, as $q_s \rightarrow 0$. This can be done by the standard softpion methods⁵; the only delicate point is to insure that our soft-pion approximation for M_{λ} satisfies gauge invariance.

Let us begin then by studying the gauge properties of M_{λ} . Multiplying Eq. (3) by $-ik_{\lambda}$, integrating by parts

169 1392

^{*} A. P. Sloan Foundation Fellow. † Supported in part by the U. S. Air Force Office of Research, Air Research and Development Command, under Contract No. AF 49 (638)-1545.

¹ For a discussion of the determination of $g_A(k^2)$ in neutrino ex-

¹ For a discussion of the determination of $g_A(k^2)$ in neutrino experiments, see E. C. M. Young, CERN Report 67-12 (unpublished). ² T. Ebata, Phys. Rev. **154**, 1341 (1967); P. Carruthers and H. W. Huang, Phys. Letters **24B**, 464 (1967); P. Narayanaswamy and B. Renner, Nuovo Cimento **53A**, 107 (1968); S. M. Berman (unpublished) (Berman has also considered the extension to electro-production); W. I. Weisberger (unpublished). ³ R. E. Cutkosky and F. Zachariasen, Phys. Rev. **103**, 1108 (1956). [See also P. Carruthers and H. Wong, *ibid*. **128**, 2382 (1962).] The soft-pion result generalizes their model to a relati-vistic framework in the same way that Chew, Goldberger, Low, and Nambu extended the Chew-Low static model for $N_{3,3}$ * photoproduction. photoproduction.

⁴ G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. **106**, 1345 (1957). Hereafter referred to as CGLN. ⁵ See, for example, S. L. Adler and F. J. Gilman, Phys. Rev.

^{152, 1460 (1966).}

$$-ik_{\lambda}M_{\lambda} = \int d^{4}x d^{4}y \ e^{ik \cdot x} e^{-iq_{\theta} \cdot y} (-\Box_{y}^{2} + M_{\pi}^{2})$$
$$\times \langle N(p_{2})\pi(q) | \delta(x_{0} - y_{0}) [J_{0}^{\text{EM}}(x), \phi_{\pi} \cdot (y)] | N(p_{1}) \rangle.$$
(4)

In all simple canonical field theories involving pions one finds ${}^{\rm 6}$

$$\delta(x_0 - y_0) [J_0^{\text{EM}}(x), \phi_{\pi^s}(y)] = i\epsilon_{3sc}\delta^4(x - y)\phi_{\pi^c}(y); \quad (5)$$

substituting this into Eq. (4) and finally integrating by parts with respect to y gives

$$k_{\lambda}M_{\lambda} = -\epsilon_{3sc}(q_{s}^{2} + M_{\pi}^{2}) \int d^{4}y \\ \times e^{i(k-q_{s}) \cdot y} \langle N(p_{2})\pi(q) | \phi_{\pi} \circ (y) | N(p_{1}) \rangle \\ = -\frac{\epsilon_{3sc}(q_{s}^{2} + M_{\pi}^{2})}{(k-q_{s})^{2} + M_{\pi}^{2}} \int d^{4}y \\ \times e^{i(k-q_{s}) \cdot y} \langle N(p_{2})\pi(q) | J_{\pi} \circ (y) | N(p_{1}) \rangle.$$
(6)

As expected, when π^s is on the mass shell, $k_\lambda M_\lambda = 0$, but in the off-shell case the divergence of M_λ is nonzero. Our soft-pion approximation for M_λ will not actually satisfy Eq. (6) exactly, but will obey the approximate version

$$k_{\lambda}M_{\lambda} \approx -\frac{\epsilon_{3sc}(q_{s}^{2}+M_{\pi}^{2})}{(k-q_{s})^{2}+M_{\pi}^{2}} \int d^{4}y \\ \times e^{ik \cdot y} \langle N(p_{2})\pi(q) | J_{\pi}^{c}(y) | N(p_{1}) \rangle, \quad (7)$$

obtained by neglecting q_s in the matrix element of J_{π} but keeping q_s in the rapidly varying factor $(q_s^2 + M_{\pi}^2) / [(k-q_s)^2 + M_{\pi}^2]$. Clearly, Eqs. (6) and (7) are identical both in the soft-pion limit $(q_s=0)$ and on the mass shell $(q_s^2 = -M_{\pi}^2)$.

In applying PCAC to Eq. (3), it is helpful to introduce the "proper part" $J_{\lambda}{}^{AP}$ of the axial-vector current, defined as follows: Let *a* and *b* be arbitrary hadron states, and let $q = p_a - p_b$. Then we define $J_{\lambda}{}^{AP}$ by

$$\langle a|J_{\lambda}{}^{AP}|b\rangle = \langle a|J_{\lambda}{}^{A}|b\rangle + \frac{q_{\lambda}}{M_{\pi}^{2}} \langle a|q_{\sigma}J_{\sigma}{}^{A}|b\rangle, \quad (8)$$

which implies that

$$\langle a|J_{\lambda}{}^{A}|b\rangle = \langle a|J_{\lambda}{}^{AP}|b\rangle - \frac{q_{\lambda}}{q^{2} + M_{\pi}{}^{2}} \langle a|q_{\sigma}J_{\sigma}{}^{AP}|b\rangle, \quad (9)$$

$$\langle a|q_{\lambda}J_{\lambda}{}^{AP}|b\rangle = \frac{q^2 + M_{\pi}^2}{M_{\pi}^2} \langle a|q_{\lambda}J_{\lambda}{}^A|b\rangle.$$
(10)

Clearly, the proper current $J_{\lambda}{}^{AP}$ has no pion pole; Eq. (9) is thus a convenient decomposition of the axialvector current into pion-pole and non-pion-pole pieces. [As an illustration, let us take a and b to be nucleons. Then $\langle N | J_{\lambda}{}^{A} | N \rangle \propto \bar{u}(g_{A}\gamma_{\lambda}\gamma_{5} + iq_{\lambda}h_{A}\gamma_{5})u$. In the approximation in which the induced pseudoscalar form factor h_{A} is given by $h_{A} = 2M_{N}g_{A}/(q^{2} + M_{\pi}{}^{2})$, the proper part of $\langle N | J_{\lambda}{}^{A} | N \rangle$ is just the piece $\bar{u}g_{A}\gamma_{\lambda}\gamma_{5}u$.] Let us now introduce the PCAC hypothesis in the form

$$\partial_{\sigma} J_{\sigma}^{*A} = \frac{M_N M_{\pi}^2 g_A}{g_r(0)} \phi_{\pi}^{*}.$$
 (11)

Then using Eq. (10) we can write Eq. (11) as

$$\partial_{\sigma} J_{\sigma}^{*AP} = \frac{M_N g_A}{g_r(0)} J_{\pi^*}, \qquad (12)$$

which says that the divergence of the proper part of the axial-vector current is a smooth interpolating operator for the pion source. Thus, we can rewrite the gauge condition [Eq. (7)] in the alternative form

$$k_{\lambda}M_{\lambda} \approx \frac{i\epsilon_{3sc}(q_{s}^{2} + M_{\pi}^{2})k_{\sigma}}{(k - q_{s})^{2} + M_{\pi}^{2}} \frac{g_{r}(0)}{M_{N}g_{A}} \int d^{4}y \\ \times e^{ik \cdot y} \langle N(p_{2})\pi(q) | J_{\sigma}^{cAP}(y) | N(p_{1}) \rangle.$$
(13)

To get a soft-pion approximation for M_{λ} , we substitute Eq. (11) into Eq. (3) and integrate by parts with respect to y. This gives

$$\frac{M_{\pi^2}}{q_{s^2} + M_{\pi^2}} M_{\lambda} = M_{\lambda}^{\text{ETC}} + M_{\lambda}^{\text{SURF}}, \qquad (14)$$

with

$$M_{\lambda}^{\text{ETC}} = -i\epsilon_{s3c} \frac{g_r(0)}{M_N g_A} \int d^4x \\ \times e^{i(k-q_s) \cdot x} \langle N(p_2)\pi(q) | J_{\lambda}^{cA}(x) | N(p_1) \rangle \quad (15)$$

the equal-time commutator of J_0^{sA} with J_{λ}^{EM} , and with

$$M_{\lambda}^{\text{SURF}} = i q_{s\sigma} \frac{g_r(0)}{M_N g_A} \int d^4 x d^4 y \ e^{ik \cdot x} e^{-i q_s \cdot y} \\ \times \langle N(p_2) \pi(q) | T(J_{\sigma}^{sA}(y) J_{\lambda}^{\text{EM}}(x)) | N(p_1) \rangle \quad (16)$$

the remainder. Separating Eq. (15) for M_{λ}^{ETC} into a

⁶ When integrated over space with respect to x, Eq. (5) becomes $[I_3+\frac{1}{2}Y, \phi_{\pi^*}]=i\epsilon_{3s\sigma}\phi_{\pi^*}$, which is just the statement that the pion is a particle with the quantum numbers I=1, Y=0. The local form, Eq. (5), follows from the integrated version in canonical field theories, since in such theories the charge density J_0^{EM} is a bilinear form in the canonical fields and momenta, and thus $[J_0^{\text{EM}}(x),\phi_{\pi^*}(y)]|_{x_0=y_0}$ contains no gradient of δ -function terms which vanish when integrated spatially.

⁷ We have, of course, evaluated the equal-time commutator using the Gell-Mann algebra of currents [M. Gell-Mann, Physics 1, 63 (1964)]. The possible presence of Schwinger terms in the timespace commutators is irrelevant because of the cancellation of the Schwinger term and "seagull-diagram" contributions in softpion calculations. See, for example, S. L. Adler and R. F. Dashen, *Current Algebras* (W. A. Benjamin, Inc., New York, 1968), Chap. 3

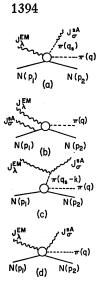


FIG. 1. Contributions to $M_{\lambda}^{\text{SURF}}$ [Eq. (16)]. (a) Axial-vector current couples to a virtual pion. (b) Axial-vector current attaches to the initial external nucleon line in single-pion electroproduction. There is a similar diagram (not shown) in which the axial-vector current attaches to the final external nucleon line. (c) Axial-vector current and vector current attach to a virtual pion at the same space-time point [a "seagull" diagram]. (d) Axial-vector current couples to internal lines in the matrix element $\langle N(p_2)\pi(q) | \times T(J_{\sigma}^{eA}(y)J_{\lambda}^{\text{EM}}(x)) | N(p_1) \rangle$.

proper part and a remainder gives

$$M_{\lambda}^{\text{ETC}} = -i\epsilon_{s3c} \frac{g_r(0)}{M_N g_A} \left[\int d^4x \ e^{i(k-q_s) \cdot x} \langle N(p_2)\pi(q) | \\ \times J_{\lambda}^{cAP}(x) | N(p_1) \rangle - \frac{(k-q_s)_{\lambda}(k-q_s)_{\eta}}{(k-q_s)^2 + M_{\pi}^2} \int d^4x \\ \times e^{i(k-q_s) \cdot x} \langle N(p_2)\pi(q) | J_{\eta}^{cAP}(x) | N(p_1) \rangle \right]$$
(17)

$$\approx -i\epsilon_{s3c} \frac{g_{r}(0)}{M_{N}g_{A}} \left[\int d^{4}x \ e^{ik \cdot x} \langle N(p_{2})\pi(q) | J_{\lambda}^{cAP}(x) \right] \\ \times |N(p_{1})\rangle - \frac{(k-q_{s})_{\lambda}k_{\eta}}{(k-q_{s})^{2} + M_{\pi}^{2}} \int d^{4}x \ e^{ik \cdot x} \\ \times \langle N(p_{2})\pi(q) | J_{\eta}^{cAP}(x) | N(p_{1})\rangle \right].$$
(18)

In going from Eq. (17) to Eq. (18) we have neglected q_s in matrix elements of the proper part $J_{\lambda}{}^{cAP}$ and its divergence $\partial_{\eta}J_{\eta}{}^{cAP}$, but have retained q_s in the rapidly varying factor $(k-q_s)_{\lambda}/[(k-q_s)^2+M_{\pi}^2]$. The surface term $M_{\lambda}^{\text{SURF}}$ contains four types of terms, shown in Figs. 1(a)-1(d). In Fig. 1(a), the axial-vector current couples to a virtual pion; it is easy to see that

$$M_{\lambda}^{\mathrm{SURF}(a)} = \frac{-q_s^2}{q_s^2 + M_{\pi}^2} M_{\lambda}.$$
 (19)

In Fig. 1(b), the axial current attaches to an external nucleon line in single-pion electroproduction; an expression for $M_{\lambda}^{\text{SURF}(b)}$ can be obtained from the usual axialcurrent insertion rules and is given below. In Fig. 1(c), the axial current and vector current attach to a virtual pion at the same space-time point; this is a "seagull" diagram contributing to virtual radiative pion decay and may be calculated to be

$$M_{\lambda}^{\text{SURF}(c)} = \epsilon_{\mathfrak{s}\mathfrak{s}c}q_{\mathfrak{s}\sigma}\frac{1}{(k-q_{\mathfrak{s}})^{2}+M_{\pi}^{2}}\int d^{4}x$$
$$\times e^{\mathfrak{s}(k-q_{\mathfrak{s}})\cdot x} \langle N(p_{2})\pi(q) | J_{\pi}\mathfrak{s}(x) | N(p_{1}) \rangle \delta_{\lambda\sigma} \quad (20)$$
$$\approx -i\epsilon_{\mathfrak{s}\mathfrak{s}c}\frac{g_{r}(0)}{M_{N}g_{A}}\frac{q_{\mathfrak{s}\lambda}k_{\eta}}{(k-q_{\mathfrak{s}})^{2}+M_{\pi}^{2}}\int d^{4}x$$

$$\times e^{ik \cdot x} \langle N(p_2) \pi(q) | J_{\eta}^{cAP}(x) | N(p_1) \rangle.$$
 (21)

Finally, in Fig. 1(d) the axial current couples to internal lines in the matrix element

$$\langle N(p_2)\pi(q) | T(J_{\sigma}^{sA}(y)J_{\lambda}^{\mathrm{EM}}(x)) | N(p_1) \rangle;$$

consequently, $M_{\lambda}^{\text{SURF}(d)}$ is of order q_s and may be neglected.

Comparing Eq. (21) with Eq. (18), we see that the effect of including the radiative pion decay diagram is to change the coefficient of the pion-pole term in M_{λ}^{ETC} from $(k-q_s)_{\lambda}$ to $(k-2q_s)_{\lambda}$. This eliminates the factor of two discrepancy noted by Carruthers and Huang,² who neglected $M_{\lambda}^{\text{SURF}(c)}$, and leads to the satisfaction of the approximate gauge condition (13).

Combining all the terms, we may write our answer as follows:

$$M_{\lambda} = (2\pi)^{4} \delta^{4} (p_{2} + q - p_{1} - k) \left(\frac{M_{N}^{2}}{2p_{10}p_{20}q_{0}} \right)^{1/2} \\ \times \bar{u}(p_{2})N_{\lambda}u(p_{1}) + O(q_{s}), \quad (22)$$
$$N_{\lambda} = \epsilon_{s3c} \left[\frac{(2q_{s} - k)_{\lambda}k_{\eta}}{(k - q_{s})^{2} + M_{\pi}^{2}} + \delta_{\lambda\eta} \right] \left(\frac{-ig_{r}(0)}{M_{N}g_{A}} \right) O_{\eta}^{cAP} \\ + \frac{g_{r}(0)}{2M_{N}} \tau^{s} q_{s} \gamma_{5} \frac{p_{2} + iM_{N}}{2p_{2} \cdot q_{s}} O_{\lambda}^{EM}$$

$$+O_{\lambda}^{\mathrm{EM}}\frac{p_{1}+iM_{N}}{-2p_{1}\cdot q_{s}}\frac{g_{r}(0)}{2M_{N}}\tau^{s}q_{s}\gamma_{5},$$

where O_n^{cAP} and O_{λ}^{EM} are defined by

$$\langle N(p_2)\pi(q) | J_{\eta}^{cAP} | N(p_1) \rangle = \left(\frac{M_N^2}{2p_{10}p_{20}q_0}\right)^{1/2} \\ \times \bar{u}(p_2)O_{\eta}^{cAP}u(p_1), \quad (23a)$$
$$\langle N(p_2)\pi(q) | J_{\lambda}^{\rm EM} | N(p_1) \rangle = \left(\frac{M_N^2}{2p_{10}p_{20}q_0}\right)^{1/2}$$

$$V(p_2)\pi(q) | J_{\lambda}^{\mathbf{EM}} | N(p_1) \rangle = \left(\frac{M_N}{2p_{10}p_{20}q_0} \right)^{-1} \\ \times \bar{u}(p_2)O_{\lambda}^{\mathbf{EM}}u(p_1). \quad (23b)$$

The terms proportional to O_{λ}^{EM} are the single-pion electroproduction contribution $M_{\lambda}^{\text{SURF}(b)}$ mentioned above.⁸ Since the single-pion electroproduction matrix

⁸ In writing the matrix element O_{λ}^{EM} we neglect the additional momentum q_s carried by the intermediate nucleon. It is clear that the error is $O(q_s)$, consistent with our approximation,

element is gauge-invariant, we have $k_{\lambda}(\mathbf{p}_2+iM_N) \times O_{\lambda}^{\mathrm{EM}}u(p_1) = k_{\lambda}\bar{u}(p_2)O_{\lambda}^{\mathrm{EM}}(\mathbf{p}_1+iM_N) = 0$, and thus the divergence of N_{λ} is

$$k_{\lambda}N_{\lambda} = \epsilon_{\mathfrak{s}\mathfrak{s}\mathfrak{c}} \frac{q_{\mathfrak{s}}^{2} + M_{\pi}^{2}}{(k - q_{\mathfrak{s}})^{2} + M_{\pi}^{2}} k_{\eta} \left(\frac{-ig_{r}(0)}{M_{N}g_{A}}\right) O_{\eta}^{cAP}.$$
(24)

Combining Eqs. (22)–(24), it is clear that the approximate gauge condition of Eq. (13) is satisfied. In particular, when $q_s^2 = -M_{\pi^2}$, $k_{\lambda}N_{\lambda}=0$, so on-mass-shell Eq. (22) gives a gauge-invariant approximation to the matrix element for two-pion electroproduction.

III. DISCUSSION

Let us now briefly consider the possibility of indirectly measuring $g_A(k^2)$ in the reaction $e+N \rightarrow e+N+\pi$ $+\pi$ (soft), by use of Eqs. (22)–(23). For simplicity, we will restrict ourselves to the case in which the soft pion is at rest (threshold) in the center-of-mass frame of the final baryons,⁹ and in which the hard pion and nucleon emerge in the (3,3) resonance. At the soft-pion threshold, the kinematic structure of two-pion electroproduction becomes identical to the kinematic structure of the more familiar case of single-pion electroproduction; this makes it easy to compute the two-pion cross section from the matrix element in Eqs. (22)-(23). When the hard π and N form an $N_{3,3}^*$, the matrix elements in Eqs. (23a) and (23b) describe weak production of the (3,3)resonance from a nucleon target and have been extensively studied.¹⁰ The vector matrix element [Eq. (23b)] is found to be dominated by the magnetic dipole¹¹ amplitude $M_{1+}^{(3/2)}$, while the axial-vector matrix element [Eq. (23a)] is dominated by the electric, longitudinal, and scalar amplitudes $\mathcal{E}_{1+}^{(3/2)}$, $\mathcal{L}_{1+}^{(3/2)}$, and $\mathcal{K}_{1+(g_A)}^{(3/2)}$. [The subscript (g_A) indicates that the part of $\mathcal{K}_{1+}^{(3/2)}$ proportional to the induced pseudoscalar form factor h_A is to be dropped and only the part proportional to the axial-vector form factor g_A retained; this restriction arises because only the proper part of the axial-vector current appears in Eq. (23).7 For momentum transfers k^2 less than 50 F⁻², a model which should give a good approximation to $M_{1+}^{(3/2)}, \cdots$ is

$$\begin{split} M_{1+}{}^{(3/2)} &= M_{1+}{}^{(3/2)B} f_{1+}{}^{(3/2)} / f_{1+}{}^{(3/2)B} ,\\ \mathcal{S}_{1+}{}^{(3/2)} &= \mathcal{S}_{1+}{}^{(3/2)B} f_{1+}{}^{(3/2)} / f_{1+}{}^{(3/2)B} ,\\ \mathcal{S}_{1+}{}^{(3/2)} &= \mathcal{S}_{1+}{}^{(3/2)B} f_{1+}{}^{(3/2)} / f_{1+}{}^{(3/2)B} ,\\ \Im \mathcal{C}_{1+}{}^{(g_4)}{}^{(3/2)} &= \Im \mathcal{C}_{1+}{}^{(g_4)}{}^{(3/2)B} f_{1+}{}^{(3/2)} / f_{1+}{}^{(3/2)B} , \end{split}$$
(25)

where $f_{1+}^{(3/2)}$ is the pion-nucleon scattering amplitude in the (3,3) channel and where the superscript *B* denotes "Born approximation." Expressions for $f_{1+}^{(3/2)B}$, $M_{1+}^{(3/2)B}$, $\mathcal{E}_{1+}^{(3/2)B}$, \cdots are given in the Appendix.¹⁰

TABLE I. Isospin coefficients.

	<i>a</i> 1	a_2	a_3
$e + p \to e + \pi^{+}(\text{soft}) + N_{3,3}^{*0} \to p + \pi^{-} \\ N_{3,3}^{*0} \to p + \pi^{-} \\ \searrow n + \pi^{0}$	$-rac{1}{6}$ $-rac{1}{3}(\sqrt{2})^{-1}$	$-\frac{1}{12}$ $-\frac{1}{12}\sqrt{2}$	$0\\ \frac{1}{6}\sqrt{2}$
$e + p \rightarrow e + \pi^{-}(\text{soft}) + N_{3,3}^{*++}$ $N_{33}^{*++} \rightarrow p + \pi^{+}$	$\frac{1}{2}$	0	$-\frac{1}{6}$

A straightforward calculation shows that, in terms of the weak (3,3) production multipoles, the cross section for $e+N \rightarrow e+N_{3,3}^* + \pi$ (threshold) is given by

$$\sigma_{1}(k^{2},W) \equiv \frac{1}{|\mathbf{q}_{s}|} \frac{d^{3}\sigma[e+N \rightarrow e+N_{8,3}^{*}+\pi(\text{soft})]}{dq_{s0}dk^{2}dW} \Big|_{q_{s0}=M_{\pi}}$$

$$= \frac{\alpha^{2}}{\pi^{3}} \frac{g_{r}(0)^{2}}{M_{N}^{2}} \frac{(W+M_{\pi})^{2}}{W^{2}+(W+M_{\pi})^{2}-M_{\pi}^{2}} \frac{|\mathbf{q}|}{(k_{10}^{L})^{2}} \times \left[\frac{1}{2k^{2}} \left(1+\frac{2k_{10}k_{20}-\frac{1}{2}k^{2}}{|\mathbf{k}|^{2}}\right) [|A|^{2}+3|B|^{2}+|C|^{2}] + \frac{4k_{10}k_{20}-k^{2}}{|\mathbf{k}|^{2}}|D|^{2}\right], \quad (26)$$

$$A = \frac{1}{g_A} a_1 \mathcal{E}_{1+}^{(3/2)} + a_2 \frac{|\mathbf{k}|}{p_{10}} M_{1+}^{(3/2)},$$

$$B = a_2 \frac{|\mathbf{k}|}{p_{10}} M_{1+}^{(3/2)},$$

$$C = a_3 \frac{|\mathbf{q}|}{p_{20}} M_{1+}^{(3/2)},$$
(27)

1.4.1

$$D = -a_{1} \\ g_{A} \\ \times \frac{(k_{0} - 2M_{\pi})\mathcal{L}_{1+}^{(3/2)} + 2M_{\pi}(|\mathbf{k}|/k_{0})\mathcal{H}_{1+(g_{A})}^{(3/2)}}{k^{2} + 2M_{\pi}k_{0}},$$

where k_{10}^{L} is the laboratory-frame initial electron energy, where q_{s0} and all other noninvariant quantities refer to the center-of-mass frame of the final baryons, and where W is the invariant mass of the resonating pion and nucleon. Values of the isospin coefficients $a_{1,2,3}$ are given in Table I. For comparison, the cross section for the ordinary (3,3) electroproduction reaction $e + p \rightarrow e + N_{3,3}^{*+}$ is

$$\sigma_{2}(k^{2},W) \equiv \frac{d^{2}\sigma(e+p \to e+N_{3,3}^{*+})}{dk^{2}dW} = \frac{\alpha^{2}}{3\pi} \frac{|\mathbf{q}|}{(k_{10}^{L})^{2}} \frac{1}{2k^{2}} \times \left(1 + \frac{2k_{10}k_{20} - \frac{1}{2}k^{2}}{|\mathbf{k}|^{2}}\right) |M_{1+}^{(3/2)}|^{2}.$$
 (28)

⁹ That is, the frame defined by $p_2+q+q_s=0$. In the case $q_s=0$ which we consider, the center-of-mass frame of the final baryons is identical with the center-of-mass frame of the hard pion and nucleon (the $N_{3,3}$ * rest frame).

¹⁰ S. L. Adler (to be published).

¹¹ Our multipoles are a factor $(8\pi W/M_N e)$ times those of Ref. 4.

for the following three reasons: (1) The coefficient a_1 of the axial-vector multipoles is the largest in this case. (2) The coefficient a_2 vanishes and, consequently, the vector multipole $M_{1+}^{(3/2)}$ enters only through the very small recoil-correction term $|C|^2$. (3) In this case there is no soft-pion background coming from single-pion electroproduction, which can only lead to a soft π^+ or π^0 .

Because the Born approximations $\mathcal{E}_{1+}^{(3/2)B}$ and $\mathcal{L}_{1+}^{(3/2)B}$ are known functions of W and k^2 , and are proportional to $g_A(k^2)$, Eq. (26) [apart from the small term $|C|^2$] is proportional to $g_A(k^2)^2$, and thus a measurement of σ_1 as a function of k^2 will determine the momentum transfer dependence of g_A .¹²

There is, however, a possible problem, which may be illustrated by comparing Eq. (26) with Eq. (28) for ordinary (3,3) resonance electroproduction. Just as σ_1 is proportional to $g_4(k^2)^2$, σ_2 is proportional to $F^V(k^2)^2$, where $F^V(k^2)$ is an isovector electromagnetic form factor. There seems to be some evidence that the axialvector form factor $g_A(k^2)$ falls off considerably more slowly with k^2 than does $F^V(k^2)$. This in turn suggests that the soft pion $+N_{3,3}^*$ production cross section σ_1 falls off much more slowly with k^2 than does the $N_{3,3}^*$ cross section σ_2 . Unfortunately, however, this conclusion is not correct. The reason is that the multipoles $M_{1+}^{(3/2)}$ and $\mathcal{E}_{1+}^{(3/2)}$ have different small- $|\mathbf{k}|$ threshold behavior,

$$\frac{M_{1+}{}^{(3/2)} \sim |\mathbf{k}|}{\mathcal{E}_{1+}{}^{(3/2)} \sim 1} |\mathbf{k}| \to 0, \qquad (30)$$

and this behavior, in the model of Eq. (25), persists into the physical region as well. As a result, the correct statement about the relative rates of decrease of σ_1 and σ_2 is that

$$\frac{\sigma_1(k^2)/\sigma_1(0)}{\sigma_2(k^2)/\sigma_2(0)} \approx \frac{[g_A(k^2)/g_A]^2}{[F^V(k^2)]^2} \frac{|\mathbf{k}|^2_{k^2=0}}{|\mathbf{k}|^2_{k^2}}$$
$$\approx \frac{[g_A(k^2)/g_A]^2}{[F^V(k^2)]^2} \frac{(W-M_N)^2}{(W-M_N)^2+k^2}.$$
 (31)

Even if $g_A(k^2)$ falls off appreciably more slowly than $F^V(k^2)$, the effect of the factor $(W-M_N)^2/[(W-M_N)^2 + k^2]$ is to cause σ_1 to decrease more rapidly than σ_2 .

The importance of the threshold behavior in Eq. (31)illustrates a problem which might invalidate Eq. (22), our soft-pion approximation for the two-pion production matrix element, and thus destroy the possibility of measuring $g_A(k^2)$ in the reaction Eq. (29). In deriving Eq. (22), we have neglected terms of first order or higher in the soft-pion four-momentum q_s . At $k^2 = 0$, we feel fairly justified in this approximation, since it leads to the Cutkosky-Zachariasen formulas, which seem to work. However, it is always possible that some of the terms of order q_s , which are negligible at $k^2 = 0$, increase rapidly relative to the terms of zeroth order in q_s as k^2 increases, because of a different threshold behavior in $|\mathbf{k}|$. If this happened, the soft-pion approximation could become bad precisely in the large- k^2 region, where we must look to measure $g_A(k^2)$. Hopefully, this does not happen, but in using Eq. (22) to interpret two-pion electroproduction experiments, this danger must be kept in mind. A more detailed investigation of this problem is being undertaken.

APPENDIX

We give here expressions for the Born approximations $f_{1+}{}^{(3/2)B}$, $M_{1+}{}^{(3/2)B}$, $\mathcal{E}_{1+}{}^{(3/2)B}$, $\mathcal{E}_{1+}{}^{(3/2)B}$, $\mathcal{E}_{1+}{}^{(3/2)B}$, and $\mathcal{K}_{1+}(g_A){}^{(3/2)B}$:

$$\begin{split} f_{1+}{}^{(3/2)B} &= -\frac{g_r^2}{8\pi W \left|\mathbf{q}\right|^2} \Big[W_-(p_{20} + M_N) A(\bar{a}) + W_+(p_{20} - M_N) C(\bar{a}) \Big], \\ M_{1+}{}^{(3/2)B} &= \frac{W^2 \left|\mathbf{q}\right| \left|\mathbf{k}\right|}{O_{2+}} \left(\frac{-g_r}{4M_N{}^2}\right) \Big[F_1{}^V(k^2) + 2M_N F_2{}^V(k^2) \Big] \Big[\frac{M_N W_-(p_{10} + M_N)}{W^2} \frac{A(a)}{|\mathbf{q}|^2|\mathbf{k}|^2} \\ &\qquad -\frac{W_+}{W^2} \frac{B(a)}{|\mathbf{q}| |\mathbf{k}|} + \frac{M_N W_+}{W^2(p_{20} + M_N)} \frac{C(a)}{|\mathbf{q}| |\mathbf{k}|} \Big] + \text{nucleon and pion charge terms,} \end{split}$$

¹² A similar calculation would lead to a determination of $g_A(k^2)$ in electroproduction of a single soft pion. The relevant matrix elements are given in Ref. 5, which gives further references. Experimental data on single- and double-pion photoproduction reactions indicate that double-pion electroproduction may yield more reliable results for $g_A(k^2)$ than single-pion electroproduction. The reason is that the soft-pion matrix element seems to give an accurate description of the experimental results for two-pion photoproduction up to about 100 MeV above the $N_{3,s}^{*+}\pi$ threshold, while the single-pion photoproduction is dominated by $N_{3,s}^{*}$ production (which cannot be described by soft-pion methods) as soon as one goes away from threshold. In fact, it is interesting to note that the recent DESY results on $\gamma + p \rightarrow N_{3,s}^{*++} + \pi^{-}$ show a cross section rising less rapidly above threshold than indicated by earlier experiments and agree within experimental error with the prediction of the Cutkosky-Zachariasen model. The relevant experimental results and references are given in Fig. 9 of M. G. Hauser, Phys. Rev. 160, 1215 (1967). If both methods of measuring $g_A(k^2)$ are feasible, one will be happy to have two independent determinations.

$$\mathcal{S}_{1+}^{(3/2)B} = W^{2}O_{1+} |\mathbf{q}| \left(\frac{-g_{r}g_{A}(k^{2})}{2M_{N}}\right) \left[\frac{\frac{1}{2}W_{-}(p_{10}-M_{N})}{W^{2}} \frac{A(a)}{|\mathbf{q}|^{2}|\mathbf{k}|^{2}} + \frac{2}{W^{2}} \frac{B(a)}{|\mathbf{q}||\mathbf{k}|} + \frac{\frac{1}{2}W_{+}}{W^{2}(p_{20}+M_{N})} \frac{C(a)}{|\mathbf{q}||\mathbf{k}|} \frac{3}{W^{2}} \frac{E(a)}{(p_{10}+M_{N})(p_{20}+M_{N})}\right],$$

$$\mathcal{L}_{1+}^{(3/2)B} = \frac{1}{k_{0}W} W^{2}O_{1+} |\mathbf{q}| \left(\frac{-g_{r}g_{A}(k^{2})}{2M_{N}}\right) \left[\frac{M_{N}(p_{10}-M_{N})W_{+} + (\frac{1}{2}W_{-}-p_{20})k^{2}}{W} + \frac{A(a)}{|\mathbf{q}|^{2}|\mathbf{k}|^{2}} + \frac{M_{N}(p_{10}+M_{N})W_{-} - (\frac{1}{2}W_{+}-p_{20})k^{2}}{(p_{10}+M_{N})(p_{20}+M_{N})W} \frac{C(a)}{|\mathbf{q}||\mathbf{k}|}\right],$$

$$\mathcal{L}_{1+(aA)}^{(3/2)B} = O_{1+} |\mathbf{q}| \frac{g_{r}g_{A}(k^{2})}{2M_{N}} \left[(\frac{1}{2}W_{-}-q_{0}) \frac{A(a)}{|\mathbf{q}|^{2}|\mathbf{k}|} - \frac{(\frac{1}{2}W_{+}-q_{0})}{(p_{10}+M_{N})(p_{20}+M_{N})} \frac{C(a)}{|\mathbf{q}|} \right],$$

$$(A1)$$

with

$$W_{\pm} = W \pm M_N, \qquad O_{1+} = [(p_{10} + M_N)(p_{20} + M_N)]^{1/2}, \qquad O_{2+} = [(p_{10} + M_N)/(p_{20} + M_N)]^{1/2}, \qquad (A2)$$
$$a = (2p_{20}k_0 + k^2)/(2|\mathbf{q}||\mathbf{k}|), \qquad \bar{a} = (2p_{20}q_0 - M_\pi^2)/(2|\mathbf{q}|^2).$$

The functions A through E are defined by

$$A(a) = 1 - \frac{1}{2}a \ln\left(\frac{a+1}{a-1}\right), \qquad B(a) = \frac{1}{2} \left[a + \frac{1}{2}(1-a^2)_a^{\prime} \ln\left(\frac{a+1}{a-1}\right)\right],$$

$$C(a) = -\frac{1}{2} \left[3a + \frac{1}{2}(1-3a^2) \ln\left(\frac{a+1}{a-1}\right)\right], \qquad E(a) = \frac{1}{2} \left[\frac{2}{3} - a^2 + \frac{1}{2}a(a^2-1) \ln\left(\frac{a+1}{a-1}\right)\right],$$
(A3)

and $F_1^{V}(k^2)$ and $F_2^{V}(k^2)$ are, respectively, the isovector nucleon charge and magnetic form factors, normalized so that $F_1^{V}(0) + 2M_N F_2^{V}(0) = 4.7$. For reasons explained in Ref. 10, only the part of $M_{1+}^{(3/2)B}$ proportional to the total nucleon isovector magnetic moment (given explicitly in the equation above) is used in Eq. (25); the part proportional to the nucleon and pion charges should be dropped.

Errata

Unified Formulation of Effective Nonlinear Pion-Nucleon Lagrangians, P. CHANG AND F. GÜRSEY [Phys. Rev. 164, 1752 (1967)]. Equation (4.1a) should read

$$\mathbf{J}_{5\mu} = -\bar{\xi}\gamma_{\mu}\gamma_{5}\frac{1}{2}\tau\xi + \frac{\partial_{\mu}\pi}{f} \left(\frac{\sin 2f\sqrt{\pi^{2}\cos 2f\sqrt{\pi^{2}}}}{2f\sqrt{\pi^{2}}}\right) + f\left\{\frac{\pi(\partial_{\mu}\pi^{2})}{2f^{2}\pi^{2}} \left(1 - \frac{\sin 2f\sqrt{\pi^{2}\cos 2f\sqrt{\pi^{2}}}}{2f\sqrt{\pi^{2}}}\right) + \bar{\xi}\gamma_{\mu}\tau\times\pi\xi\frac{\sin 2f\sqrt{\pi^{2}}}{2f\sqrt{\pi^{2}}}\right\} + 2f^{2}\bar{\xi}\gamma_{\mu}\gamma_{5} \left(\frac{\pi^{2}\tau - (\tau\cdot\pi)\pi}{1 + \cos 2f\sqrt{\pi^{2}}}\right) \left(\frac{\sin 2f\sqrt{\pi^{2}}}{2f\sqrt{\pi^{2}}}\right)^{2}\xi.$$

Equation (4.3a) should read

$$\mathbf{J}_{5\mu} = -\,\bar{\xi}\gamma_{\mu}\gamma_{5}\frac{1}{2}\tau\xi + \frac{\partial_{\mu}\pi}{f}\frac{1-f^{2}\pi^{2}}{(1+f^{2}\pi^{2})^{2}} + f\left\{\frac{\pi}{2}\frac{(\partial_{\mu}\pi^{2})}{(1+f^{2}\pi^{2})^{2}} + \bar{\xi}\gamma_{\mu}\tau \times \pi\xi\frac{1}{1+f^{2}\pi^{2}}\right\} + 2f^{2}\bar{\xi}\gamma_{\mu}\gamma_{5}\left(\frac{\pi^{2}\tau - (\tau\cdot\pi)\pi}{2}\right)(1+f^{2}\pi^{2})^{3}\xi,$$

and Eq. (4.5a) should read

$$\mathbf{J}_{5\mu} = -\,\bar{\xi}\gamma_{\mu}\gamma_{5\frac{1}{2}}\tau\xi + \frac{\partial_{\mu}\pi}{f}(1 - 4\,f^{2}\pi^{2})^{1/2} + f\left\{\frac{\pi(\partial_{\mu}\pi^{2})}{(1 - 4\,f^{2}\pi^{2})^{1/2}} + \bar{\xi}\gamma_{\mu}\tau \times \pi\xi\right\} + 2f^{2}\bar{\xi}\gamma_{\mu}\gamma_{5}\left(\frac{\pi^{2}\tau - (\tau \cdot \pi)\pi}{1 + (1 - 4\,f^{2}\pi^{2})^{1/2}}\right)\xi.$$