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Proton-hydrogen scattering has been solved in the Sturmian representation. The Sturmian functions
of Rotenberg form an infinite, discrete, and complete basis set without a continuum. Comparison has been
made with the following proton-hydrogen scattering experiments: transfer and excitation cross sections
to the 25 and 2p states, the total exchange cross section, and the notable experiments of Helbig and Everhart
on the total transfer probability at 3°. Particularly excellent agreement is found with the last. This work is
a direct extension of previous calculations for the proton-hydrogen scattering problem developed by the
authors in which the expansion basis functions were discrete, traveling hydrogenic states. The present work

demonstrates the role of the hydrogenic continuum.

I. INTRODUCTION

HE proton-hydrogen atom collision is one of the
simplest and most instructive scattering problems
available. Although in its full complexity it is a quan-
tum-mechanical three-body problem, the very small
electron-proton mass ratio allows one to use the well-
known semiclassical impact-parameter formulation
where the protons follow a linear classical trajectory
and the Schrodinger equation for the three-particle
system reduces to a one-electron, time-dependent
equation. This impact-parameter approach has been
often used and has been shown!~ to be valid above a
few hundred electron volts incident energy.

In this investigation we follow essentially our pre-
vious treatment? (hereafter referred to as WG), in
which the time-dependent, nonrelativistic, spinless
Schrodinger equation is solved numerically. The basis
set for the expansion is chosen to be composed of
traveling Sturmian functions, a set of functions brought
into prominence by Rotenberg®is a related problem. The
properties of these functions will be described subse-
quently in greater detail, but their usefulness arises
since they form a complete, discrete set without a
continuum. This allows us to assess the effect of the
continuum on the scattering cross sections and polari-
zations, which, as will be seen, is quite significant.

We proceed essentially as in WG, making a two-
centered expansion in traveling Sturmian orbitals, and
utilizing symmetries to reduce the coupled equations.
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Finally, the physical amplitudes will be obtained from
the Sturmian amplitudes by projection.

The ensuing sections deal with the following topics:
the Sturmian basis set, use of molecular symmetries,
deduction of the coupled equations, projection to
obtain the physical scattering amplitudes, convergence,
numerical solution of the coupled equations (including
matrix-element calculation and time integration), a
comparison of results with experiment, and discussion
of possible extensions of the problem.

II. STURMIAN BASIS SET

.In the impact-parameter approximation we let the
distance from proton 4 (target) to proton B (projectile)
be given by

R=b+vz. 1)

The electron position vector relative to protons 4 or
B is given by
rap=rx3iR, (2)

where r is the electron position vector in the c.m. of the
two protons.

We expand the electronic wave function in terms of
traveling Sturmian waves about each proton with the
Sturmian functions quantized about the interproton
axis. The primed rotating coordinate system is such
that the 3’ axis passes through protons 4 and B. The
coordinate system is shown in Fig. 1.

These basis states are then given by

EAN
wk< B)=¢k<TA,B/)3=FiM/ *exp[—i(&+30)]  (3)

(k stands for the quantum-number set nlm), where

() =LSm(r) /rd 1Y@, 01) 4)

and the Sturmian functions Si(r)=Sn.(r) satisfy the
equation (we use atomic units throughout)

142 (+1) o
(‘53}# - —7)sk<r)=Ezsk(r>. )
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F16. 1. Representation of the coordinate systems. Unprimed
coordinates are measured in the c.m. inertial system. The primed
coordinate system rotates with the internuclear axis.

These Sturmian functions Si(r) were introduced
by Rotenberg,® who chose E;=—3, the ground-
state energy of the hydrogen atom. We choose
E=—1/[2(+1)"].

The Sturmian equation is similar to the Schrodinger
equation, but the energy E; appears as a fixed parame-
ter; it is the effective charge ax which acts as the eigen-
value. The required boundary conditions on Sx(r) are
that it be zero at the origin and decay at infinity.

The ¢i(r) form an infinite, discrete and complete
set of states. Unlike the hydrogenic functions, there is
no continuum.

Our Sturmian functions are explicitly given by
scaled hydrogenic functions as

Si(r)=ar?Rilawr) , (6)

where R;(r) is the usual radial hydrogenic function.
The normalization is chosen such that

(¢x <> | E)), but there are nonvanishing matrix elements
of (E| ') for k#E'. Cross multiplication and subtraction
of the Sturmian equations for % and %’ leads to the
modified orthogonality condition

Rl By= (' /081 . ®)

Thus the Sturmian functions are orthogonal with the
potential energy ! as a weighting function.
Since the energy parameter is chosen to be

E=—1/[20+1)%], )
manipulation of the Sturmian equation (making the
transformation x=ayr) yields

ar=n/(I+1). (10)
The mean energy &=/(k|H|k), with H=—1V2—p1,
is given by

&=—1/[n(+1)1+1/[2(+1)]. (11)
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By the way in which our Sturmian basis set is defined,
the 1s, 2p, 3d, etc., Sturmian functions coincide with
the corresponding hydrogenic wave functions ¢ In
Rotenberg’s Sturmian set, only the 1s Sturmian func-
tion coincides with the 1s hydrogenic function. The
Sturmian states are more compact than hydrogenic
states. This can be seen by noting that

(k|1 ky=1/n(1+1)
as compared with
(klr | ky=n"2.

As in our previous work, to test the utility of our
basis set we calculate the overlap probability with the
united atom He* ground state. This time the overlap
with the first three Sturmian s states gives 0.92, as
compared with 0.76 for the overlap with all discrete
hydrogenic functions. Inasmuch as the 1s Het state
gives zero overlap with the 2s Sturmian state, this is
quite remarkable convergence, demonstrating the
power of the Sturmian basis to include the hydrogenic
continuum.

III. USE OF MOLECULAR SYMMETRIES

Precisely as was done in WG, we make use of the
invariance of the Hamiltonian

H=—iVi—y '—yp 14 R! (12)

under reflection through the collision plane (¢’ — — )
and inversion through the c.m. of the two protons
(r— —rand rg,5— —13,4).

We utilize first the azimuthal symmetry, which as-
sures that the wave function satisfies the relation

V(o' )=V (rd, —¢', 1) 13)

for all times, since it is satisfied initially. This allows
us to consider only positive # values (m is the magnetic
quantum number) by defining the spherical harmonics
as
we)={ " "
cylm 190, =
27 Vit (=)"Yim], m>0.

The second invariance of H under r — —r assures
parity conservation. As before, we choose a Sturmian
basis set combined from :(4) and wx(B) as

Wir(e,8) = 2" [wi(4)+7(—1)20x(B)],

where the parity operator IT transforms w; according to

()

We again decompose the total wave function ¥ into
parity wave functions as

T=2-12[ W0,

(15)

(16)

an
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where
V=3 b (W (1), (18)
so that we have '
Y(r,t)=% 22 {(b*+ 0 )wi(4)
k + (=Dt —bi)wi(B)} . (19)

To facilitate the projection of the Sturmian basis
set onto the hydrogenic physical basis set, we reiterate
here from WG the corresponding expansions in the
hydrogenic basis:

Ui (r,t)=2"""[ur(4)+m(—1)'ux(B)],  (20)
where
A
uk(B>=¢Ic(l'A,B)e*’:"Z/Ze“i(‘k+”2/3)‘ (21)
and
(1) =7r"1R0u(r) Yin@',¢’) . (22)

There we expanded ¥~ as ¥*=3; ax"()U"(r,)), so
that

Y=%3 {at+a)u(4)
k
+(=D¥axt—a)ux(B)},
in which the ax"(f) are “physical” time-dependent

amplitudes. The initial condition of the electron on the
target proton in the ground state reduces to the

(23)

Nyo™= _/ de Wi Wi =[ (k| K')+n(—) (kB | I A)] expl[i(en—&u)t]= Nuo™ exp[i(eu— )],

Niw™ L |1
i
R B
n .
+7(—) ’[(—-—— 1><kB
I'+1

Hur= / dt W (H—i0 |0 7= {

ez
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condition
a"(— o) =b;"(— ®)=b1, (24)
since the 1s Sturmian state corresponds to the 1s
hydrogenic state.
Hence the hydrogenic amplitudes for direct and
exchange reactions are the asymptotic values of the
coefficients of ux(4) and ux(B), namely,

ot =3laxt(o)Fa;()]. (25)

These amplitudes a;%* will be obtained in terms of
the Sturmian amplitudes by projection (Sec. V).

IV. COUPLED EQUATIONS

We wish to solve the time-dependent Schrédinger
equation ’

W=HV, (26)

with H given by Eq. (12). Since we are dealing with a
truncated basis set, this cannot be done exactly, but
rather we minimize the variational function

] " / AV H—i0/90)%. @)

With the expansion (18), this leads to the coupled
equations (compare WG)
i Y Niw™ow™=Y Hyp"bp~, (28)
kl k’

where

(29)

1 1
i%’A>+[ ] N ™ b
R SO

— 1.
ez

IE’A>:|

B

+(d0/dn)[ (kA ]lA|IE'AH-W(—)’(I%B[e‘i”’lAIE’A)]} exp[i(én—&n ) ]=H ™ exp[i(e,— en)t],  (30)

in the notation

léA> « qgk(rA’) )
a a
ZAE (l,,l)A= —i(zAl—————xA'—> y
XA’ aZAr

O=tan=1(8/21).
In the matrix notation, we have

iNb=Hb (31)
or

ib= N-'Hb= Gb. - (32)

V. ASYMPTOTIC AMPLITUDES

Because the Sturmian states are not solutions of the
hydrogen problem, and because the set is truncated,
the projected hydrogenic amplitudes ax(f) contain
frequency components other than exp[—i(&+%02)i].
The corresponding probabilities |ax(f)|2 thus contain
oscillatory components for large time, in addition to the
expected secular part. The presence of the oscillatory
component is one measure of the failure of the expansion
(and is small for the low hydrogenic states). In com-
puting probabilities, we remove the oscillatory com-



142

ponents explicitly. To see how this is done, let us con-
sider the time integration to have been carried to a
point ¢=t, such that only asymptotic coupling re-
mains. The superscripts =, direct, or exchange, will be
suppressed, since the matrix elements are asymptotically
identical.

Let
Br(t)=0bx() exp(—i&); (33)
then
where
Ui =G+ & dunr (35)

is time-independent. Let T be a time-independent
matrix which diagonalizes U:

TUT =W (36)
and
+=T8. (37)
The vy satisfy
w=Wry (38)
or
Y=Y i(tm)e R (>, (39)
This yields
a)=e% 5 (IR T Dwwr
k'klikll'
Xexp[_iwku(t_tm)]Tkuku:ﬁku;(tm) . (40)
The probabilities are given by
Pi=|a;()|2=X |Crw|*+ (oscillating term), (41)
kl/

where
Ckk"= Z (klk’)(Z‘_l)k’k”Tk"k”'Bk’”(tm)' (42)
P

The asymptotic form of U is given by
Urr = (N s (&4 Ev ) (N k11— 81 )+ &1

where Ny — (B”|E') is given in Sec. VI. Explicit
formulas for calculating the Py are given in Table I.
Total exchange probabilities are handled somewhat
differently in the Sturmian expansion than was the
case in the hydrogenic expansion, since the Sturmian
states include the continuum and hence ionization

(43)

TasLE L. s-state probabilities in six-state expansion.

Pay=| T4’ (25| )81 |240.112| B |2+0.045 | B3, |2—0.130| Bs, |2
+Re{ —0.15485,*83,+0.008B2,*B1,+0.24483*B4,}
Pso=|Tw (35|81 |2—0.020|82 |2—0.017 | 85, | 2+0.029 | 814 |?
+Re{0.07882*B3,+0.04485,*B1,—0.09285:*B4,}
Puy=| T (45]E)B1|24-0.065| 824 |2—0.007 | Bz, |2+0.008 | B, |2
+Re{0.00882,*83,-0.00882.* 345 —0.00883,*84 }
B3 =3[B* (tm) =B~ (tm)]
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states. As before, our normalization condition is

/dfl V[2=3 bi*(O)Niwbw ()=1, (44)
k'

compared with the result Y |ax|2=1 in the hydrogenic
case. We again may differentiate this condition with
respect to time to obtain the useful matrix equation

idN/di+H—H =0 (45)

as an invaluable aid in tracking subtle programming
errors. Thus we have the probability summation given
by :

Pion+Z(Pkd+sz) =1 ,

where the sum is over bound states and pio is the proba-
bility left in the continuum. In general 3 (Py%+ Pr%) <1,
unlike the hydrogenic case where > (Py%+ Py*)=1 since
only bound states were included.

In analogy to our hydrogenic calculation (WG), we
define pseudodirect and exchange probabilities (in-
cluding indeterminate ionization) as

(46)

Pygpsevdo—die=1 3™ [h0% (1) b by * (1) k| B)

kk’

X [bwr(tm) b (tm) ] exp[i(&s—ew)tn], (47)
with
Ptotpseudo—d+Ptotpseudo—z= 1 .

(48)

We use PiotP* 4~ to make comparison with the experi-
mental total exchange probabilities (which do not
include ionization).

The probability convergence with respect to trajec-
tory length is demonstrated here in Fig. 2, which plots
the various probabilities in a four-state (1s,25,2p) cal-
culation at 25 keV from Z,,(=tv) of 10 to Z,,=30. One
immediately notes that by Z,,~~20 the probabilities at 25
keV have converged, while not until Z,~~30 have they
converged at 9 keV. Hence the calculations have been
carried out to Z,=20 at and above 25 keV, to Z,,=25
from 5 to 16 keV inclusive and to Z,=30 below 5 keV.

VI. NUMERICAL METHODS

The coupled equations involve the following types of
matrix elements:

k|F),
(kB|e=|k'4),
(EB|eivery 52| B A),
BA|rst B 4).
We also have the Coriolis matrix elements (ﬁBIe""’zlA

X |k’ Ay and (B|e~##r5~4| k' A), which can be reduced
to the above types by operation with I4 on |k’4). The
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(]S 2s* (x10) 1
.60F 2s? (x10)

1s*

Fi16. 2. Dependence of final proba-

]

50F ———
2p, (xI0)
40

bilities on the length (2Zn) of the o E=25keV
trajectory: E=25 keV, b=1, four- ax
state expansion. 30F i
20k
2p," (x0)
~>(;’T‘—_W
Aok 4
2p? (x10)
0 } } 5 i } } t f )
10 12 14 16 18 20 22 24 26 28 0
max
projection problem brings in the overlap matrix ele- Analytical formulas have been found for the ars
ments (k|£’) also. We have the relation and (k|k') elements; the (kA |rz~1[k’A) may also be

(EB|evargt| B’ A)y=(=)V (B'B|e—ier 1| EAY*, (49)

so that there are five independent matrix-element types ments were integrated numerically.
to be distinguished. By utilizing the integral formula

/ 526 *Lnt.p—u? #(8) Lt p—? " (2)dz= (— 1)+ tut(Qpt-m— 2u) (2 p+n~—29) lulv!
0

X3 (p+o)!
o ol(pt+m—p—a) (p+m—v—0o) (o4 2u—m—p) o+ 2v—n—p)!

(Morse and Feshbach®), the (£|£’) elements can be shown to be given by

B By=
(k| )—5

[(n—l—1)!(n’—l-—1)!:|1/2(_1)n+n, @+o+2)!

nw' (n4-10) (n'+-1)! ‘? ol (n—l—o—1) (' ~l—o—1) No+2—n+1) o+ 2—n'+1)!
The cases of s and p states reduce to (#'>#)

1 1/2
<ﬁs(ﬁ,s>= 8nn'""%6n’,'n+1, (ﬁP I ﬁ'{’>= 8'”"—5[1_ ] 6n',n+1 5

with the interesting property that {(Ap|#’p) — (7is|#'s).
n—s>0

n(n+1)

By using the generating relation for the Laguerre polynomials

0

(A+n)e==3

=0 !

tp

La*?(x)(—1)?

integrated in closed form for a given (k,k’) pair although
a general formula has not been obtained; the ¢~** ele-

(50)

(51)

(52)

(53)

(Morse and Feshbach®), and the binomial expansion, one may, by identifying terms on either side of a power-series

6 P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Pars I (McGraw-Hill Book Co., New York, 1953), pp. 784, 785.
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expansion, reduce (£|£’) to a complicated double summation formula given by

(2+2)!
[n(l+ 1)]l+3/2

(n—z—l)z(n'—z—m]m

{nlm| ﬁ’l’m)=|:
dnn’ (n+1) W(n'+1)!

<n+l) (n’+l
A u

)( —21-3 )(%’+1i—2(l+1)—7\—u)
w'+n—2(0+1)—\—pn n—Il—1—x

X2

Au

in which

171 1
a=—(—+—). (55)

2\r 1+1
To indicate the numerical overlap of (k| and |’),
these elements are given in Table II. for the sequence
of states 1s, 2s, 2p, 3s, 3p, 4s.

By employing the relation for the angular-momen-

tum operators /*+ given by

Y im=[(Fm)(I£m+1) 1Y 1mg1 (56)

(where I£=1,41,) we reduce the Coriolis term (a@) to

(T Q—m)(+m+1)712
—i@{[—*‘m] Ni,w41
2—0m,0

I+ m)(I—mA-1)772
- (1_6m,0)['("—27;%%~2:| k.k'—l} ’ (57)

in which 221 indicates nlm==1.

The basic matrix elements involving e?# are evaluated
precisely as in WG, using a confocal elliptic coordinate
system, transforming e®? into the rotating reference
frame, and calculating numerically the integrals by
Gaussian quadrature.

The basic integrals obtained for the three elements
given in Eqgs. (24) of WG remain the same here with
the replacement | k) — |£).

The same scheme used in WG was again adopted for
the time integration of ib= Gb.

VII. FOUR-STATE RESULTS

The great bulk of the calculations have been done
coupling the four Sturmian states (1s, 2s, 2p) in the
laboratory energy range from 1 to 1000 keV. The four-

TasLE II. Overlap matrix elements (& IIE).

\E

N 1s 2s 3s 4s 2p 3p
1s 1 —0.5 0 0 0 0
2s 0 0.558 —0.870 0.683 0 0
3s 0 0.244 —0.244 —0.091 0 0
4s 0 0.147 —0.125 —0.103 0 0
2 0 0 0 0 1 —0.409
3p 0 0 0 0 1] 0.722

(54

a1+n+n’—)\~unn-l—1—-)\(l+ l)n'—-l-—l—p

T T

T
25 keV

k
2
051 30
[o]
4
[0}
5 70
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0

PROBABILITY P(b)
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x10
0
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0 x10
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8 o] 4 8 12
IMPACT PARAMETER b (BOHR RADII)
IS EXCHANGE

ENERGIES ARE FOR INCIDENT PROTON IN LAB

Fic. 3. Probability of excitation versus impact parameter for
1s exchange over the energy spectrum from 1 to 1000 keV in the
four-state (1s,25,2p) Sturmian expansion.

Q] T T T T
25keV

.05_(\ lkeV
.05-/\\\ 2 30
0
.OSV‘\ 4 o 40
3 0
a 5 70
E 005_\& I x10
]
] 5
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o N xI0
&
a Y

\
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7\
A

4 8 0 4 8
IMPACT PARAMETER b (BOHR RADII)
2P EXCHANGE
ENERGIES ARE FOR INCIDENT PROTON IN LAB

6.2!
7.55
9

16

12

T16. 4. Probability of excitation versus impact parameter for
2p exchange over the energy spectrum from 1 to 1000 keV in the
four-state (1s,25,2p) Sturmian expansion.
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| ki 25keV
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2 30
.os-/\\ b
4 40
.05- \ +
S O
a }_ 5 70
z ]
5 ol
o 625 100
§ 051 \ -
£ of
v k 7.55 200
05 r/\
0
[} 400
'OSP/K -
0|
16
o8k L 1000
/\r\ 1 !
0 4 8 0 4 8 12
IMPACT PARAMETER b (BOHR RADII)
2P DIRECT

ENERGIES ARE FOR INCIDENT PROTON IN LAB

F16. 5. Probability of excitation versus impact parameter for
2p direct excitation over the energy spectrum from 1 to 1000 keV
in the four-state (1s, 2s, 2p) Sturmian expansion.

state results are discussed in this section; higher state
results being discussed in Sec. VIII.

Plots of probability versus impact parameter for
various energies in the 1-1000 keV range are displayed
in Figs. 3-6 for the direct process 2p, for the exchange
processes 1s, 2p, and for total exchange. We note that
the majority of these curves exhibit a single, well de-
fined peak at from one to two Bohr radii, the peak for
the s state processes being generally at smaller b than
that for p state processes. This may be explained
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JO| T T T
3
os+ 2 \ 0
0
S 0
« 5 70
x o5 3
2 0 \
@ 6.25 100
§ ‘05:/\ i
£ o
7.55 200
"5/\ e
0
o5 /\9 i 400
. X 1000
o AN
05_/\ [ L 1000
: x10000
4 8

0 4 8
IMPACT PARAMETER b (BOHR RADII)
TOTAL EXCHANGE
ENERGIES ARE FOR INCIDENT PROTON IN LAB

F16. 6. Probability of excitation versus impact parameter for
total exchange over the energy spectrum from 1 to 1000 keV in
the four-state (1s, 2s, 2p) Sturmian expansion.

classically from the relation
I=bv (58)

(in atomic units) between orbital angular-momentum
quantum number /, impact parameter b, and velocity
». The relation shows that for given v, small b is as-
sociated with small ! and large b with large ! (van den
Bos").

Note the oscillations in P(b) versus b for 1s exchange
and total exchange at small impact parameters below

180,
IS0
120}
90 |-
Fi1c. 7. Ground-state resonant trans-

fer (charge exchange) cross section
in the four-state expansion.

60 L

a (10" ¢m?)

30 L

H*+H(is)=H(is)+H* .

~

1 1 1

100 209

10 20 30 40
E_aplkeV)

7 J. van den Bos, Foundation for Fundamental Research on Matter (Netherlands) Report No. FOM22358, 1966 (unpublished).
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F1c. 8. Cross section for charge
- transfer and excitation to the 2s state
in the four-state expansion. The ex-
perimental data from 40 to 200 keV
are due to Ryding et al. (Ref. 8) for
charge transfer. These points have
been normalized (dubiously) to lie on
the theoretical Born-approximation
result at 100 keV. The previous theo-
— retical curve for the:charge-transfer
reaction is that obtained in the four-
state hydrogenic expansion. The
circles are for a six-state (1s,2s,2p,
3s,4s) Sturmian calculation.

6 T T T T T T
o EXPERIMENT,RYDING ET AL
[H*+HUS)I=H (25 +H7]

ol H*+H(IS)—~H(2S)+H* —e- 4STATE STURMIAN EXPANSION
— ? 6 STATE STURMIAN EXPANSION
N

13 I < O R — PREVIOUS THEORY (4 STATE -
,T. HYDROGENIC)
Q
b
2 b—
4
\J
| | 1 t —
0 20 40 50 200 400 600 800
E, ag(keV)

6 keV. This is attributable to multiple exchanges of the
electron to the ground state for low energies and small
impact parameters. As the energy increases, the direct
probabilities dominate the exchange, approaching, at
high energies, Rutherford elastic scattering. There is
also evidence that the 2p probabilities dominate the
2s at all energies. This is interpreted as due to the 2p
being an optically allowed (Al=1) and the 25 an opti-
cally forbidden transition (Al=0) (van den Bos?).
These selection rules may arise from the relatively
large matrix elements (kA |rs~!|k’A) by expanding
757! in spherical harmonics.

Discrete level direct or exchange cross sections to the
state & are given from the probabilities via the relation

The ground-state (resonant) charge-transfer cross
section is shown in Fig. 7. The curve is monotonically
decreasing from 1 keV, with a slight break in slope about
4 keV. The previously obtained curve (WG) indicated
a bump at 2 keV which is not present here.

Fig. 8 shows the 2s direct and 2s exchange cross
section curves compared with our previous 2s ex-
change result. The four-state Sturmian calculation
is not expected to do as well for 2s states as the four-
state hydrogenic expansion. The experimental points
above 40 keV are due to Ryding et al.? They lie below
these four-state results. (A higher-state point gives
better agreement as seen in Sec. VIIL.) The 2s direct
curve (for which no experimental data have been found
for comparison) has a broad maximum about 20 keV,

o0
ow(E)=2x P(b,E)bdb (59) while the 2s exchange curve exhibits a pronounced
y . . .
0 peak at the adiabatic 25 keV energy.
T T T T
8l —-%-— EXPERIMENT, STEBBINGS ET AL. Lo
HY+HUS)—H(ZP)+HF e CROSS SECTION (PREVIOUS THEORY, 4 STATE HYDROGENIC) . .
N —e— CROSS SECTION (PRESENT THEORY, 4 STATE STURMIAN) I  Ti6. 9. Cross section and polari-
5 o —.75 = zation for 2p exchange in the four-
N — -8~ POLARIZATION (PRESENT THEORY, 4 STATE STURMIAN) > state expansion. The experimental
S ® PRESENT THEORY,8 STATE STURMIAN EXPANSION. & points of Stebbings ef al. (Ref. 10)
~ > are plotted. The previous four-
b %0 5 state (15,25,29,35,3p,4s) Sturmian
Z  calculation. The definition of the
polarization is that given by Per-
_______ J 25 cival and Seaton (Ref. 9).

(keV)

E LaB

80 100

8 G. Ryding, A. B. Wittkower, and H. B. Gilbody, Proc. Phys. Soc. (London) 89, 547 (1966).
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F16. 10. Cross section and polarization for 2p excitation in the four-state expansion. The experimental points of Stebbings ef al.
(Ref. 10) are plotted. The previous four-state hydrogenic curve is plotted and so are circles for an eight-state (1s,25,2$,35,3p,45)
Sturmian calculation. The definition of the polarization is that given by Percival and Seaton (Ref. 9).

Figures 9 and 10 give the cross-section and polariza-
tion results for 2p direct and 2p exchange reactions.
The polarization fractions have been defined by the
formula due to Percival and Seaton.?

Onpo ™ Onptl
Polpy=—mo "
aanm—l— ba'npj;l

(60)

with ¢=2.375 and 5=3.749; this accounts for fine
structure and hfs. No experimental data have been
found with which to compare the polarization results;
however our polarization fractions agree reasonably
well at high energies with the asymptotic limits quoted
by van den Bos for 2p direct (—0.25) and 2p exchange
(0.27).

Experimental data due to Stebbings et al.1? are plotted
on the 2p direct and 2p exchange curves. Also plotted
are the results in WG. The 24 direct curve shows two
peaks at 6 keV and 25 keV, the magnitudes (but not
the shape) of the curve being in good agreement with
the data of Stebbings ef al. The 2p exchange curve
shows quite remarkable agreement with the results of
Stebbings et al., both in magnitude and shape up to
about 25 keV, overestimating at energies above 25 keV.
Stebbings et al., give error bars at isolated points con-
taining 509, of their data points; they quote their

91. C. Percival and M. J. Seaton, Phil. Trans. Roy. Soc.
London 2514, 113 (1959).

10 R, F. Stebbings, R. A. Young, C. L. Oxley, and H. Ehrhardt,
Phys. Rev. 138, A1312 (1965).

over-all error as =509, and the curve shape error as
15%.

The total-exchange cross section due to McClure!!
is plotted against the theoretical four-state results in
Fig. 11. McClure’s experimental error is quoted to a
+59%, accuracy. His last experimental point is at 117
keV. The agreement is excellent up to 25 keV, diverging
above 25 keV to a factor-of-2 difference at 40 keV,

180 T T T T T T T T T T
160 .
140) .
120 .
< o0l TOTAL EXCHANGE i

N ~-0-~ EXPERIMENT, Mc CLURE
2 sof W —e— CROSS SECTION(4 STATE STURMIANH
S \ © CROSS SECTION(GSTATE STURMIAN)
60} .
a0} -
20} .
0

E (ke V)

Fic. 11. Total-exchange cross section in the four-state expan-
sion. The experimental data points are due to McClure (Ref. 11).
Two points are given for a six-state (1s,2s,2p,3s,4s) Sturmian
calculation.

1t G. W. McClure, Phys. Rev. 140, A769 (1965).
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the theoretical results exceeding the experimental
data.

Figure 12 exhibits the data obtained from the experi-
ments of Helbig and Everhart!? on total exchange
probability for 3° scattering compared to our four-state
calculations. Not shown are the corrected two-state
wave calculations of Francis J. Smith!® and the three-
state (1sa, 2pc, 2pm) molecular eigenfunction expansion
calculation of Bates and Williams.'* Both of these
latter results, which are for lower energies (up to about
4 keV), give good agreement with the phase of the
oscillating curve, but insufficient damping of the
maxima and minima.

We have two four-state calculations; one (the solid
line) with & given by the Rutherford elastic scattering
formula

2Eb=cot30, (61)
the other (the dotted line) has =0. The agreement of
the two curves with data points of Helbig and Everhart
is excellent in both magnitude and phase. We believe
this to be the best agreement yet obtained with the
experiment of Helbig and Everhart.

The point of doing the calculation with =0 is to
demonstrate that the total transfer probability is
virtually independent of the impact parameter (and
hence scattering angle) except for very low energies.
This is seen, inasmuch as the dotted and solid curves

T T T T T T T T
o EXPERIMENTAL DATA POINTS (HELBIG AND EVERHART)l
—— THIS WORK (4 STATE EXPANSION, b >0}
L -=-= THIS WORK(3STATE EXPANSION, b=0)
—— PREVIOUS THEORY (4 STATE HYDROGENIC,b>0)

o =

© o

T T
!

TOTAL EXCHANGE PROBABILITY
2

TR T T B

30 40 50 €0 80 100

L
8 10 20

F16. 12. Total charge-transfer probability at 3°. The experi-
mental data points are due to Helbig and Everhart (Ref. 12).
The solid theoretical curve is for the four-state calculation with
impact parameter determined from the Rutherford (point)
scattering law. The dotted theoretical curve is a three-state
calculation for zero impact parameter. Points at 7 keV are for
four-, five- and six-state calculations with 5=0. Not shown are
theoretical calculations of Bates and Williams (Ref. 14) (molecular
eigenfunction expansion) and Francis J. Smith (Ref. 13) (two-
state corrected wave calculation) which yield nearly as good fits
below 4 keV.

12 H. F. Helbig and E. Everhart, Phys. Rev. 140, A715 (1965).

13 Francis J. Smith, Proc. Phys. Soc. (London) 84, 889 (1964).

¥ D. R. Bates and D. A. Williams, Proc. Phys. Soc. (London)
83, 425 (1964).
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only begin to separate below 3 keV (see also Helbig and
Everhart,? Fig. 3).

VIII. HIGHER-STATE RESULTS AND
CONCLUSIONS

Having obtained fairly complete results coupling
four states (1s, 2s, 2p) we extended the expansion to
include various other states at selected energies and
impact parameters. This was to obtain an estimate of
the rate of convergence of the expansion. The most
definitive sets of calculations are displayed in Fig. 13
for 2p processes. As many as nine states are coupled in

2P DIRECT

2P EXCHANGE

b=l

25 keV
x HYDROGENIC
+;p © STURMIAN

010~

! 1 i1

Pe(b)

.005 003k 2p

2P

Fic. 13. Dependence of probability on the number of coupled
states: E=25 keV; b=1 and 3; 2p direct and 2p exchange re-
actions. The abscissa gives the maximum number of s states
included. Points with the same number of p states are connected
by line segments. The segments are labelled by the highest p
state. The previous results for the hydrogenic expansion are shown
for four-state and seven-state calculations. The largest number of
states in the calculations is nine.

these calculations. It should be noted that a Sturmian
4s state is the same size as a hydrogenic 2p state. The
inclusion of a 3s state was found to be very significant.
In general, the convergence of the results is irregular
but the trend is toward convergence. The inclusion of a
3d state (10 states, not shown) had negligible effect.
The impact parameters in this particular study were
chosen to accentuate the dependence on the number of
states. This is illustrated in Figs. 14 and 15, where
bP(b) is plotted against b for the 2p processes at 25 keV.
We include the original four-state hydrogenic, the
four-state Sturmian, eight-state Sturmian and Born-
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approximation results (van den Bos”) plus an isolated
nine-state point. Noteworthy is the asymptotic agree-
ment at large b among all curves, the only discrepancy
here being the 2p exchange Born curve of van den Bos,
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F16. 14. Probability times impact parameter versus impact
parameter for 2p excitation at 25 keV. Shown are four-state and
eight-state Sturmian curves, the previous hydrogenic four-state
curve, and a single Sturmian nine-state (1s,25,2$,3s,3p,4s,5s)

point.

which does not agree with the other results. This is not
completely understood, but may be due to the quite
different manner of calculation which van den Bos
used for his exchange than for his direct Born approxi-
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Fic. 15. Probability times impact parameter versus impact
parameter for 2p exchange at 25 keV. Shown are four-state and
eight-state Sturmian curves, the previous hydrogenic four-state
curve, and a single Sturmian nine-state (1s,2s5,29,3s,3p,4s,55)

point.

mations. The asymptotic agreement for direct excitation,
however, may permit one to omit the complex coupled
equations method for large b, using Born results there.

A careful examination of Figs. 13-15 lends confidence
to the eight-state calculation for 2p processes. We
believe that such results are reliable to 209%,, and
perhaps considerably better. Eight-state results are
presented in Figs. 9 and 10 at selected energies (as
obtained from a relatively small number of impact
parameters). The results are systematically lower than
the experimental results of Stebbing ef al.



