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Coupled-State Calculations of Proton-Hydrogen Scattering in the
Sturxnlan Representation*f
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Proton-hydrogen scattering has been solved in the Sturmian representation. The Sturmian functions
of Rotenberg form an infinite, discrete, and complete basis set without a continuum. Comparison has been
made with the following proton-hydrogen scattering experiments: transfer and excitation cross sections
to the 2s and 2P states, the total exchange cross section, and the notable experiments of Helbig and Everhart
on the total transfer probability at 3'. Particularly excellent agreement is found with the last. This work, is
a direct extension of previous calculations for the proton-hydrogen scattering problem developed by the
authors in which the expansion basis functions were discrete, traveling hydrogenic states. The present work
demonstrates the role of the hydrogenic continuum.

I. INTRODUCTION

HE proton-hydrogen atom collision is one of the
simplest and most instructive scattering problems

available. Although in its full complexity it is a quan-
tum-mechanical three-body problem, the very small
electron-proton mass ratio allows one to use the well-

known semiclassical impact-parameter formulation
where the protons follow a linear classical trajectory
and the Schrodinger equation for the three-particle
system reduces to a one-electron, time-dependent
equation. This impact-parameter approach has been
often used and has been shown' ' to be valid above a
few hundred electron volts incident energy.

In this investigation we follow essentially our pre-
vious treatment4 (hereafter referred to as WG), in

which the time-dependent, nonrelativistic, spinless
Schrodinger equation is solved numerically. The basis
set for the expansion is chosen to be composed of
traveling Sturmian functions, a set of functions brought
into prominence by Rotenberg' is a related problem. The
properties of these functions will be described subse-

quently in greater detail, but their usefulness arises
since they form a complete, discrete set without a
continuum. This allows us to assess the effect of the
continuum on the scattering cross sections and polari-
zations, which, as will be seen, is quite significant.

Ke proceed essentially as in %6, making a two-
centered expansion in traveling Sturmian orbitals, and
utilizing symmetries to reduce the coupled equations.
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Finally, the physical amplitudes will be obtained from
the Sturmian amplitudes by projection.

The ensuing sections deal with the following topics:
the Sturmian basis set, use of molecular symmetries
deduction of the coupled equations, projection to
obtain the physical scattering amplitudes, convergence,
numerical solution of the coupled equations (including
matrix-element calculation and time integration)
comparison of results with experiment, and discussion
of possible extensions of the problem.

II. STURMIAN BASIS SET

ID the impact-parameter approximation we let the
distance from proton A (target) to proton 8 (projectile)
be given by

R=b+vt.

The electron position vector relative to protons 3 or
8 is given by

where r is the electron position vector in the c.m. of the
two protons.

e expand the electronic wave function in terms of
traveling Sturmian waves about each proton with the
Sturmian functions quantized about the interproton
axis. The primed rotating coordinate system is such
that the s' axis passes through protons A and I3. The
coordinate system is shown in Fig. 1.

These basis states are then given by

I
=i.(r~.n') e-'"'" exp) —s('&+,"s)tj (3)Eat

(t't stands for the quantum-number set std),
js(r ) =LS„t(r )/r, '$p, m(tt,.', q, , ) (4)

and the Sturmian functions Ss(r)=S t(r) satisfy the
equation (we use atomic units throughout)

1 d' l(t+1)
+ ——IS.(r) =m.(.).2drs 2rs r)
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By the way in which our Sturmian basis set is defined,
the 1s, 2p, 3d, etc. , Sturmian functions coincide with
the corresponding hydrogenic wave functions pq. In
Rotenberg's Sturmian set, only the is Sturmia, n func-
tion coincides with the is hydrogenic function. The
Sturmian states are more compact than hydrogenic
states. This can be seen by noting that

(klan- lk)=1/e(t+1)
as compared with

(k lr-'l k)=e-'.
A

FzG. &. Representation of the coordinate systems. Unpnmed
coordinates are mre measured in the c.m. inertial system. The primed
coordma e syst system rotates with the internuclear axis.

&~(~)=~a'"&~(~i,~), (6)

where Ei,(r) is the usual radial hydrogenic function.
The normalization is chosen such that

&klk)=1, (7)

(g„+-+
l k)), but there are nonvanishing matrix elements

of (k l
k') for k& k'. Cross multiplication and subtraction

of the Sturmian equations for k and k' leads to the
modified orthogonality condition

(kl
—lk')=(-. '/ )~-. (g)

Thus the Sturmian functions are orthogonal with the
potential energy r ' as a weighting function.

Since the energy parameter is chosen to be

Ei —1/[2(l+1)'j, —— (9)

manipulation of the Sturmian equation (making the
transformation x=nkr) yields

ni, n/(l+1) . —— (10)
A

The mean energy ei, ——(klHlk)& with H= ——,'V' —r ',
is given by

4= —1/[~(~+1)3+1/[2(l+1)'3.

These Sturmian functions Si,(r) were introduced

by Rotenberg, ' who chose E»————'„ the ground-
state energy of the hydrogen atom. We choose

The Sturmian equation is similar to the Schrodinge
equation, but the energy E» appears as a fixed parame-
ter; it is the effective charge nI, which acts as the eigen-
value. The required boundary conditions on Sq(r) are
that it be zero at the origin and decay at infinity.

The gq(r) form an infinite, discrete and complete
set of states. Unlike the hydrogenic functions, there is
no continuum.

Our Sturmian functions are explicitly given by
scaled hydrogenic functions as

As in our previous work, to test the utility of our
basis set we calculate the overlap probability with the
united atom He+ ground state. This time the overlap
with the first three Sturmian s states gives 0.92, as
compared with 0.76 for the overlap with all discrete
hydrogenic functions. Inasmuch as the 1s He+ state
gives zero overlap with the 2s Sturmian state, this is
quite remarkable convergence, demonstrating the
power of the Sturmian basis to include the hydrogenic
continuum.

III USE OF MOLECULAR SYMMETRIES

Precisely as was done in WG, we make use of the
invariance of the Hamiltonian

H= —-', V' —rg '—rii '+R—' (12)

(13)

for all times, since it is satisfied initially. This allows
us to consider only positive m values (m is the magnetic
quantum number) by defining the spherical harmonics
as

m=0
(14)2- ~[I i.+(-)-I, .j, ~&O.

The second invariance of H under I' —+ —r assures
parity conservation. As before, we choose a Sturmian
basis set combined from w~(A) and wi, (8) as

~"(r,~)=2 '"[~ (~)+ (—1)'~ (&)j, (15)

where the parity operator II transforms mI„- according to

t'2) (8I=(-»'
IEa) Ea

We again decompose the total wave function 4 into
parity wave functions as

Q —2—i/2[gk+~j (17)

under reflection through the collision plane (p' —& —y')
and inversion through the c.m. of the two protons
(r ~ rand—rg, ii ~ —rii, g).

We utilize first the azimuthal symmetry, which as-
sures that the wave function satisfies the relation

e(rp', ~',~) =e(rp', —~', ~)
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where

+~=+ bp (t)Wi, (r,t),

so that we have

+(,t)=-'Z {(b.++b. ) .(A)

+(—1)'(b.+—» )~~(B)) (19)

condition
ai (—~)=by (—~)=by, i, (24)

it~'*=-,'fo~+( )+or(~)7. (25)

since the 1s Sturmian state corresponds to the is
hydrogenic state.

Hence the hydrogenic amplitudes for direct and
exchange reactions are the asymptotic values of the.
coeKcients of N&(A) and N&(B), namely,

To facilitate the projection of the Sturmian basis
set onto the hydrogenic physical basis set, we reiterate
here from %6 the corresponding expansions in the
hydrogenic basis:

These amplitudes u~"' will be obtained in terms of
the Sturmian amplitudes by projection (Sec. V).

IV. COUPLED EQUATIONS
Up~(r, t) =2-'"Lug(A)+m (—1)'Ng(B) j, (20)

%e wish to solve the time-dependent Schrodinger
equation

where

y (r )e ivzl2e i(aa+e-/ )
tA)

EB&
(26)H =H%,(21)

y~(r')=r-'~ i(r)yi-(+' ~').

with H given by Eq. (12). Since we are dealing with a
truncated basis set, this cannot be done exactly, but

(22) rather we minimize the variational function

There we expanded 4' as 4' =pi aa (t)&~ (r,t), so
that dt dr%'*(H i8/Bt)%'.— (27)

e=-,'g {ai,++ox )N~(A)
With the expansion (18), this leads to the coupled

+(—1)'(as+—ai, )Nz(B)), (23) equations (compare WG)

in, which the ai, (t) are "physical" time-dependent
amplitudes. The initial condition of the electron on the
target proton in the ground state reduces to the

iQ&i, ~ 4 =+Hei »
k' k'

&a' = «W~"W' =L(&l&')+~(—)'(&B
I
e '"'I&'A)3 expLi(8„—8„)tj=Ppy expLi(8 6 )tj,

Hi, i, ~—— dr Wi, *(H i8/Bt)Wi, — + — g'~~"—4~ jR r~ n'(l'+1) (l'+1)'
tt' e ) „e '"*

+~(—)'
i

— —1
i

lB
(~+1 )

+(dO/dt)L(kA i lunik' A)+x( )'(kB
i
e '"—

lunik'A)

j expLi(e„—c„)tg—Bi i, expLi(e„—8„)tj, (30)

in the notation
kA&~ j,(r~'),

Ol

ii = N-iHh=Gb.

0= tan-'(b/vt) .

In the matrix notation, we have

iNS= Hb (31)

(32)

V. ASYMPTOTIC AMPLITUDES

Because the Sturmian states are-not solutions of the
hydrogen problem, and because the set is truncated,
the projected hydrogenic amplitudes ai, (t) contain
frequency components other than expL —i(4+en')t).
The corresponding probabilities iud, (t) i' thus contain
oscillatory comporients for large time, in addition to the
expected secular part. The presence of the oscillatory
component is one measure of the failure of the expansio~
(and is small for the low hydrogenic states). In com-
puting probabilities, we remove the oscillatory com-
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yonents explicitly. To see how this is done, let us con-
sider the time integration to have been carried to a
yoint t=t such that only asymptotic coupling re-
mains. The superscripts m, direct, or exchange, will be
suppressed, since the matrix elements are asymptotically
identical.

Let
PI, (t) =bp(t) exp( —i4t);

states. As before, our normalization condition is

dr~@~'=p bg*(t)cV» bI, (t)=1,

compared with the result P ~
aI,

~

'= 1 in the hydrogenic
case. We again may differentiate this condition with
respect to time to obtain the useful matrix equation

ic}=UI3, (34) id N/dt+ H —H'=0 (45)

where

piou+p(p dip s)

as an invaluable aid in tracking subtle programming
UIa =G»+4 4v (35) errors. Thus we have the probability summation given

by
is time-independent. Let T be a time-independent
matrix which diagonalizes U:

The y satisfy

TUT—'=W

v= TI}

i, =Wy

(36) where the sum is over bound states and p" is the proba-
bility left in the continuum. In general Q(PI,d+PI, )(],
unlike the hydrogenic case where p(p~d+ p„*)= ] since
only bound states were included.

In analogy to our hydrogenic calculation (WG), we
de.ne pseudodirect and exchange probabilities (in-
cluding indeterminate ionization) as

Va=V~(t )e-' &"-'-~, t& t„.
This yields

(t)= -'"' P (k~k')(r-), , ,
g lg riI If I

(39)
P pseudo d e i. p—[b„+e(t )~b e;(t )j(k ~

k/)

X [by +(t )abl, .—(t„)$ exp[i(e„—4,)t„j, (47)

Xexp[ iiep&& (t tes))Tp, y I ipsili (t ) . (4())
with

The probabilities are given by

aI, (t) I'=2 I('»-I'+(oscillating term), (41)

C..„=P (k ~k )(T- )..-T,-,-.D.-.(t.).

The asymptotic form of U is given by

Use=(& ')»"(4+%)(&p s —~s"a)+44+, (43)

where EI,"~ —e (k")k') is given in Sec. UI. Explicit
formulas for calculating the I'I, are given in Table I.

Total exchange probabilities are handled somewhat

diRerently in the Sturmian expansion than was the
case in the hydrogenic expansion, since the Sturmian
states include the continuum and hence ionization

TABLE I. s-state pxobabilities in six-state expansian.

&~= I
Ze' &» I

&')Ps I'+o 112IP~ I'+o 0.48
I Ps I' o13o IP~ I'—

+Re( —0.154Ps,ePs, +0.008PssePe, +0.244Ps,ePs, }
Ps, =

I Qe (3slk')pe I
—0 020lpss I

—0.017Ips, l'+0.029IP4, I'
+Re{0.078p *p +0.044p2,*p&—0.092p *p&}

2*s*= I Ze &4~I&')Pe I'+0 063 IPs I' oo.o7IPs I'+—o oo8IP~I'
+ Re (0.008Ps.eP s,+0.008Ps,eP4.—0.008Ps,ePs,}

pde=KP+(t )+p (t )j

PS Spseudo —d+ p pseudo-e —1tot tot

Ke use I't,p""~' to make comparison with the experi-
mental total exchange probabilities (which do not
include ionization).

The probability convergence with respect to trajec-
tory length is demonstrated here in Fig. 2, which plots
the various probabilities in a four-state (1s,2s, 2p) cal-
culation at 25 keU fromm (=t p) of 10 to 8 =30. One
immediately notes that by Z ~20 the probabilities at 25
keV have converged, while not until Z ~30 have they
converged at 9 keV. Hence the calculations have been
carried out to Z =20 at and above 25 keV, to Z = 25
from5 to16keV inclusive and to Z =30 below 5 keV.

UI. NUMERICAL METHO]3S

The coupled equations involve the following types of
matrix elements:

(krak'),

(kB [e
—'"'~ k A),

(kB[e '*. —[k'a)

(kA [re '[k'A).

We also have the Coriolis matrix elements (kBje '"st~

X
~
k'A) and (kB

~

e '"'re 't~
~

k'2), which can be reduced
to the above types by operation with /z on

~

k'A). The
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FIG. 2. Dependence of 6nal proba-
bilities on the length (2Z ) of the
trajectory: 8=25 keg, 6= j., four-
state expansion.
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projection problem brings in the overlap matrix ele-
ments (kl k') also. We have the relation

(kBle-*'"'rtt 'lk'A)=( —)' '(k'Ble-'"*rg —'le)*, (49)

so that there are five independent matrix-element types
to be distinguished.

Analytical formulas have been found for the (klan')
and (klk') elements; the (kA lrn 'lk'A) may also be
integrated in closed form for a given (k,k') pair although
a general formula has not been obtained; the e '" ele-
ments where integrated numerically.

By utilizing the integral formula

zpe *L„+~„r o(z)L-„+„„o"(z)dz= (—1)"+-"+o+"(2p+rrt—2tt)!(2p+n —2r)!tt!p!

+a
(5O)

e o!(p+rn—p,—o)!(p+rrt—p —o)!(o+2tt—rn —p)!(o+2p—n —p)!

(Morse and Feshbach'), the (k l
k') elements can be shown to be given by

1 (n / 1)!(—n' —t 1)!—'ts-
(klk')=-

2 nn'(n+1)!(n'+l)!

(21+o+2)!

The cases of s and p states reduce to (n'&~n)

(—1)"+"'2 (51)
~ o!(n l o 1)!(n'—i—o—1)!(o+—2—n—+i)!(o.+2—n'+l)!—

2
« l~")=b..-lb. ..„(~pl~ p)=b...—1-

2 rt(n+1)
with the interesting property that (I!p l

I!'p):(gs
l

I!'s).

(52)

By using the generating relation for the Laguerre polynomials

(1+I)'-*= E —L..—(*)(-1)-"
&=0 aJ

(53)

(Morse and Feshbach'), and the binomial expansion, one may, by identifying terms on either side of a power-series

' P. M. Morse and H. Feshbach, Methods of Theoretica/ Physics, Part I (McGraw-Hill Book Co.
&

New York, 1953), pp. 784, 785.
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expansion, reduce (k
~
k') to a complicated double summation formula given by

(ss—l—1)!(I'—l—1)! '" (2l+2)!
(nbnI f1Vsw) =

4~~'(~+ 1)!(~'+1)! LN(1+ 1)jt+sis

(ts+i) /ts'+1) f —2l —3 ) ass'+» 2—(l+1) X—I—s'tl

E ), i E p, i l ss'+n 2—(l+1) )—f
—& E ss—l—1—Xxg

tr I+tt+tt' —x-ttmn-l —1—x(l+ ]) tt' —t—I—tt
(S4)

in which
1t1 1 ~~=-I -+
2 ass 1+1] .05

To indicate the numerical overlap of (kI and jk'),
these elements are given in Table II. for the sequence
of states 1s, 2s, 2p, 3s, Bp, 4s.

By employing the relation for the angular-momen-
tum operators 1+ given by

/+ I't =
I (l&tts) (lasts+1) j&Ft„pt (56)

(where i+=1,+1„)we reduce the Corio1is term (nQ) to

(l—tts)(i+its+1) '~s
—iO

2—8,p

,05

0
L.
&. .05
I-

0
CO~ .05
03
O

0

.05

.05

.05

25

55

xi'

70

IOO

200

(1+sts)(l—sts+1) '~'
—(1—S.,,)

2(2—tt, p)

in which k&1 indicates elm&1.
The basic matrix elements involving e'" are evaluated

precisely as in WG, using a confocal elliptic coordinate
system, transforming e'"' into the rotating reference
frame, and calculating numerically the integrals by
Gaussian quadrature.

The basic integrals obtained for the three elements
given in Eqs. (24) of WG remain the same here with
the replacement Ik) ~ Ik).

The same scheme used in WG was again adopted for
the time integration of ib= Gb.

VII. FOUR-STATE RESULTS

The great bulk of the calculations have been done
coupling the four Sturmian states (1s, 2s, 2p) in the
laboratory energy range from 1 to 1000 keU. The four-

.!0

.05
IkeV

I

25keV

.05

,05

0
CL

.05!-
0

fO

.05
O

0

,05

6,25

7.55

40

70
~xto

IOO

~xiO

4 8 0 4 8
IMPACT PARAMETER b(BOHR RADII)

IS EXCHANGE

ENERGIES ARE FOR INCIDENT PROTON IN LAB

F/G. 3. ProbabiTity of excitation versus impact parameter for
1s exchange over the energy spectrum from 1 to 1000 keV in the
four-state (1s,2s,2p) Sturmian expansion.

TAnLz lI. Overlap matrix elements (k!kl. .05

gk
kg 1s

1$ 1
2s 0
3s 0
4s 0
2p 0
3p 0

2$

—0.5
0.558
0.244
0.147
0
0

3s

0—0.870—0.244—0.125
0
0

4s 2p

0 0
0.683 0—0.091 0—0.103 0
0
0 0

3p

0
0
0
0—0.409

0.722

.05
l6

l t I

4 8 0 4 8 !2
IMPACT PARAMETER b{BOHR RADII)

2P EXCHANGE
ENERGIES ARE FOR INCIDENT PROTON IN I AB

FIG. 4. Probability of excitation versus impact parameter for
2p exchange over the energy spectrum from 1 to 1000 keV in the
four-state (1s,2s,2p) Sturmian expansion.
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state results are discussed in this section; higher state
results being discussed in Sec. VIII.

Plots of probability versus impact parameter for
various energies in the 1—1000 keV range are displayed
in Figs. 3—6 for the direct process 2p, for the exchange
processes 1s, 2p, and for total exchange. We note that
the majority of these curves exhibit a single, well de-
6ned peak at from one to two Bohr radii, the peak for
the s state processes being generally at smaller b than
that for p state processes. This may be explained

4 8 0 4 8 I2
IMPACT PARAMETER b(BOHR RADII)

2P DIRECT
ENERGIES ARE FOR INCIDENT PROTON IN LAB

Fn. 5. Probability of excitation versus impact parameter for
2P direct excitation over the energy spectrum from 1 to 1000 keV
in the four-state (1s, 2s, 2p) Sturmian expansion.

IQQQ.05
x 10000

t I l

4 8 0 4 8 I2
IMPACT PARAMETER b(BOHR RADII)

TOTAL EXCHANGE

ENERGIES ARE FOR INCIDENT PROTON IN LAB

Fxo. 6. Probability of excitation versus impact parameter for
total exchange over the energy spectrum from 1 to 1000 keV in
the four-state (1s, 2s, 2p) Sturmian expansion.

classically from the relation

(58)

(in atomic units) between orbital angular-momentum
quantum number /, impact parameter 0, and velocity
~. The relation shows that for given e, small b is as-
sociated with small t and large b with large l (van den
Bos').

Note the oscillations in P(b) versus b for 1s exchange
and total exchange at small impact parameters below

(80

l50-

l20—

FIG. 7. Ground-state resonant trans-
fer (charge exchange) cross section
in the four-state expansion.

E
O

60
O

30

IO 20
F (keV)

30 40 IO0 200

' J. van den Bos, Foundation for Fundamental Research on Matter (Netherlands) Report No. FOM22358, 1966 (unpublished).
e
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l H (2S+H+]
STURMIAN EXPANSION

TURMIAN EXPANSION

THEORY (4 STATE '

NIC)

FIG. 8. Cross section for charge
transfer and excitation to the 2s state
in the four-state expansion. The ex-
perimental data from 40 to 200 keV
are due to Ryding et at. (Ref. 8) for
charge transfer. These points have
been normalized (dubiously) to lie on
the theoretical Born-approximation
result at 100 keV. The previous theo-
retical curve for the: charge-transfer
reaction is that obtained in the four-
state hydro genic expansion. The
circles are for a six-state (1s,2s,2p,
3s,4s) Sturmian calculation.

0 20 40 50 200

E„„(kev}
400

I

600
l

800

6 keV. This is attributable to multiple exchanges of the
electron to the ground state for low energies and small
impact parameters. As the energy increases, the direct
probabilities dominate the exchange, approaching, at
high energies, Rutherford elastic scattering. There is
also evidence that the 2p probabilities dominate the
2s at all energies. This is interpreted as due to the 2p
being an optically allowed (6/= 1) and the 2s an opti-
cally forbidden transition (Al=0) (van den Bosr).
These selection rules may arise from the relatively
large matrix elements (kA~rtt '~k'A) by expanding
r~—' in spherical harmonics.

Discrete level direct or exchange cross sections to the
state k are given from the probabilities via the relation

os(E) =2a Es(b,E)bdb.

The ground-state (resonant) charge-transfer cross
section is shown in I"ig. 7. The curve is monotonically
decreasing from 1 keV, with a slight break in slope about
4 keV. The previously obtained curve (WG) indicated
a bump at 2 keV which is not present here.

Iig. 8 shows the 2s direct and 2s exchange cross
section curves compared with our previous 2s ex-
change result. The four-state Sturmian calculation
is not expected to do as well for 2s states as the four-
state hydrogenic expansion. The experimental points
above 40 keV are due to Ryding et at. ' They lie below
these four-state results. (A higher-state point gives
better agreement as seen in Sec. VIII.) The 2s direct
curve (for which no experimental data have been found
for comparison) has a broad maximum about 20 keV,
while the 2s exchange curve exhibits a pronounced
peak at the adiabatic 25 keV energy.

H++ H(IS) —H(2P)+H+
~At
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Fzo. 9. Crgss section and polari-
zation for 2p exchange in the four-
state expansion. The experimental
points of Stebbings et al. (Ref. 10)
are plotted. The previous four-
state (1s,2s,2p,3s,3p,4s) Sturmian
calculation. The definition of the
polarization is that given by Per-
cival and Seaton (Ref. 9).
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s G. Ryding, A. B. Wittkower, and H, B. Gilbody, Proc. Phys. Soc. (London) 89, 547 (1966).
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Fio. 10. Cross section and polarization for 2P excitation in the four-state expansion. The experimental points of Stebbings et cl.
(Ref. 10) are plotted. The previous four-state hydrogenic curve is plotted and so are circles for an eight-state (1s,2s,2p, 3s,3p,4s)
Sturmian calculation. The definition of the polarization is that given by Percival and Seaton (Ref. 9).
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Figures 9 and iQ give the cross-section and polariza-
tion results for 2p direct and 2p exchange reactions.
The polarization fractions have been defined by the
formula due to Percival and Seaton. '

over-all error as &50% and the curve shape error as
15%

The total-exchange cross section due to McClure"
is plotted against the theoretical four-state results in
Fig. 11. Mcclure's experimental error is quoted to a
+5% accuracy. His last experimental point is at 117
keV. The agreement is excellent up to 25 keV, diverging
above 25 keV to a factor-of-2 di6erence at 40 keV,

with a=2.375 and b=3.749; this accounts for fine

structure and hfs. No experimental data have been
found with which to compare the polarization results;
however our polarization fractions agree reasonably
well at high energies with the asymptotic limits quoted
by van den Bos7 for 2p direct (—0.25) and 2p exchange
(o.27).

Experimental data due to Stebbings et al. ' are plotted
on the 2p direct and 2p exchange curves. Also plotted
are the results in WG. The 2p direct curve shows two
peaks at 6 keV and 25 keV, the magnitudes (but not
the shape) of the curve being in good agreement with
the data of Stebbings ef al. The 2p exchange curve
shows quite remarkable agreement with the results of
Stebbings et al. , both in magnitude and shape up to
about 25 keV, overestimating at energies above 25 keV.
Stebbings et at. , give error bars at isolated points con-
taining 50% of their data points; they quote their
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'I. C. Percival and M. J. Seaton, Phil. Trans. Roy. Soc.
London 251A, 113 (1959).

'0 R. F. Stebbings, R. A. Young, C. L. Oxley, and H. Khrhardt,
Phys. Rev. 138, A1312 (1965).

FzG. 11. Total-exchange cross section in the four-state expan-
sion. The experimental data points are due to McClure (Ref. 11).
Two points are given for a six-state (1s,2s,2P,3s,4s) Sturmian
calculation.

"G. W. McClure, Phys. Rev. 140, A769 (1965).
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the theoretical results exceeding the experimental
data.

Figure j.2 exhibits the data obtained from the experi-
ments of Helbig and Everhart" on total exchange
probability for 3 scattering compared to our four-state
calculations. Not shown are the corrected two-state
wave calculations of Francis J. Smith" and the three-
state (1so, 2po, 2px) molecular eigenfunction expansion
calculation of Bates and Williams. " Both of these
latter results, which are for lower energies (up to about
4 keV), give good agreement with the phase of the
oscillating curve, but insufhcient damping of the
maxima and minima.

We have two four-state calculations; one (the solid
line) with b given by the Rutherford elastic scattering
formula

only begin to separate below 3 keV (see also Helbig and
Everhart, "Fig. 3).

2P DIRECT 2P EXCHANGE

VIII. HIGHER-STATE RESULTS AND
CONCLUSIONS

Having obtained fairly complete results coupling
four states (1s, 2s, 2p) we extended the expansion to
include various other states at selected energies and
impact parameters. This was to obtain an estimate of
the rate of convergence of the expansion. The most
definitive sets of calculations are displayed in Fig. ].3
for 2p processes. As many as nine states are coupled in

2Eb= cot20 ~ (61) .060- .040-
=I

the other (the dotted line) has b=0. The agreement of
the two curves with data points of Helbig and Kverhart
is excellent in both magnitude and phase. We believe
this to be the best agreement yet obtained with the
experiment of Helbig and Everhart.

The point of doing the calculation with b=0 is to
demonstrate that the total transfer probability is
virtually independent of the impact parameter (and
hence scattering angle) except for very low energies.
This is seen, inasmuch as the dotted and solid curves
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FlG. 13. Dependence of probability on the number of coupled
states: 8=25 keV; b=1 and 3; 2p direct and 2p exchange re-
actions. The abscissa gives the maximum number of s states
included. Points with the same number of p states are connected
by line segments. The segments are labelled by the highest p
state. The previous results for the hydrogenic expansion are shown
for four-state and seven-state calculations. The largest number of
states in the calculations is nine.

FIG. 12. Total charge-transfer probability at 3'. The experi-
mental data points are due to Helbig and Everhart (Ref. 12).
The solid theoretical curve is for the four-state calculation with
impact parameter determined from the Rutherford (point)
scattering law. The dotted theoretical curve is a three-state
calculation for zero impact parameter. Points at 7 keV are for
four-, 6ve- and six-state calculations with b=o. Not shown are
theoretical calculations of Bates and Williams (Ref. 14) (molecular
eigenfunction expansion) and Francis J. Smith (Ref. 13) (two-
state corrected wave calculation) which yield nearly as good 6ts
below 4 keV.

"H. F. Helbig and E. Everhart, Phys. Rev. 140, A715 (1965).
"Francis J. Smith, Proc. Phys. Soc. (London) 84, 889 (1964).
'4 D. R. Bates and D. A. Williams, Proc. Phys. Soc. (London)

83, 425 (1964).

these calculations. It should be noted that a Sturmian
4s state is the same size as a hydrogenic 2p state. The
inclusion of a 3s state was found to be very signi6cant.
In general, the convergence of the results is irregular
but the trend is toward convergence. The inclusion of a
3d state (10 states, not shown) had negligible effect.

The impact parameters in this particular study were
chosen to accentuate the dependence on the number of
states. This is illustrated in Figs. 14 and 15, where
bP(b) is plotted against b for the 2p processes at 25 keV.

We include the original four-state hydrogenic, the
four-state Sturmian, eight-state Sturmian and Born-
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