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SU(6) has been incorporated into a simple model of a multichannel amplitude for s-wave scattering of
mesons in the 35 representation by baryons in the 56. Symmetry breaking is introduced by making the
amplitude satisfy unitarity exactly in the direct channel. The contributions to the amplitude from the
crossed-channel singularities are assumed to be SU(6)-invariant, and can be expressed in terms of four
scattering lengths by the use of appropriate projection matrices. Fits of the model have been made to the
threshold parameters of ~$, EE, and EE scattering. Several solutions have been found, and a comparison
of calculated threshold parameters, cross sections, and phase shifts with experimental data is made. Calcu-
lations of resonances predicted by the model are performed and found to be in good agreement with experi-
mental results.

I. INTRODUCTION

KCENT meson-baryon scattering experiments and
pion-nucleon phase-shift analyses have revealed

an s-wave resonant structure heretofore unsuspected.
Several papers have been published which attempt to
analyze the available data and reproduce this resonant
structure. Those models which incorporate SU(3) have
the advantage that they permit an SU(3) classification
of s-wave resonant states. Kyld' has performed a
calculation with a coupled-channel Schrodinger equa-
tion incorporating SU(3) in a static-model vector-
meson-exchange potential, and is able to reproduce
many of the low-energy s-wave resonances. Brehm' has
attacked the same problem for the mS system in a
dispersion-theory framework and has calculated one S~»

resonance. The present paper is an adaptation of an idea
due to Ross,3 namely, that of including higher sym-
metries in an effective-range approximation. Ross con-
sidered the problem where SU(3) is the higher sym-

metry involved. Since the Kronecker product of two

SU(3) octets yields a singlet, two octets, a decuplet, a
conjugate decuplet, and a 27, we have six scattering
lengths and a mixing parameter between the octets for
fitting. Here we employ SU(6) in a modification of the
usual effective-range approximation. Since Gyuk and
Tuan' have recently made an analysis of s-wave reso-
nances and place the low-lying ones in the 70 repre-
sentation of SU(6), it seems appropriate to calculate the
s-wave resonant structure in terms of SU(6). Applica-
tion of a model involving SU(6) to higher partial waves
would be much riskier since SU(6) symmetry involves
the assumption of spin invariance' and only in the s
wave with /=0 are sects of spin-orbit coupling com-

pletely absent.
In SU(6) theory, the pseudoscalar and vector mesons

are commonly placed in the 35 representation. The

~ Present address: City College of ¹wYork, New York, N. Y.
' H. W. %'yld, Jr., Phys. Rev. 155, 1649 (1967).
' J. J. Brehn (unpublishedl.
' M. H. Ross, in Prooeedlngs of the Twelfth Annstol Conference on

High-Energy Physics, Debna, 1964 (Atomizdat, Moscow, 1965).
4 Imre P. Gyuk and S. F. Tuan, Phys. Rev. 140, 164 (1965).
I H. J. Lipkin and S. Meshkov, Phys. Rev. 143, 1269 (1966).
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baryons and baryon resonances are placed in the 56.'
Since the decomposition of the product of these two into
irreducible representations yields 56+70+700+1134,
w'e have only four parameters to vary in 6tting the
data. Furthermore, by using SU(6), we may consider
the effect of inelastic channels with higher thresholds.
The cross sections for resonance production have not
been explicitly calculated with our model, since they
invariably involve many more partial waves than just
the s wave. However, the inclusion of resonance states
provides a Grst approximation to the inelasticity effects
of multibody production through quasi-two-body chan-
nels, i.e., where the final products may be described in
terms of two bodies, one or more of which is a resonance.

II. FORM OF THE AMPLITUDE

We write the S matrix as follows:

St,=St,—(2m.)4ib4(Pr P;)—
(4FtF. torose )"

sum over intermediate states, and take the s-wave
component (we omit any subscript indicating the partial
wave since we are dealing only with the s wave), we
arrive at

Fr; Ft;t (2ik/W—)Fr„F——„;t (3)

We now make use of time-reversal invariance and
choose our phases such that Ff —Ff arriving at

ImF—'= —k/W

for any open channel with 8' being the total center-of-
mass energy, and k a diagonal matrix giving the
momentum in each channel in the center-of-mass

'F. Gursey and L. A. Radicati, Phys. Rev. Letters 13, 173
(1964).
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where I'; and I'~ are initial and 6nal total momenta,
respectively, and E;, I, and E~, ~J are initial and 6nal
baryon and meson energies, respectively. U we apply
unitarity

SSt=I,
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k 1 dv

W/ vI
(6)

where v= [W~—(M+p)2$/4M'. It may be verified that
Img(v)= —k/W above threshold. One subtraction is
made for convergence and the subtraction point is
chosen so that g(v) is zero at threshold. The center-of-
mass momentum k expressed in terms of v is

k = [v(v+1)j'I'X 2M'/W.

If we perform the integration we 6nd that

where

system. The center-of-mass momentum is computed as

k'= [(W+M)' —p'j[(W —M)' —p'1/4W' (5)

where M and p, are the baryon and meson masses, re-
spectively, in the given channel.

In order to make our function analytic save for the
cuts due to unitarity, we define a function g as follows:

1
Re(F ') =P —P;+Reg.

' A;
(12)

The projection matrices are computed by making a
similarity transformation on a matrix which has ones
and zeros on the diagonal and zeros elsewhere, via a
matrix of Clebsch-Gordan coefficients, so that

is reasonable to assume that they would be slowly
varying with energy. Hence one is justi6ed in replacing
them by constants io the low-energy region.

The portion of the inverse amplitude due to cross-
channel cuts is real, and all terms which contribute to it
are assumed to be SU(6)-invariant. This means that it
can be written as a sum of terms, each of which is the
product of a projection matrix times the reciprocal of an
SU(6)-invariant scattering length. Since the product of
the 55 and 56 representations decomposes into four
irreducible representations, we have four projection
matrices and four scattering lengths. Each of the pro-
jection matrices projects the states in the product
35X56 onto one of the four irreducible representations,
56, 70, 700, or 1134.We then have

For v&0,

k 2
Ig

—ln[v'I——'+—(v+ 1)'I']

with
P;=CP C,

0

(13)

for 0&v& —1,

a 2 ( —v )"'-
W s. (v+1)

P$ (14)

for —i~ v,

where, for v(0, a' is computed as the absolute value of
the expression for k'. Since the k matrix is computed
using the experimental masses, we are introducing
symmetry breaking by making the amplitude satisfy
unitarity. By using the function g, the nature of our
assumptions becomes much clearer. The SU(6) sym-
metry is broken only by the requirements of unitarity.
Therefore, such symmetry-breaking effects are confined
entirely to the contribution to the amplitude from the
right-hand cut. The remainder of the amplitude, that
due to the left-hand cuts, is then assumed to be SU(6)-
symmetric. Such a separation of the contributions to the
amplitude into those due to direct- and cross-channel
cuts also makes our scattering-length approximation,
described below, seem more reasonable. Since the cuts
due to the cross channel will be more distant from the
region of interest than those from the direct channel, it

0,
A table of the projection matrices used is to be found in
the Appendix to this paper. The Clebsch-Gordan
coefficients were computed by using the tables of
Carter, Coyne, and Meshkov~ in conjunction with the
isoscalar coefficients of de Swart. '

We have then as a 6nal form

The scattering lengths are taken as constants in the
energy range under consideration. In our case we have
chosen our normalization so that g is replaced by Wog,
where Wo is the center-of-mass energy at the pion-
proton threshold. Thus in the pion-nucleon system at

' J. C. Carter, J. J. Coyne, aand S. Meshkov, Phys. Rev. Letters
14, 523 (1965); 14, 850(K) (1965).' J. J. de Swart, Rev. Mod. Phys. BS, 916 (1963).
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Fro. 1. Sheet structure in the vicinity of a given threshold.

threshold, our amplitude coincides with the more fa-
miliar form f= (1/k)e@ sinb, and our scattering lengths
can be measured in fermis. Using our form for the
amplitude, the cross section for a given process is given
by

(16)

where k; and kf are the initial and 6nal center-of-mass
momenta, respectively.

III. LOW-ENERGY PARAMETERS

Because of the length of time it takes to invert a
complex matrix on a computer, it was deemed im-
practical to attempt to fit to phase-shift or cross-section
data. Instead we have chosen to Gt to the small number
of parameters which describe the threshold behavior of
pseudoscalar-meson-baryon scattering.

In the kaon. -nucleon and pion-nucleon systems, only
the elastic channel is open in the neighborhood of
threshold. Hence we can represent the low-energy data
in terms of a single-channel effective-range formula

f= (Ws/W)F= (e" sin8)/k=L(1/a) —ik] ', (17)

ALE I. Scattering lengths and low-energy parameters.

Parameter

A;p
Azp
Azpp
A1134

Given
(F)

Error
(F)

Solution I
(F)

0.939—0.842—0.306—0.168

Solution II
(F)

—0.794
0.396—0.345
0.694

but because of the presence of inelastic channels, A will
be complex, i.e., A =a+ib, giving arealandanirnaginary
part for the scattering length for both possible values of
isotopic spin. There are two additional parameters which
describe the inelastic channels. They are 7, the ratio of
Z to Z+ production at rest, and e, the ratio of h. pro-
duction to total I= j. hyperon-pion production at rest,
both in the K P system. In terms of the F matrix, we
have

kz-. 'I —sFt'—(1/V'6)Fo*I '
7=

kz'. —
I
sFt' —(1/46)Fo'I '

where Ii 0 and F~ are the I=O and I=1Zm production
elements of the F matrix, respectively, and

) (20)
k,.IF, I +k,.IF, I

'

where again Ii j is the Ax production element of the I=1
F matrix. The values of the six Dalitz-Tuan parameters
are taken from Sakitt et ul."They have two solutions,
but we have used the numbers from the second only,
since solution 1 is not consistent with the charge-
exchange data of Kittel et a/." Also, only solution 2
gives agreement with an analysis of the E P scattering
data at higher energies by Watson et a/. '4

A search in the four-dimensional space of the SU(6)-
invariant scattering lengths A; has been made, and an
iteration from the points of lowest X' was performed in
order to obtain the best Qts to the data. The errors used

where a is the conventional scattering length in the
given channel and is given as the limit of k cot8 as k
approaches zero. At threshold, the amplitude f is equal
to the scattering length, and thus can be given as above
in terms of the elastic component of the Ii matrix
evaluated at threshold. The two pion-nucleon scattering
lengths are taken from the work of Hamilton, ' and those
for the kaon-nucleon system from Stenger et ul."

In the case of K-nucleon scattering, the mZ and mA.

channels are also open at threshold. Thus we cannot use
a single-channel formula to represent the data. Dalitz
and Tuan" have formulated a multichannel expression
for the scattering amplitude. The elastic amplitude may
still be written as an effective-range approximation

f= (e" sin8)/k = P(1/A) ikg', — (18)

83
F1

C1

Cp

ReA1
ImA1
ReAp
ImAp
'y

—0.129
0.246

—0.31
0.04

—0.19
0.44—1.63
0.51
2.11
0.31

0.1
0.1

0.1
0.1

E37
0.15
0.15
0.15
0.15
0.30
0.10

—0.151
0.172

—0.18—0.16

0.00
0.02
1.73
0.53
1.17
0.29

25.7

—0.151
0.234

—0.09
0.11

—0.16
0.18—1.59
0.04
2.37
0.06

24.9

' J. Hamilton, Phys. Letters 20, 687 (t966l.' V. J. Stenger, W. E. Slater, D. H. Stork, H. K. Ticho, G.
Goldhaber, and S. Goldhaber, Phys. Rev. 134, 81111 (1964)."R. H. Dalitz and S. F. Tuan, Ann. Phys. (¹Y.) 10, 307
(1960).

"M.Sakitt, T. B.Day, R. G. Glasser, ¹ Seeman, J. Friedman,
W. E. Humphrey, and R. R. Ross, Phys. Rev. 139, 3719 (1965).

"W. Kittel, G. Otter, and I. Wacek, Phys. Letters 21, 349
(1966).

'4 Mason B.Watson, Massimiliano Ferro-Luzzi, and Robert D.
Tripp, Phys. Rev. 131, 2248 (1963).
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TABLE II. Spin-$ s-wave baryon resonances in the 70.

Name
Spin and

parity
Isotopic

spin

SU(3) singlet

0

SU(3) octet

Mass
(MeV)

1405

1570

Width
(MeV)

130

1670

SU(3) decuplet

1670 180

in computing the X' have nothing to do with -actual
experimental errors, but merely serve as weights for the
given parameters in order to obtain what seemed
subjectively to be the best 6t. For example, the errors
for the parameters of the EE channel are larger since
there are more parameters to 6t. However, it was ob-
served that the 6oal solution is quite insensitive to the
relative errors used. The value of X' is therefore of little
signi6cance except as a comparison of diGerent sets of
parameters.

Two solutions were found which were significantly
better than any others observed. Since the values of the
calculated low-energy parameters are rather sensitive to
changes in the four scattering lengths, any exhaustive
search must involve an extremely 6ne mesh. Hence it is
possible that there exist other solutions as good as the
ones located. The four scattering lengths and low-energy
parameters for each solution along with the accepted
values are given in Table I.

IV. COMPARISON WITH EXPEMMENT

A. General Remarks

To compare our model further with experimental re-
sults, we can calculate phase shifts and cross sections
and also look for poles of the amplitude and attempt to
identify them with known resonances.

Since the function giving the center-of-mass mo-
mentum k of two particles in terms of the total energy W
of the system involves a square root, our amplitude has
a branch point at each two-particle threshold and is a
multisheeted function of the complex variable s= W'.
The number of sheets is equal to 2 to a power equal to
the number of two-body channels in the amplitude. The
sheet structure in the vicinity of a given threshold sp; of
channel i is illustrated in Fig. 1. The cut to the left of
sp ' is due to all channels with lower thresholds than sp;.
The cut to the right of sp; has a contribution from
channel i also. The labeling of the sheets in the picture
is relevant only in the vicinity of ss;. However, it can be

7m' III. Predicted resonances.

Name

E3/P
K/a*

F

Sheet

~ ~ ~

~ ~ ~

Solution I
1
1

1 0
0 0
0 0

Solution II
1
1

1 0
0 0

Mass
(MeV)

1594
1417
1563
1375
1670

2100
1355
1327
1415

Width
(MeV)

217
258
105
138
330

144
0.1
2

used to indicate a given sheet of the scattering ampli-
tude in terms of the path needed to reach it from the
physical sheet.

A resonance in a given tw'o-body system is associated
with a pole in the scattering amplitude. We have
searched for resonances by searching for zeros of the
real part of the determinant D of the inverse amplitude
on the real axis. Since any pole in the scattering ampli-
tude near the physical sheet (sheet I) may cause
resonant behavior, it is clear that we must investigate
the possibility of a pole on all such sheets. I"or instance,
a pole on sheet IV slightly below sp; will cause resonant
behavior in the production of particles in channel i.
Since, in our model, the thresholds are all well separated,
it is clear that we need consider only those sheets which
may be reached in the manner indicated in Fig. 1, i.e.,
by moving around a single branch point. Our search for
poles was made by 6nding the zeros of Reo on the real
axis as approached from sheet I or the analog of sheet
III with respect to a given threshold. Since this still
involves a large number of sheets, we have considered
only cases connected with established resonances.

Gyuk and Tuan4 have argued that a number of s-wave
baryon resonances are to be placed in the ?0 repre-
sentation of SU(6). Broken down according to SU(3)
XSU(2), the 20 representation contains a spin-stSU(3)
singlet, a spin-~s octet, a spin-$ octet, and a spin-st

decuplet. They identify the singlet with the Fs*(1405).
The spin--', octet does not enter into our considerations
since our amplitude is for total angular momentum ~~.

The spin- —,
' octet contains the resonances seen in g

production, In addition to the iV(1570) and the X(1670),
there should be a Z and a .The Z might be found in our
F=O, I=1 amplitude. Only' the $*(1670) member of
the decuplet has been observed experimentally. In
addition there should be a P&e, a *, and an Q. Of these
only the F~* might be reBected in our amplitude. A list
of established s-wave, spin-~~ resonances and those
predicted by SU(6) is presented in Table II. Those
predicted by our results are listed in Table III. The
expression used to evaluate the width of a resonance is
given by 2 ImD/(d ReD/dW), evaluated at the zero
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qao

831

492

and Sransden et aL'~ in Figs. 2-4. The graph is an
Argand diagram of the function 2kf= (tie''s —1)/i and
the incident pion kinetic energy in MeV is indicated at
points along the curve. When the elasticity g=1, the
curve falls on the circumference of a circle with radius 1
and center at i. For q&1, the graph falls inside this
circle. Qualitatively, the analyses of Bareyre et al. and
Donnachie et al. are very similar, while that of Bransden
et al. seems rather peculiar. In fact, it is difBcult to see
how the phase shift is to be a continuous function of
energy in this latter case. In the two former cases, a
resonance of about 1670 MeV is definitely indicated.
Such a resonance, having I= ~3, would probably belong
to the 10 representation of SU(3). For the I= -', channel,
we have plotted the results of Bareyre et at. , Lovelace
et ul. ,"and Sransden et cl., also in Figs. 2—4. In all three
cases, a resonance can be seen at about 1570 MeV.
However, the quantitative aspects of the resonance vary
significantly among the three plots. In the first and
third cases, an additional resonance is observed at 1700
MeV. The problem of assignment to a representation of
SU'(6) will be considered only for the first of these two
resonances.

A comparison of the pion-nucleon phase shifts pre-
dicted by our model with the values derived in various
phase-shift, analyses is quite impressive in some respects

Fxe. 2. Argand diagram-of s-wave amplitude for pion-nucleon
scattering. Function plotted is 2kf=(s" 1)/s —Notati.on is
SQI, QJ. Data is by Bareyre et al. (Ref. i5).

1000

of ReD. This expression holds good if Imo is a slowly
varying function of 8' compared to Rea, as seems
usually to be the case. Recurrences of given resonances
on more than one sheet are not listed, and the sheet is
given only if the resonance is seen only from somewhere
other than the real axis as approached from sheet I. In
this latter case, the zero of Rea-is on the real axis as
approached from sheet III with respect to the threshoM
indicated.

B. Pion-Nucleon System, F=1

Only for pion-nucleon elastic scattering does there
exist a well-defined set of phase shifts. For all other
channels we must compare directly with cross-section
data. However, many of the channels exhibit strong
contributions from higher partial waves. If we are to
compare an experimental cross section with a theo-
retical value calculated from an s-wave amplitude, we
must restrict ourselves to processes which are dominated
by s waves. In the case of pion-nucleon elastic scattering
we can compare directly with existing sets of phase
shifts. For comparison, in the I=~ channel we have
plotted the results of Sareyre et al.,"Donnachie e$ al. ,"
"P. Bareyre, C. Brickman, A. V. Stirling, and G. Villet, Phys.

Letters 18, 342 (1965).
"A. Donnachie, A. T. Lea, .and C. Lovelace, Phys. Letters 19,

146 (1965).

Fxo. 3. Same graph as Fig. 2. Data for 831 by Donnachie et al.
(Ref. 16). Data for S» by Lovelace et al. (Ref. 18).

"B.H. Bransden, P. J. O'Donnell, and R. G. Moorhouse, Phys.
Rev. 139, B1566 (1965); Phys. Letters 19, 420 (1965)."C.Lovelace, Proc. Roy. Soc. (London) A289, 547 (1966).
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and less so in others. Curves may be seen in Figs. 5 and 6
for solutions I and II, respectively. In all cases, the
elasticity g predicted by our model is much too great.
A possible explanation for such a high value of g may be
the fact that only two-body s-wave channels &vere con-
sidered. In such a model the lowest inelastic threshold
is EZ at 1683-MeV center-of-mass energy in the I=+~
channel, and ge at 1488 MeV in the I=-', channel.
However, if we consider the possibility of other than s
waves, the production of d wave sN*(1236) can oc ur
in both isotopic spins and has a threshold of 1376 MeV.
Other channels with numbers of particles greater than
two, such as nonresonant mE~xmS, might further
contribute to the elasticity. In the I=~ channel, the
elasticity g starts differing signilcantly from 1 at an
incident pion kinetic energy of about 500 MeV, or a
total center-of-mass energy of 1450 MeV, so the con-
tribution of higher partial waves is signilcant. However,
in the I=—, system, inelasticity begins at a pion kinetic
energy of about 600 MeV, or the vicinity of the ge
threshold. Also, as shown by Richards, " the process
s. p~gn does account for the major portion of the
inelasticity in the I= ~ channel. This particular reaction
is discussed in more detail below.

In the I= +& channel, the Ss~ resonance at about 1700
MeV is highly inelastic and the phase shift always

I 1000

w ]

FIG, $. Same graph as Fig. 2. Curve for both graphs predicted
from solution I.

1050

S)t

698

remains negative. In both our solutions, the phase shift
initially becomes negative, but since g~1 it swings back
to the positive. Solution I exhibits a resonance at mass
1594 MeV and width 217 MeV. Rosenfeldss lists the Ssq
resonance as having mass 1670 MeV and width 180
MeV, so the 'agreement is rather good. Solution II does
not display any resonance in the region plotted. How-
ever, further calculations outside of this region indicate
that a resonance does occur at amass of about 2100 MeV.

Both solutions show a resonance in the I= ~ channel
in the region plotted. Solution I yields a mass of 1417
MeV and a width of 258 MeU, while solution II gives a
mass of 1355 MeV and a width of 144 MeV. This
resonance is presumably to be identiled with the lower
of the two S~~ resonances seen in the phase-shift
analyses of either Bareyre et ul. or Bransden et al.
Rosenfeld lists a mass of 1570 MeV and a width of 130
MeV. The higher resonance at mass 1700 MeV does not
appear in either solution.

The only inelastic process which is strongly s-wave is
qe production. Bulos et al.2' observe isotropy up to an

FIG. 4. Same graph as Fig. 2. Data by Bransden et al. (Ref. 17).

9 W'. Bruce Richards, Charles B. Chiu, Richard D. Fondi, A.
Carl Helmholz, Robert %'. Kenney, Burton J. Moyer, John A,
Poirier, Robert J. Cence, Vincent Z. Peterson, Navender K.
Sehgal, and Victor J. Stenger, Phys. Rev. Letters 16, 1221 (1966).

'0 Arthur H. Rosenfeld, Angela Barbaro-Galtieri, William J.
Podolsky, Leroy R. Price, Paul Soding, Charles G. %'ohl, Matts
Roos, and William J. Willis, Rev. Mod. Phys. 39, 1 (1967)."F.Bulos, R. E.Lanou, A. E.Pifer, A. M. Shapiro, M. WidgoG,
R. Panvini, A. E. Brenner, C. A. Bordner, M. E. Law, E. E.
Ronat, K. Strauch, J.J. Szymanski, P. Bastien, B.B.Brabson, Y.
Eisenberg, B.T. Feld, V. K. Fischer, I. A. Pless, L. Rosenson, R.
K. Yamamoto, Q. Calvelli, L. Guerriero, G. A. Salandin, A.
Tomasin, L. Ventura, C. Voci, and F.' Waldner, Phys. Rev.
Letters 18, 486 (1964l.
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have detected signi6cant anisotropy at an energy of
655 MeV. Dobson~ has applied the eGective-range
approach to the problem of ge production and has
achieved a reasonable 6t to the data through 700 MeV.
He is able to attribute the large yn production cross
section to an ge virtual state which is associated. with a
pole in the scattering amplitude on sheet III in our
diagram.

Presumably this pole is to be identi6ed with the 1570-
MeV SIq resonance. However, in the limit of exact
SU(6) synnnetry, the element of the projection matrix
of the 70 representation between sN and qlV is zero. So
if, following Gyuk and Tuan, we place the 1570-MeV S&&

resonance in a 70 representation, then it can contribute
to pn production only via symmetry breaking. We have
plotted the experimental cross section and that pre-
dicted from solutions I and II in Fig. 7 for the process
s- p~gn where the g decays into two photons. The
branching ratio E (p —+ 2p/g -+ all decays) is taken to
be 0.35 in agreement with Richards. Solution I gives a
ge production cross section that is essentially zero.
That for solution II does resemble the experimental
cross section, but is too small by about a factor of 2.

700

FIG. 6. Same graph as Fig. 2. Curve for both graphs predicted
from solution II.

incident pion kinetic energy of approximately 950 MeV.
However, Richards et al. ," using an experimental ar-
rangement involving two additional spark chambers,

C. X-Nucleon System, F=2

As seen in the data of Goldhaber et al. ,23 the ES
system appears to scatter isotropically up to ao incident
K-meson momentum of 600 MeV/c. In this energy
range, the only two-body channel open is the elastic
one, so we have but one cross section available for
comparison. No resonances have been observed experi-
mentally in this energy range.

1.2

Bulos et a1.

Ri cnards et a 1 .

1.0

0.8-

0.6-
FIG. 7. Experimental and

predicted cross sections for
~ penn 9~27.

0.4-

0.2—

I

500 600
I I I I I

700 800 900 1000 1100

INCIDENT PION KINETIC ENERGY (Me V)

I I l

1200 1/00 1400

"Peter
¹ Dobson, Phys. Rev. 146, 1022 (1966).

~ S. Goldhaber, W. Chinowsky, G. Goldhaber, W. Lee, T. O'Halloran, T. Stubbs, G. M. Pjerrou, D. H. Stork, and H. K. Ticho,
Phys. Rev. Letters 9, 135 (1962).



s —%AVE MESON —BARYON SCATTERING 1375

14' 0—

12+0—

10.0—

Fxo. 8. Experimental and
predicted cross sections for
E+p elastic scattering. Data
by Goldhaber ef aL {Ref.
23).

8 0

$,0

R 4 ~ 0—

I I

&QQ 200
I i l

$00 400 $00
1 I

600 ')00 800

INCIDENT K MESON MOMENTUM (Mi. V/c)

The ++P eiastic cross sections from both our solutions
vary quite slowly over the entire energy interval, just as
does the expcrimenta]. cross section. However the
~g~~~m~nt i»»ol«e value is not good, being off by as
much ~ a factor of 10. Experimental and predicted
cross sections are presented in Fig. 8. Rea has no zeros
in either isotopic spin, and therefore no resonances are
predicted.

D. EC-NUcleon System, F=o
In thc ++ system, thc clastic, charge-exchange, Rnd

~~ a&d ~& production angular distributions, as seen in
the results of Sakitt e$ gl.» and K.ittel t',$ al.,» are

isotropic up to about &00-MeV/c incident E-meson
momentum. The well-known theory of Dalitz a,nd
Tuan ls csscntlally R multichannel effective-range
analysis which includes Coulomb e6'ects. Hence the
Dalitz-Tuan parameters reQect the behavior of the
closs scctloQs ln tIM mentioned cQcI'gy lntcrval, and not
just at threshold. Therefore, a good 6t to the Dalitz-
Yuan parameters with our model will mean that we can
reproduce the experimental cross sections vrith con-
siderable accuracy. The theory predicts a bound state
of E p which is aiso a resonance in the Zs system, and

may be identified with the I'ee(1405).
In addition, the gA. production cross section from

FIG. 9. Experimental and
predicted cross sections for
E p elastic scattering. Data
by Sakitt eI, al. (Ref. 12).
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FIG. 10. Experixtmntal
and predicted cross sections
for E p charge-exchange
scattering. Data by Kittel
@ al. (Ref. 13).
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threshold to a center-of-mass momentum of about 200
MeV/c is strongly s-wave. These data show a large rise
and subsequent drop near threshold. ~' Such behavior
can perhaps be explained by assuming a resonance of
lsotoplc spin 0 and a mass of about 1670 MeV.

Predictions for the cross sections for E p dastic and
charge-exchange scattering and Z m+, 5+m, and A.y
production as calculated from our model are presented
along edith experimental results for comparison in Figs.

9-i3. As before, the results are not too good on an
absolute scale, but do show the correct qualitative be-
havior. In the case of elastic and charge-exchange
scattering, solution II even comes close on an absolute
scale. The Aq production cross section predicted by
solution II is essentially zero, and therefore seems not
to be shown on the graph.

Calculations of the determinant D of the inverse
scattering matrix as a function of total center-of-Inass

LU 50
CA

Fgo. 11. Experimental
auld predated cross secbons
for 7-g+ productjon in E P
scattering. Data by Sakitt
et aL (Ref. 12).

INCIDENT K MESON MOMENTUM (NeY/c)

~ D. Berley, P. L. Connolly, E. L. Hart, D. C. Rahm, D. L. Stonehill, B. Thevenet, W. J. Nil»s, and S S &amainotoy Phys.
Rev. Letters 15, 641 (1965)."P.L. Bastien, J. P. Serge, 0. I. Dahl, M. Ferro-Luzmi„D. H, Miller, J. J. Murray, A. H, Rosenfeld, and 8, ltVatson, Phy . Rev.
Letters 8, 114 (1962).

~s Q. M. Rose, Jr., snQ D, &. Carpenter, Bulj Am. Phys, See. 12, 48 (&9@').



A~K MFS N-»ROON S A p I E R

12, F„
&nd pred' d

xPeriln

~or g+ — ection

Ii
~ ~

Ii

I

100
I

200

P

&00

energy p reveal a n~ber 0

INCIOE NT K HESOX MQMENTuM (MeVNTuM (MeVyc)

s s, o u ion predicts one resonance. In
'

eVance. In solut1on 35 MeV
as an experimental &width of

es t is resonance at 1375 M
e . InsolutionII' h

eV

a11,a w16'th of 2 MeV. 3
uc a r

'
press1vely close b

'
s

the I=0 syst tion I occurs
yonthe A.

s em in solu

or ing to irreduci

res old. This le
eV, ver nry near the gh.

system exh'b'
a es.

resonance

mon between

l
ntbeh v p ction. Our l t

h A 'on does not exhibit ar-

is or solution II where

Rose et al.

Berley et at.

Bastien et a'I.

1.0

FIG. 43. Ex e
'

xperim entail
ic e cross sections

p 0 Uctlon ln E P
ermg. P'

C)

Oe5

()
I

t,')

150

CENTER-0&-MA-MASS MQMENTUM QF (Mev/c)



1378 DAVID C. CAREY 169

there is no resonance present. Although the mass is
exactly right, the wid. th is 330 MeV, compared to an
experimental width of 18 MeV.

V. CONCLUSIONS

It has been seen that by including SU(6) in a very
simple model of meson-baryon scattering we have been
able to calculate many of the s-wave resonances.
Essentially all the observed resonances in the 70 repre-
sentation are accounted for. Predictions of the magni-
tudes of the various cross sections leave something to be
desired. and could be improved in a number of ways.
First, the SU(6) symmetry breaking could be computed
more exactly by taking into account the specific nature
of the forces in the cross channels. Second, additional
SU(6) symmetry violation in the direct channel could.
be considered by including resonance production in
higher partial waves than the s wave.
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APPENDIX A: PROJECTION MATRICES

Matrix elements of the projection operators for the
product of SU(6) representations 35 and 56 onto the
irreducible representations 56, 70, 700, and 1134 are
listed. These tables were computed from the tables of
Meshkov et Ol. and those of de Swart. The states are
labeled with particle names for convenience but are
taken to be the eigenstates of isotopic spin I and
hypercharge F in Meshkov's paper with positive sign in
all cases.
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