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We have also assumed that the I=. J=j. channel is
dominated by the p meson and the I=0, J=2 channel
is dominated by the f' meson. It is also of interest to
examine the pion-pion cross sections predicted by our
model. In Fig. 6 we show the total cross sections in the
I=J=O and I=J=1 channels. It is of special interest
to note that for such a broad s-wave resonance, although
the phase shift passes through 90 at the e mass, there
is no "peak" in the cross section, but only a "shoulder. "
Thus it is not possible to observe the e by merely looking
at the pion-pion center-of-mass energy distribution.
Hence we must rely on indirect, model-dependent

determinations of the pion-pion phase shifts until direct
pion-pion scattering "experiments" are possible. "

While the e will not manifest itself as a typical reso-
nance "peak, " we have seen that it is very useful to
introduce the e parametrization for the low-energy
pion-pion interaction to describe a variety of experi-
mental data.

It would be extremely useful to have accurate mea-
surements of quantities from which one could infer
pion-pion phase shifts in order to better understand the
pion-pion interaction.
"P. L. Csonka, CERN Report No. TH 836, 1967 (unpublished).

PHYSICAL REVIEW VOLUME 169, NUM BER 5 25 MA Y 1968

Solutions of the Faddeev Equation for Short-Range Local Potentials*

JsMEs S. BsLLt
University of California, Los Angeles, California

DAVID Y. WONG

Un& ersity of California at Sun Diego, La Jolla, California
(Received 22 January 1968)

A systematic method for solving the Faddeev equation for three bodies interacting through two-body
local potentials is presented. This method is then applied to the problem of three identical particles inter-
acting through a Yukawa potential, and the convergence of the method is studied numerically. Solutions
are obtained for one particle scattering oB a bound state of the other two, as well as for the three-particle
bound-state case.

~ 'HE application of the Faddeev equation to non-

relativistic three-body problems has been of con-
siderable interest, as seen in the literature. ' ' In the
present work we address ourselves to the question of
how one would solve the equations systematically once
the two-body potentials are given, local or otherwise.

The angular momentum decomposition of the Fad-
deev equations was erst treated by Ahmadzadeh and
Tjon, ' resulting in a set of coupled integral equations
in two variables. If the two-body potentials are taken
to be separable (nonlocal) as was considered by a num-

ber of authors, ' ' then the integral equations reduce to
one variable and can be solved by ordinary numerical
methods. It was suggested by Zambotti and one of us
(DYW)s that even if the potentials were local, it would
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still be convenient to expand the two-body T matrix
as a sum of separable terms. A generalized effective-
range-type expansion was introduced and applied to the
Vukawa-potential problem. ~ Although the method
proved to be useful, the treatment was not entirely
systematic. In the present paper, we suggest a system-
atic way of expanding the two-body T matrix for the
solution of the Faddeev equation below the three-body
threshold and show that the expansion converges fairly
rapidly for potentials characteristic of strong inter-
actions. This method is applicable to the calculations
of bound-state energies and wave functions as well as
the scattering of a particle by a bound state of two
other particles. The problem of extending beyond the
three-particle threshold is discussed at the end. The
treatment of Coulomb potentials is reported in a sepa-
rate paper. '

Although the method outlined below is applicable to
any angular momentum state of the three-body system,
we consider, for convenience, only states corresponding
to zero total angular momentum and no spin. For this
three-body state, the Faddeev equation can be written

9 J. S. Ball, J. Chen, and D. Y. Wong (to be published).
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in the form

+~"(P q' s) =@'~'*'(P q' s)+&
ls=O

Usg (—1)'+'[(21+1)(2E'+1)]'I'Pg(s,/)Pz (s,/')t&('&(P P ", s—q')
dp/'

4n.n;,p;,q(p, '+q 2 s)—

X%'p&'&(p;,q;;s) for i=1, 2, 3, (1)

where 4'&&"(p,q; s) is the three-body 2"-matrix element
with particles j and k (j&k&i) undergoing 6nal-state
interaction with relative angular momentum l. The
quantity p is proportional to the magnitude of the
relative momentum of j and k, and q is proportional to
the magnitude of the momentum of particle i, in the
three-body center-of-mass (c.m. ) frame. The initial
state is arbitrary. C&&'&(p,q; s) is the corresponding T-
matrix element in the absence of interactions between
particle i and particles j and k. t&&'&(P,P', E) is the two-
body T-matrix element for the interaction of particles
j and 0 with angular momentum /, normalized to
t&&'&(p,p; p')=(e"&sinh&)/p; p'=c.m. energy. s is the
total energy of the three particles in the c.m. system.

n;, = (m;tn;)'"/[(m+t&s&)(m, +m/)5'"; i' /k
P . .—(1 ~, .2) 1/2

p, 2 p,2+q 2 q2

s.. ( 1)P[~..2(q.2 q2)+P. .2(q2 P 2)]/(2/s P. P~q). . . .

s' '= ( I)'5 q—'+0*'P—'+~"q"'j/(2~' P* P q )
E=cyclic permutation of i, j,

U;;= (a;,q, +q)'/P;, ',
I.*/= (~ /q/ q)'/0"—
It is clear that if t&~'&(p, p;; s—q') is expanded in a

sum of terms separable in p and p;, then the p depen-
dence of 4'& &'&(p,q; s) is explicit (p does not appear in the
kinematic functions s;;, s;;, or the limits of integration)
and the integral equations (1) can be reduced to equa-
tions involving q only.

In a problem where the two-body potentials are given,
the two-body T-matrix can be obtained from the solu-
tion of the Lippmann-Schwinger equation:

Since the argument E is replaced by (s—q') in the Fad-
deev equation, it is negative definite provided the three-
body total energy s is below the three-body threshold
(s=0). For negative values of E, the (p'"—E)-' factor
in (2) is nonsingular, and it is well known that the solu-
tion for t~ can be expressed in terms of eigenfunctions of
the homogeneous equation as follows. The solutions /t/

of the homogeneous equation and the corresponding
eigenvalues )„are dedned by

„,p"I (p p")

7i 0 p"' E-
with the orthonormality property

„,P"~-(p";E)~-(p",E)
p//2

Since /t„constitutes a complete set, the two-body 2'

matrix can be expanded in the form

«(P P" E)=E C-(O' E)4-(P' E).

Substituting (5) into (2) and making use of (3) and (4),
one Gnds

I-(E)~
t(p,p';E)=Z ~.(p;E)~-(p', E). (6)

~ 1—)„(E)

Having obtained /t „(p;E) by solving (3), we can use
the expression (5) for t& in the Faddeev equation (1).
Since the p dependence is now explicit, 4'&&"(p,q; s)
takes the form

X„&&'&(s—q')
+ "'(p,q;s)=C "'(p,q; )+Z

1—X &&'&(s—q')

&&&- "'(P' —q')&t. "&(q' ) (7)

t (p p 'E)=I'(p p')

p"VE(p,p")ti(p",p';E )
p//2

Note that the two-body eigenvalues X and eigenfunc-
tions /t„must also carry the indices i and L

Substituting (7) into (1), one obtains a set of coupled
single-variable integral equations for X„&t'&(q; s):

~ "'(q )=."'(q )+Z dq'&-. - ""(q,q )&" "'(q; ),

~-~"&(q;s)= 2
l' jets

dp .2

(—I)'+'L(2t+1)(2I'+I) j"'&&(s'/)&~ (s' ')4-~ "/&(P', s q')—
X @'~ "'(P/, q/", s), (9)

4~n p q(p'+q/ s)""—
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E„I,„.p&"&(q',q;;s)=
Usg

Lsg

(—1)'+'L(2f+1)(2~'+1)j'"~~(sv)&~ (sv')
dp. 2

4«vp'K(PJ'+5' s—):& "—- I "'(s q—')j
X4«"(p's —q')4 I'"(s—q')4 I "'(ps,s—qP) (10)

Let us first examine the singularities of the kernel E
given by (10). If the total energy s is positive (above
three-particle threshold), then there is a region 0&q'&s
where the two-body energy (s—q') is positive and the
expansion (6) in general fails to converge. We shall
return to this problem later. For negative values of s,
there are two possibilities: (a) There exist two-body
bound states. For each bound state, say of energy —E&,
there is a corresponding eigenvalue X which is equal to
unity at Es. The —denominator [1—X" I I&'&(s—qp)] in

(10) then vanishes at qP=s+Es for s& Es, there—fore
creating a branch point for X„II'&(q; s) at s= Es. —
Three-body bound states can only occur below the
branch points. The region between the lowest and the
next branch point is the energy range for purely elastic
scattering of a particle by the ground state of a two-
body system. A single inelastic process occurs above
the second threshold, and so forth. (b) There is no two-

body bound state. In this case, the kernel is purely real
below s=0 and possible three-body bound-state energies
and wave functions are determined by solving Eq. (8).

So far the initial states of the three-body system are
left unspecified. This is possible because the kernel of
the integral equation is independent of the initial states.
For a physical scattering process, one would have an
initial state consisting of two particles; in the present
case, a particle plus a bound state. One finds that an
initial state of particle1plus a bound state of (2,3) with

energy so and angular momentum /0 corresponds to an
inhomogeneous term

dard numerical methods. For s above the lowest branch
point, the kernel must be taken as the limit of s ap-
proaching the real axis from above. One can either use
numerical methods for complex arithmetic or the
Fredholm reduction method given by Noyes" and
Kowalski "

The example of a Yukawa interaction for three
identical spinless particles is investigated in detail to
test the rate of convergence with respect to e (like a
principal quantum number) as well as to l. It is found
that the solutions converge rapidly with respect to l
but less rapidly with respect to n for potentials charac-
teristic of strong interactions. Specifically, we examine
a unit-range attractive Yukawa potential V= —g'e "/r
with strengths g' varying from 1 to 2.4. The masses
of the particles are taken to be unity. The 6rst two-
body bound state appears at g'= 1.67 while a three-body
system has a bound state at g'= 1.4. The curve for bind-

ing energy versus g' is plotted on Fig. 1 for various
values of eo with /=0. The quantity qcotbo for the
scattering of a particle by the bound state of the other
two is shown in Fig. 2 for g'=2.373, and also with
various values of fio. It is found that the 1=2 contri-
bution is negligible for both of these plots. The bound-
state curve is in good agreement with corresponding
results of Osborn. '

From the results of the preceding analyses one can
draw the following conclusions. Since the three-body
problem at a given energy s requires the knowledge of
the two-body T matrix at energies (s—q'), where

@Ip'"(P,q) = (4/~q)~Ip'"(P —Po, s—qo')~(q' —qP')
QQ ~8 SQ (11)

where pp and qp are the p and q of the initial state. Since
~IpI'& has a pole at s—qp' ——sp, CI,I"(P,q) can be written as

@I "'(p q)
mq

4-,I."'(P; ») 4-pI. "'(PP; so)
X b(q' s+sp). (12)—

— —x pI,
' (sp)(s—qpp —sp)

K
(9
LLIz.'
LIJ

-I.O-

I

——n, =t
0

Now multiply both sides of Eq. (1) by P(s—qp' —sp)/
p„,&"»(pp, sp)j and take the limit qps~s —sp. It is
easily seen that a11 the inhomogeneous terms vanish
except C'~, (", and that the wave function of the initial
(2,3) bound state P„pIp&'&(Pp, sp) is factored out of the
equation. The substitution of this 4 function into (9)
gives an explicit inhomogeneous term g„~(') for the
scattering problem, and Eq. (8) can be solved by stan-

l.6 l.8 p 2.0 2.2 24

"H. P. Noyes, Phys. Rev. Letters 15, 538 {1965).
» g. L. Qo~alski, Phys. Rev. Letters 15, 798 {$965).

FIG. 1. Binding energy as a function of g and n0, the number
of terms kept in the expansion of the two-body amplitude. The
solid curve is the binding energy of the second three-body bound
state.
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oo )q &0, it is not certain, a priori, how well the eigen-
function expansion converges. The examples we have
studied show that the convergence is sufficiently rapid
and therefore the mathematical complexity of solving
this kind of three-body problem is comparable to that
of solving a problem for a few coupled two-body
channels.

For energies lying in the continuum of the three-body
spectrum, the method discussed above must be modified.
Here one can 6rst obtain a separable expansion of the
two-body T matrix using the Fredholm reduction
method suggested by Kowalski. "The substitution of the
two-body T matrix into the Faddeev equation now

yields a complex kernel for all values of (s—qs)) 0. In
addition, there is a singularity due to the three-body
Green's function (Pts+qts —s) '. Numerically, the equa-
tions are more diKcult to solve but the mathematical
structure is basically the same as the problem below the
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FIG. 2. Plot of gcotb for g'=2.373 as a function
of energy for various values of no.

three-body threshold. As for the rate of convergence
with respect to the number of terms in the two-body
T matrix, one must again test it against some examples.
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Recently, a diKculty was pointed out by the author in the proof of the so-called Fubini —Dashen-Gell-Mann
sum rule given by the last two authors using an in6nite-momentum limit. This difIIiculty, which is connected
with the locality of the current, is solved here assuming certain regularity properties for the weight functions
of the Jost-Lehmann-Dyson representation which one can write for the one-particle matrix elements of the
commutators involving the current and/or its divergence. This mates it possible to express the equal-time
commutator of the time components as a sum of ordinary coeariant dispersion integrals where the depen-
dence in the momentum is explicit, thus leading to a straightforward proof of the sum rule from the p -+ oo

limit. As is required by Lorentz invariance, this limit in fact turns out to be unnecessary, since the result is
also obtained for Gnite p. Also, the same technique, applied to the equal-time commutator of the time and
the space components of the current, shows that they must be of the form usually assumed in current-
algebra calculations.

the proof of the FDG sum rule given in Ref. 3 starts
from the relation

'N a recent paper by the present author, ' the proof of which can be expanded in terms of invariants as
~ ~ the Fubini' and Dashen and Gell-Mann' (FDG)
sum rule given in Ref. 3 was criticized by means of the t. =ap.p+&(p.q+ p.q.)+cq.q.+dg",
Jost-Lehmann-Dyson representation.

If one introduces, as in Ref. 1,
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X(ct sPs'+2& sPoqo+c'qo'+d «j (3).
In (3) one integrates for lixed tl. It is easily obtained
from (I) and (2) by assuming the usual commutation
relations between Ao and Ao& at equal time.

In the method of Dashen and Gell-Mann, ' one
assumes that, if one lets P-+ oo, with y tI=O, (3) can


