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in6nity faster than any inverse power of E, it can be and, this fact ensures the convergence of the integral
shown, by means of some simple manipulations, that appearing in Eq. (18).

Ke have therefore completed the proof of the exis-
tence of a local potential yielding the form (13) of the
phase shift.

It follows immediately that
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A general helicity formalism is developed for the determination of spin and parity of boson resonances
of arbitrary spin which have sequential decay modes. The procedure is illustrated with a few simple but,
in practice, important decay modes, namely, 1 +1, 1++0, and 2++0, where 1+ and 2+ mesons in
turn decay into 2 or 3 pseudoscalar mesons. The method proposed here is independent of the dynamics of
the production and decay process.

I. INTRODUCTION

E present in this paper a general helicity formal-
s

~

~ ~

ism' ' that enables one to determine the spin
and parity of boson resonances with sequential decay
modes; we treat as the maximum complexity the case of
a boson resonance decaying into two intermediate bos-
ons of arbitrary spin, both of which in turn decay into
three pseudoscalar mesons. It is shown that the formal-
isrn thus developed can easily be applied to cases when
the intermediate bosons decay into two pseudo-
scalar mesons or one of the intermediate bosons is a
pseudoscalar.

Our basic tool for the spin-parity determination is the
moments which are experimental averages of the prod-
uct of three D functions (see Appendix A and Ref. 12).
It is shown that these moments are conveniently pa-
rametrized in terms of the multipole parameters. ' ' Our
main task in this paper has been to show that there exist

*Work performed under the auspices of the U. S. Atomic En-
ergy Commission.

~ For the helicity formalism, the reader is referred to the stan-
dard work: M. Jacob and G. C. Wick, Ann. )Phys. (N. Y.) 7, 404
(1959). However, we use a slightly different convention for the
argument of D functions, ' instead of their D„~(q, e, —q), we use
D„~(y,8,0).

~We give three references for diferent approaches to spin-
parity analysis of bosons: M. Adenmllo, R. Gatto, and G. Pre-
parata, Phys. Rev. 139, 31608 (1965); C. Zemach, ibiX 140,
3109 (1965);E. de Rafael, Ann. Inst. Henri Poincare 5, 83 (1966).'

¹ Byers and S. Fenster, Phys. Rev. Letters ll, 52 (1963).
4 See the 6rst of two lectures by J. D. Jackson, High Energy

Physics (Gordon and 3reach Science Publishers, New York,
1965).

linear relations among di6erent moments for certain
spin, -parity combinations of the parent bosons and that
for some of the linear equations the coeKcients them-
selves are known functions of the spin of the parent
bosons; this a6ords a straightforward means of deter-
mining the spin and parity of the parent bosons.

A remarkable aspect of this method is that it is inde-
pendent of the detailed dynamics of the production and
decay mechanism of the parent bosons. In addition, our
method is independent of the interference among the
three decay products of either of the intermediate bos-
ons. Our method does not apply, however, if there ex-
ists appreciable interference between the decay products
of one of the intermediate bosons with those of the
other. It is shown that our method can still be applied,
if we limit our analysis to those events for which the
interference is minimal. Of course, there is always the
problem of interference with background events. How-
ever, our method can be used if the interference is not
appreciable and if the moments for the background
events alone are small, as should be the case when the
background events consist mostly of phase-space events.

In Sec. II, we derive the general angular distributions
starting with the Lorentz-invariant amplitude for the
production and decay of the parent bosons. We intro-
duce in Sec. III the multipole parameters and then the
moments and give the symmetry properties satisfied by
these moments. In Secs. IV—VI, we illustrate our spin-
parity analysis with simple but, in practice, important
examples. These include the ca.se of a boson resonance
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decaying into a vector and a pseudoscalar meson,
which has been treated in our earlier work~ and by
others, ~ as well as into a pseudovector and a pseudo-
scalar meson. In addition, we consider the decay
into two vector (or pseudovector) mesons and into a 2+

meson and a pseudoscalar meson. Finally, our method is
further illustrated in Appendix 8 with the example of
a resonance decaying into 7r+fs(1250); the relevant
tests are given directly in terms of the experimentally
accessible angles.

It is hoped that our methods provide a timely tool for
analyzing the recently reported resonances' with decay
modes of p+ p or 7r+ f'(1250) It .is perhaps inevitable
that, should higher-spin boson nonets exist, they would
have appreciable decay modes into the 0, 1, or 2+
nonets.

II. ANGULAR DISTRIBUTIONS

Let us consider a reaction which produces a boson
resonance 8 with spin J and parity g'.

a+b ~B(J6)+c.

The resonance 8 then decays into six pseudoscalar
mesons via two intermediate bosons 8~ and 82 with
spins S& and S2 and parities p& and p2, respectively:

B(Js) -+ BI(SI6')+B2(S262)

X(M 67 yM78 yQ2 ys I
O)12

I S2)12)(Slkl Ss)42 gpQ I
OR

I J&)

X(c,JA
I
2'I tz, b)3(MI, I'I) 3(M2, 1'2)3(MII, I'll), (4)

where the first, the second, and the third fs,ctor in (4)
are the decay amplitudes for 8&, 82, and p, and the
fourth factor is the transition amphtude for the reaction
(1). As usual, A., )ll, and ) 2 denote helicities for B, Bl,
and Bs, respectively. 5( MI,II I)Iis the Breit-Wigner form
given by

8(Mn, l'II) = 1//MII2 (Mss —iI—'ll/2)'j (5a)

where M~' and I'g are the mass and width of the reso-
nance S.Likewise, we have

of Bl+B2 428+ 484+ 446 446+ I87+ 488 alld 488+44 systems
respectively. q and Q(8, 67) describe the magnitude and
direction of Bl momentum in the rest frame of B (BRF),
where we choose the s axis parallel to the direction of
B in the c.m. system. 4ol, 81, and yl (672, 82, and ys) are
the Euler angles for the con6guration of a3, a4, and a5
(486, a7, and 488) in the BIRF (B2RF) with QI(81, 4ol)
LQ2(82, 672)] deSCribing the nOrmal tO the deCay plane.
Again, the coordinate system for angles Ql (Qs) has the
z axis parallel to the direction of Bl (B2) in the BRF.'6

The Lorentz-invariant amplitude A in (3) is given by

(M84', M46')Q1~71 IO)i:I I Sl)11)

486+487+488

IZ8+ 484+ 486 ~

(2) 5(M1,2) I'1,2) =1/L M, I'—2(Ml, s'—zl'1, 2/2) g, (5b)

where M~, 2 and F~,2 are the mass and width of 8~,2.
The decay amplitudes in (4) are given by' "

, (&r
d cos86 l(gdMIIdQ)

&Z2P gp spins for a, b, c

where as through 448 denote the six pseudoscalar mesons
The cross section for this chain of reactions is given by

412 (MByMlgM2)Dsll —12 (62~8~0) ~ (6a)
do- (M 842,M462, QI,yl IOit'I

I SI) I)

(dMI
dQIdgldM842dM46'

I

t dM2
X

I
dQ2d y2dM67 ™78I ~ (3)

&M2 ~

where Ez stands for the total energy in the c.m. system
of a and b, and I';(I'g) is the c.m. momentum of Iz or b

(B or c) and 86 is the angle between B and a in the c.m.
system. M~, Mj., M2, and MI„are the eGective masses

5 S. U. Chung, Phys. Rev. 138, 81541 (1965).
6 M. Ademollo, R. Gatto, and G. Preparata, Phys. Rev. Letters

12, 462 (1964). See also Ref. 2.
7 S. M. Herman and M. Jacob, Stanford Linear Accelerator

Rept. No. SLAC-43, 1965 (unpublished). See also Ref. 11.
8 C. Zemach, Nuovo Cimento 32, 1605 (1964).' A 3m enhancement at around 1660 MeV has been reported at

the Heidelberg Conference, September 1967, with appreciable
decay mode into 7r+f'(12 0)5(unpublished). For a possible p+p
resonance at 1401 MeV, see A. Bettini et al. , Nuovo Cimento 42A,
6N (1966).

p'(MI, M84'M46')Dl, „"(671,81,71), (6b)

(M 67 pM 78 g Qsy'ys
I
Olt2 I S24)

=Z F.'(M~~M67')M78')D12, "(q 2,82,ys), (6c)

where I'q,q„F„',and F„' are the helicity amplitudes for
8, 8j, and 82, respectively, and the D ~ ~ functions are
the (2/+1)-dimensional representation of the rotation
group as defined in Rose."If 82 decays into two pseudo-
scalar mesons ae and a7, the decay amplitude is given by

(gs, Q2IO)i'2IS2X2)=F (Ms)D& 6 4*(46t2,82,0), (6d)

where qs and Qs(82, 672) are the magnitude and direction
of the a6 momentum in the 82RF. The parity conserva-

"For a more detailed de6nition of angles & and Q&, see Appen-
dix B.The angle 02 is dered in the same way as the angle O» S. M. Berman and M. Jacob, Phys. Rev. 139, 81023 (1965)."M. E. Rose, Elemenzary Theory of Angular 3lomenlum (John
VViley R Sons, Inc., Nevr York, 1957).
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tion in the decay process leads to the following sym- where Z(MB,M&,M2) contains all the kinematic factors
metry relations' ' ": as given in the following:

PX»XS 6P—yl—) S
J— J

F 1
~ ( )&)+1F 1

F2 &t ( )&+1F2

F'= 0 if &)2( ) s& 1

where e is de6ned to be

Owing to the symmetry relations for the J's as given
in (7) and the definition of g as given in (12), we obtain
the following properties for g:

(7a)
E.(MB Ml M2) (Pf/P~)(I7/(M1M2))

(7b)

(7c) X
~
8(MB,I'B)5(M1,1'1)5(M2, 1'2)

~

'. (13)

(7d)

( )z-s)-ss

If 8» and 82 are identical particles, we have the addi-

tional relation'

8i'
g~l~S) 1 ~S g—~l—~S~l ~S CX1~9 ~1 —~S

P,V

g-1&-12-1&'—12'"") (14a)

F.,1,'(MB,M,M )= (—)'F1„,&(M„M,,M,).
If g3 and u5 are identical particles, we also have»»

F '(M M 'M ')=(—)s'F '(M M 'M22)

Similarly, if a6 and ua are identical, we get

F 2(M M 2 M 2) ( )S&F 2(M2, M722 M672)

(9a)
g"'= rtr( —)"+'g""=&)2(

—)~'g"" (14b)

g)ilhSX1'XS' gal'XS'XlkS (14c)

In case there are identical particles in the problem, we

(9b) have from (9a)

fx&121&'12) ( ) g121&1&)12' ( ) g111212'1&'

=g 1,21.12.1&" (15a)
and, from (9b) and (9c),

Now, we deine the density matrix for the 8 reso-

nance as follows:
gfttV = g

PV —gP
—V —g-p-V (15b)

p«, &(MB) tf costs g (c,J'A
I
T

I a,f))
spina for a, b, d

X(o,b i
Tt (s,IA'). (10)

Sy this de6nition, the density matrix is in general a
function of Mg. The limits on the cos80 integration is

meant to correspond to the experimental cuts used in

case of the peripheral production of B.The diQerential

cross section can be written in terms of the density ma-

trix P.—=)1—)),2, )'=—4'—)2'):

~P«' (MB)g111211 12 (MB)
dj/IadOdQ»dQs

XDa1 '()P,8,0)Da 1 ~(62,8,0)D1,„s&*()P1,81,0)

XD1&."(vt)81)0)»2" (vs)f)2&0)D1;,"(vs&f)2&0) ) (11)

Now, we deine I(MB,Q,Q1,Q2) to be the angular dis-
tnbutson for a given e8ectsve mass Mg,

I(MB,Q,Q1,Q2)
dM~dQdQ»dQ~

which is normalized to 1, i.e.,

dMBdQdQtdQ2I(MB, Q,Q1,02) = 1. (16)

t'27+1) 25',+1&I 252+1
I(M„Q,Q„Q2) =

~

I 4~ ) 4& j 4w

XP«' (MB)g4121)'12'" (MB)Day (Q)Dtaix) ~(Q)

It is easy to see from (A3) that the normalized angular
distribution can be written"

XD1 "'(Qt)D1 ~
' (Q1)D, 2 "(Q,)D„, »(Q,) (17)

&MB Z P«(MB) Z gx&),y,)12""(MB)=1. (18)

where summation is implied over repeated indices, and
we have integrated over dy» and dy2 and introduced a wjth the condition»4
new parameter gx,xsx, 12 ""(MB) which depends on the
helicity amplitudes:

g1,)„x& 12 ""(MB)= dMttIM2K(MB, M1,M2)F),x,~

XF1 1
' dM26'dM66'iF 'i'

1lcVX»XS

The angular distribution as given m (17) 1s not va»d
if there is interference between the decay products of
81 and 82. In order to apply (17) to such a situation, we
have to restrict our analysis to those events outside the

&'We use the shorthand notation for D functions: D„~(tt)
X dMsv dMrs F) &

12 =D„~(r&,8,0). See Appendix A. —
D

~

~
~

~

"Note that we do r)ot require that Ps t&66~(MB) = 1.
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interference region. This restriction, in our formalism,
corresponds to restricting limits of integrations over
dM& and dM2, which simply means that the value of
gy, g,y, q, ~" has changed. This can be done in such a way
that all the symmetry relations of (14) and (15) are still
valid. Since we have chosen the normal to the decay
plane of Bt (or Bs) as the analyzer, " the angular dis-
tribution (17) is valid even if there is interference among
the three decay particles of Bt (or Bs). In fact, if two
of the three decay products are identical, we simply
have the additional symmetry as given in (15b).

It is easy to apply (1/) to a simpler decay mode of B.
Consider, for example, the decay of B into Bj and B2,
each of which in turn decays into two pseudoscalar
mesons, i.e.,

III. MOMENT ANALYSIS

We now de6ne the multipole parameter tr,~ by' '

tz~'(Ma) = Q ps'. ~(Ma)(J/ELM
~
JA), (25)

where we use the notation (jtmtjsms~ jsms) for the
usual Clebsch-Gordan coefBcients. Because of our de6ni-
tion of ps' ~(Ma) which depends on Ma, the multipole
parameter tI, also depends on 3f~. Note that t~ =0
if L& 2J and too= ps ps'~. We can express ps' in
terms of tl,~ by inverting (25):

(2L+1~
pcs ~(Ma) = P ~ ~tr, ~'(Ma) (J/t'LM

( J/t). (26)r~ (2J+1/
B(Jo) ~ Bt(Sto4)+B,(S,»).

pcs' ( ) p—s—s' (27)(2J+1l (2St+1) /2Ss+1)
I(M„Q,Q„Q,)=

I&4~)4 4~)& 4~
which in turn leads to the following symmetry on tj.~.

tz =(-)'+ tr,
-

(28a)Xpss'(Ma)g~, x,)„),(Ma)Ds), "(Q)Ds v~(Q)

XD&»s&"(Qt)D&,.os4(Q, )D&,oss'(Q, )D„,.oss(Qs). (20) Hermiticity of the density matrix implies the following
additional symmetry:

Of course, the kinematic factor E(Ma,Mt, Ms') which
enters in the delnition of g&„q,&„q, )see (12)j will have 3E ()Mt—-sr*

a different form owing to the change in the number of
By combining (',28aj and (',28bj, we obtain6nal states.

We shall consider, as another example, a decay mode t&sf 4 —( )It M

of B into Bi and B2, where B2 is a pseudoscalar meson:

(28b)

(28c)

so that tr, is purely real (imaginary) if L is even (odd).
Next, we introduce what we shall call the experi-

mental "moments, " which are the experimental aver-
ages of the product of three D functions. We refer the
reader to other works" "for the statistical analysis in-
volved in dealing with such averages. We de6ne the
moments by

B(Jo)~ Bt(S»)+Bs(0 ).

as+ a4+as

Then, the angular distribution simplifies to

/2J+1~ /2S+1~
1(M»Q~Qt) =

~ l~ I»"(Ma)g»'(Ma)
&4~ jE4~J B(ltmtlsmsLM) =(Dsr (Q)D,o"(Qt)D,o"(Qs)), (29a)

If the initial particles a and b in reaction (1) are not
as+ a4 ao+ at (19) polarized, the parity conservation in the production

process leads to the condition"
It is clear from (6d) that we merely need to set /4= v= 0
in (17):

Ds) z (Q)Ds, ),z(Q)D) s (Qt)Dq, s(Q,), (22)

where we have dropped the subscript 1 from the spin
and helicity of B&. Consider as a 6nal example, the fol-
lowing decay mode of B:

B(Jo)~Bt(S»)+Bs(0-).

as+ a4

The corresponding angular distribution is obtained by
setting t4=0 in (22):

(2J+1) (2S+1
1(Ma,Q,Qt) =

~ ~l p„,&(Ma)g„v(Ma)
E 4~ i& 4~

XDsx~'(Q)Ds v~(Q)»o '(Qt)D~ o (Qt) (24)

where m=m& —es2. We can express the moments in
terms of the angular distributions given in Sec. II by

H(ltmtlsmsLM) = dMa dQdQ, dQg(Ma, Q,Q, Q,)

XDsr» (Q)D~,o"(Qt)D~,o"(Qs), (29b)

where the limits for the integration over dM~ are meant
to correspond to the experimental cuts used to delineate
the B-resonance sample.

"See Appendix, J. Button-Shafer and D. W. Merrill, Law-
rence Radiation Laboratory Report No. UCRL-11884, 1964
(unpublished).

~6 See Appendix B,N. Byers, CERN Rept. No. 67-20 (Theoreti-
cal Study Division), 1967 (unpublished).
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Using (17), (25), (29), and (A4), we obtain

H(limilimsLM) = dMstz~*(Ma) Q (Jl1'Lra
I Jx)

x(S1&1'lri~ 1Isy, ,)(sy i'l~rsi Isil1~)Z g»»» ~e"(Ms)

x (s1P110I s&ti)(s@4&0 I sip), (30a)

where m=te» —m2, X=X»—~~, and ~ =4 —~2 Owing
to (18), we have the following normalization for the
moments:

H(oooooo) =1. (30b)

We shall henceforth omit the integration sign over d3f~
in (30a), along with the argument M~ for tz~ and

g»1,» 1, &":Whenever tz~ and g»z, ».z, &"appear together,

iritegratiom over dMs is implied.
We now list a number of properties of the moments.

First, it is obvious from (30) that we have

evaulate a larger number of diferent moments than the
unknowIls $g and gyIyy, I y&

". This DleRns thRt we cRQ
6nd linear relations among different moments, the co-
eS.cients of which involve the unknown spin J. This
affords R straightforward means of determining the spin.
Similarly, the parity can be determined due to the fact
that for certain spin-parity combinations we have the
additional condition that certain g's are identically zero.
This leads to further linear relations among di6erent
moments, which can be checked experimentally. We
emphasize that our spin-parity analysis is independent
of the production process of 8; the multipole parameters

wh1ch coQtMQ Rll the production 1nformat1on Rre
treated as unknowns in our analysis, except for certain
symmetry relations implied by the parity conservation.

We lls't below file spec1al cases of tile lelat1011 (30).
If B» and B2 decay into two pseudoscalar mesons, we
obtain by using (20),

H{l1~1l, ,LM) =t."'(s,«,0ls,o)(S,040lsu)
H(l1m1limiLM)=0 if L)2J

3»& 2S» or l2& 252. (31a) X(spXi'lgmg I Sgl1i) . (34)

By using (14a), we obtain

H(l1—chili —miLM) = (—)'&+'~ H(11milgragLM) (31b)

If fbi is a pseudoscalar meson, we get from (22)

H(lrNLM) =tz~' Q (Jl1'LmI Jlb.)(sl1'1m Isx)
and, from {28a),

H(lirliilimiL —M) = ( )~~H(le—ilgmiLM) {31c)
xQ g1);"(splo I sti) (35a)

and, from (14a), (14c), and (28c),

H*(i,~,i,~,LM) =(—)'~+'2H(11~11i~iLM). (31d)

So, we see that it is not necessary to consider all the
values of es» Rnd tm2 and, especially, we need not evalu-

ate the moments for negative values of M. Furthermore,
the moments H are pure real (imaginary) if l1+ li is even

(odd). From (31b), we have

H(liolgoLM) =0 if l1+lg+L= odd, (32a)

also, from (31c),

H(lira&lge&LO) =0 if I.= odd. (32b)

If the particles 8» and Bg are identical, we have from

(15a),
H {limilimgLM) = (—)zH {lgmilimiLM) . (33)

As is clear from the discussion in Sec. II, the relation
(30) is meaningful so long as there is no interference be-
tween the decay products of 8» and those of B~. If the
interference is appreciable, we should limit our moment
analysis to those events for which the interference is
minimal. Thi.s restriction of events simply means that
the value of gq, ~,q,.q,.&" will have changed due to the
corresponding change in the limits of integrations ap-
pearing in the de6ning equation for g Lsee (12)j.

The essential idea involved in determining the spin
and parity of the parent resonance B is that we can

and H(liNLM) is the experimental average given by

H(lmLM) = (D~„z(Q)D„,'(Q,)),
where we have dropped subscripts I from S», X», l», and
m1. Of course, all the symmetry relations given in (31)
and (32) are also satis6ed by H(bnLM) with /i =mi 0——
If) ln Rddltlon) 8» decays into fKO pseudoscRlar mesons~
we get from (24)

H{l~LM)=t."'(soloIso) P g„{J~'LmIJ~)

X(Sl1'i~IS&), (36)

where H(lrnLM) is to be measured as shown in (35b).
We shall illustrate our spin-parity analysis with a few

simple but rather important examples in the following
sections. In Sec. IV, we consider the decay of 8 into two
vector (or pseudovector) mesons. We have devised our
test in such a way that they can be applied with equal
facility to cases when the two vector (or pseudovector)
mesons are identical, e.g., B(J'&) —+ o&+co: This has been
accomplished by considering always the combinations
LH(11mitimiLM)+H{timilirN1LM)j for even L, Lsee
(33)j. In addition, we use only those moments with
l1+li ——even, so that all the moments H(timitimiLM)
used are pure real. In other words, the imaginary part
of H(l, m, l,m&LM) ought to be identically zero Isee
(31d)$. In Secs. U and UI, we treat the case when Bi
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is a pseudoscalar. Again, we have used for our tests only
those moments H(lmLM) with i= even; the imaginary
part of all H(lmLM) used should be zero identically.

Suppose 8 has spin 0, i.e., J=0. Then, we must have

H(limilpmpLM) =0 for all L)1. (40a)

In addition, by inspection of (39c) and (39d), we obtain
the following relations for J=M=0:

H(220000)+ H(002200)+5[H(222000)
+H(202200)]=0. (40c)

H(limilpmpLM) =tr, '(10liOi10)(10lp0 [10)
If the parity of 8 is negative, i.e., e= p= —1, we have

from (14a) the condition gpppp=O, so that we obtain the
additional relation from (39a)

g»~oui » (I&'LmI J~)(»i'limi
I Ilii)

~1~2~1 ~2

IV. B(P)~ Bi(1+)+Bp(1+)

The analysis presented here applies to the cases when 4+5[H(200000)+H(002000)7
Bi,p(1 ) decays into two or three pseudoscalar mesons —50H(202000) =0, (40b)
or when Bi p(1+) decays into two pseudoscalars. The
fundamental relation we use is obtained from (34):

That (37) can also be applied to the three-particle de-
cay mode of Bi(1 ) or Bp(1 ) is seen as follows: Since
the spin is one, p and v of g~, ~2g, ~2

&" can have 0, 1, or—1.But the symmetry of (14b) restricts ti and i to only
one value, i.e., p, =v=0, so that applying this condition
to (30), we simply get (37) if we set giiz, z,.i, —=g»z, » i,pp.

We have devised our tests so that they are independent
of whether Bi and B~ are identical particles or not.

From (37) we see that

H(limilpmpLM) =0 if li or lp = odd. (38a)

In addition, because of (32a), we have

H(liOl&OLM) =0 if L= odd.

1+5[H(200000)+H(002000) $
+25H(202000) =0. (41a)

This affords a means of determining the parity of 8, if
gpppp is not also zero for p= it =+1.By combining (39b)
and (39c), we obtain the following formula involving p:

75pH(222200) =4—10[H(200000)+H(002000))
+25H(202000) . (41b)

This gives an additional test for the parity of B.
Next, we consider the case J)1. If the spin and

parity of 8 are such that e is —1, goppo is identically
zero [see (14a)j, and we have the following condition
from (39a) for even L:

H(0000LM)+5[H(2000LM)+ H(0020LM) )
+25H(2020LM) =0. (42)

Now, by writing down explicitly the moments (37) for
diferent values of /i, m~, l2, and m2, one can prove the
following relations for even L:

18tz, *[giiii(JOLOi JO)+gi-ii-i(J2LOi J2)1
=4H(0000LM) —10[H(2000LM)+H(0020LM) j

+25H(2020LM), (39b)

18«~*[giom+goioi)(J1LOI J1)=4H(0000LM)
+5[H(2000LM)+H(0020LM)$ is different from zero, we may take the ratio of (39c) and—50H(2020LM), (39c) (39d) and obtain, by using (A5) and (A6),

—o(o/6)tz (gipip+gpipi)(J —1L2
i
J1) 2L(L+1) - it' — L(L+1)

=H(2200LM)+H(0022LM)+5[H(2220LM) 3(L 1)(L+ 2)
+H(2022LM)], (39d)

(even L)2), (43)
o(6/25)tz~ giiii(JOLOi JO) =H(2222LM), (39e)

where Ri(LM) is an experimentally measurable quan-
where the parameter p has the form o= it(—)~ [see (8)7. tity given by

Note that, since J is equal or greater than 1, we can

9 z""goooo(JOLOI Io)=H(OOOOLM)+5[H(2oooLM) „d„t, u„42 f„h;gh„v,lu„,'f L 'w, mu, t 6rst
+H(0020LM)]+25H(2020LM), (39a) know the value of J, since H(limilpmpLM) =0 if L)2J.

Once the value of e is known, we may determine the spin
itself as follows: If the factor

4H(0000LM) + 5[H(2000I M) +H(0020LM) 7—50H(2020LM)
R,(LM) =

H (2200LM)+H(0022LM)+ 5[H (2220LM)+H (2022LM) ]
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The relation (43) is most useful for L=2 because of
its applicability for all values of J&i. For higher values
of E„ the condition H(limil2es2LM) =0 for L&2J could
make RI(LM) indeterminate. However, once the value
of J has been determined, one could use (43) for higher
values of I as a cons1stency check. It ls poss1ble to de-
vise other relations involving e and J. For example, if
e is —1) the ratio

2H(212 1LM)
E2(LM)=

H(212—1LM)+H(2 —121LM)

(even L&2) (45)

If the spin of 8 is zero, the parity is simply +1 for
pi=+1. Therefore, we have a=+1 for both pi=+1
and pi= —1. Just as in Sec. IV, al/H(lmLM) should be
zero for L&1. In addition, we should have H(0000) =1
and H(2000) =-', .

Now consider the case when J is greater than zero.
The erst information on the spin and parity of 13 comes
from the condition g),q =0 for X or X'=0 when e= —1
t-see (14a)j. In this case, it is easy to show that

H(OOLM)+SH(20LM) =0 (even L), (49a)

H(21LM)=0 (all L&1). (49b)

is related to the spin J(&1) by

L(I.+1)
R2(LM) =1—

(I—1)(I.+2)

L(L+1)

2J(J+1)
(even L&2). (46)

These conditions are not expected to be satisfied in gen-
eral if e is+1, so that (49) yields information on e. If
e is known and if the factor

dMstz, "'(Ms)gII(Ms)

2L(L+1) -'" L(L+1)-
Eg(LM)=So 2—

3(r.—1)(I.+2) J(J+1)
V. B(P)—+ Bi(l+)+Bm(0 )

This can be used as an additional test of spin J I« is is different from zero, we can take the ratio of (48b) and—1. Finally, we note that the parity of B can be»- (48c) to get
taincd by tllc relation '= g(—) p once t Rnd J has been
determined.

As pointed out in Sec. IV, we can treat on an equal
footing the case of Bi(1 ) decaying into 2 or 3 psuedo-
scRlai's Rnd that of Bi(1+) dccaylIlg IIlto 'two psclldo-
scalars. These decay modes of 8 have been considered

by others' ' and by this author in an earlier work. ' %e
simply list in Sec. V A the results again, since we have
used in this paper somewhat diferent conventions and.

notations. II In Sec. V 8, we take up the case of Bi{1+)
decaying into 3 pseudoscalars.

A. B,{1-)-+ 2 or 3 Pseudoscalar Mcsons

The starting relation for this case is obtained from

(36)

H(ELM) =r,"'(1010~10) P gii. (JX'Lm~ JX)

X(D"lm~il'). (47)

Using this equation, we easily obtain the following for-
mulas for even I.:

(even I.&2), (50)

where we have used (AS) and (A6) and ga{LM) is a
quantity to be determined experimentally;

2H(OOLM) —SH(20LM)
Eg(LM) =

H(22LM)

We note that Eq. (50) is essentially the same as that
given in our earlier work. ' In practice, the above spin
formula should be used for I=2. If J turns out to be
greater than one, one may use higher values of I as
a check. The parity is obtained through the relation
e=~g(—)~ for gi ——+1.

B. Bi{1+)~ 3 Pseudoscalar Mesons

Wes«rt with Eq. (35a). From the symmetry relation
(14b), we have gi~ &=0 if y is even, so that we have only
two values of p, i.e. y=+1. Therefore, from (35a) we
have

)+ {0 ) ~ {48R) H(lmLM) =tz~*(1UO) 1])g P +I+(
Xg'

6tz, "*gII(J1LO~Ji)=2H(OOLM) —SH(20LM), {48b)

—g(-', +6)~z~*gII(J—1L2~ Ji)=H(22LM).
X(JX'Lm

f JX)(1X'lm/1X). (52)
(48c)

It is easy to show the following formulas for even I:
"The moments P(EmI.M) are related to G~(EngI3f) deemed in

Ref. 5, but there is di8erence in the argument of D functions; in
this paper @re use D„~~{@,8,0} instead of D„~(y, 8, —y) in Ref.
5. We also used a difterent coordinate system for the decay of 8 in
Ref. 5; there @re used the normal to the production plane as the s
axis.

3',"*(g«+Iong„-')(JOIO) JO)
=H'(OOI-M) —10H(20LM), (53a)

"Compare vrith Eq. (23), R.ef, 5,
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3tr,~'(gII+'+gII ')(JILO~ J1)
=H(OOLM)+SH(20LM), (53b}

e(sgs2)tr~'(g»+'+g» ')(I —1L2
I Ji)

=H{22LM) . (53c)

If the spin of 8 is zero, we again have the condition
H{tmLM) =0 for all L& 1.The parity of 8 is +1 so that
e=rt=+1. Furthermore, the following relations are
true for L=M=O, i.e., H(0000)=1 and H(2000)= —s.

If J is greater than zero, we first determine the value
of e by the condition that, if e is —i, we should have

H(OOLM) —10H(20LM) =0 (even L), (54a)

H(21LM) =0 (all L& 1). (54b)

The spin J itself can be determined by taking the ratio
of (53b) and (53c), if the factor

dMstI, ~'(Ms) [g»+'(Ms)+ g» '(Ms) j

is di6erent from zero:

2L(L+1) "' L(L+1)
R4(LM)= —5e 2—

3(I.—1)(L+2) J(J+1)
(even L&2), (55)

where It4(LM) is to be determined by

H(OOLM)+Sa{20LM)
It.4(LM) =

H(22LM)

Again, one would want to use (55) for L=2 and, as a
check, for higher values of J.The parity g of 8 is then
determined by the relation e= g(—)~. Finally, we note
that (54) and (55) can be used even if two of the three
decay products of Bj are identical. This has been
achieved by considering only the combination g},},+'

+g),g
-' Lscc (15b)].

iotr~'g»(J1Loi Ji)=2H(OOLM)+SH(20LM)
-12H(40LM), (58b)

iotr, 'gee(J2LO~ J2)=2H(OOLM) —10H(20LM)
+3H(30LM), (58c)

—«(+II)«"'g»(J —ir.2~ Ji)=H(22L,M)
+(2g ;)H(42L-M), (Sgd)

«L,"-g(1O/7) jt,~'g»(J —2L4~ Ji)=H(44LM). (S8C)

First, we want to determine the value of 4= q{—)~+'

Lace (8)j. If e is —1, we have from (14a) the condition

g},q =0 for X or ) '=0. Therefore, if e is —I, we obtain
the following conditions:

H(OOLM)+Sa(20LM)+9H(40I M) =0
(even L, J&1), (59a}

H(41LM) =H(21LM) =0 (I=1 or 2, J=1), (59b)

H(22LM) —(Iss'-', )H(42LM) =0
(even L,&2, J&2), (59c)

H(21LM)+L3/(6/5)fa(41LM) =o
(all L&1, J&2), (59d)

where (59a) follows immediately from (58a), and the rest
of the equations are shown easily by writing down (57)
explicitly for indicated values of l and m, Of course, if
J Is zero) It ls 1 so tlla't «=+1.

Once e ls known, %'e proceed to determine J in the
following manner: First consider the case J=o. Then,
as before, we must have H(lmLM) =0 for all L&1.Also,
we must have H(0000)=1 and H(2000)=H(4000)
=2/7. Next, we consider the case J=1.Then, it is clear
that H(ELM) =0 for all L&3. In addition, we have
from (58c),

2H(OOLM) —ioa(2orM)+3H(40LM} =o
(L=O, 2). (60a)

(6ob)

VI. B(P) -+ BI(2)+B2{0) Also, by wrltlng down (57) explIcitly for I=1, we ob-
%e shall consider two decay modes of B~,' in Sec.VI A tain the following formulas:

we treat the deca, y of B~ into two pseudoscalars and in
Sec. VI Il the decay of BI into three pseudoscalars. H(22LM) (sv e)a(42LM) =0 (L=2),

A. BI{2+)—+ 2 Pseudoseaiar Mesons

We have from (36)

H(ELM) = tI ~'(2010
~
20)g gag (JX'Lm ( JX)

X(2Vt~~2) ). (57)

Using this, it is straightforward to prove the following
formulas for even I.:

H(21LM)-(g; )H(41LM) =O {L=I, 2}.

Note that (59c) and (60b) are exactly the same for
I.=2. Therefore, if this condition is met experimentally,
it means either that J is one or that ~ is —j. for J&2.

Now, we derive the spin formula valid for all Jgreater
than zero. H the factor

dMstr, ~'(Ms) g»{Ms)
StI,II"gee(JOLO t Jo)=H(OOLM)+ SH(20LM)

+9H(40IM), (58R) ls dIffcrcnt from zero~ wc call take the I'atlo of (58b) RIld
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(58d) and obtain conditions if e is —i:
2H(OOLM)+20H(20LM) —27H(40LM) =0

(even L, J&1), (65a)

2L(L+1) 't' L(L+1)
Rp(LM)=5p 2———

3(L—1)(L+2) J(J+1)
H(41LM) =H(21LM) =0 (L=1 or 2, J=1), (65b)

H(22LM)+ (9/8) (g-,')H(42LM) =0
(even L&2, J&2), (65c)

where Rp(LM) is to be determined by

2H(OOLM)+ SH(20LM) —12H(40LM)
Rp(LM) = . (62) H(21LM) —L(9/4)g(6/5) jH(41LM) =0

H(22L,M)+(2+p)H (42LM)
(all I.&1, J&2), (65d)

In practice, one may use (61) for I.=2. Should the
resulting J be higher than one, one could use higher
values of L in (61) as a consistency check. We note in
passing that it is possible to obtain another spin formula
applicable for J&2 by taking the ratio of (58b) and
(58e). However, the resulting relation can be used only
for even L equal or greater than 4. As before, we can de-
termine the parity of 8 through the relation p = it(—)~+'.

A more detailed version of this particular example is
given in Appendix B.

B. 8,(2+) —& 3 Pseudoscalar Mesons

From (35) we can get the following formula:

H(lmIM)=tr, ~'(21l0~21)p Lgiv+'+( —)'g~i ']

&&(JVLm ( JX)(2X'lm
~
2X), (63)

where we have used the condition gqq l'=0 if p is even.
In order that our analysis be applicable even if two of
the decay products of 8& are identical, we consider only
the even values of /, so that only the combinations

(gi,q.+'+gqq. —') enter in our formula. Note that the
factor (gqi,

+'—gi, i, ') is identically zero, if there are
identical particles Lsee (15b)j.

Using (63) we can prove in a straightforward way the
following formulas for even I.:

10ty,~'(gpp+'+ gpp ') (J'OLO
i JO) = 2H(OOLM)

+20H(20LM) —27H(40LM), (64a)

Stziir'(gu+'+gii ')(J1LO~ J1)=H(OOLM)

+SH(20LM)+9H(40LM), (64b)

20tr, '(g„+'+gpp-')(J2LO~ J2) =4H(OOLM)
—40H(20LM) —9H(40LM), (64c)

—(p/+6) tl ~"(gii+'+ gii ') (J1LO
~
J1)

=H(22LM) —(p+pP)H(42LM), (64d)

p[(2/9)Q(1 —0/)j7tI. *(gpp+'+gpp ')
)& (J—2L4

~
J2) =H(44LM) . (64e)

Just as in Sec. VI A, our first task is to determine p for
all values of J. If J is zero, we have g= —1 so that

+p1. For higher values of J, we have the following

where (65a) follows simply from (64a), and the rest of
the relations can be shown by writing down (63) explic-
itly for indicated values of l and m.

Next we determine the spin J. Suppose J=O, Then
H(lmLM) =0 for all L& 1.In addition, we have H(0000)
=1, H(2000) =1/7 and H(4000) = —4/21. If J is one,
we must have H(lmLM) =0 for all L&3. Furthermore,
from (64c) we get

4H(OOLM) —40H(20LM) —9H(40LM) =0
(I,=O, 2).

As in Sec. VI A, we can also show that

H(22LM)+ (9/8)gxPH(42LM) =0 (L=2), (66b)

H(21LM)+Ppg —,PpH(41LM)=0 (L=1, 2). (66c)

Again, (65c) and (66b) are exactly the same. Therefore,
this relation implies either that J is one or that e is —I
if J is greater than one.

Next, we derive the spin formula applicable if J is
greater than zero. So long as the factor

~Ms4 (Ms)&gii+'(Ms)+gii-'(Ms) j
is different from zero, we can take the ratio of (64b) and
(64d) and obtain

2L(L+1) 'tP — L(I+1)—
Rp(LM)=Sp 2—

3(L—1)(L+2) J(J+1)

where Rp(LM) is given by
(even L&2), (67)

H(OOLM)+ SH(20LM)+9H(40LM)
Rp(LM) = (68)

H(22I M) ——,
P (QxP)H(42LM)

By taking the ratio of (64c) and (64e), we can obtain
an additional spin formula (valid for J&2) independent
of (6/). However, we do not give the explicit formula
here. Again, note that (67) is to be used for L=2. As
before, if J turns out to be greater than 1, we can use
higher va, lues of L in (67) as a consistency check. Once
e and J have been determined, the parity p of 8 is given
by the relation p=p( —)~+'.
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APPENDIX A

For easy reference, we collect here the formulas used
in the paper. The D functions used here are the same as
those deined in Rose, "i.e.,

D J'(tr p ~) s isa-d
'

z(p) s-imp (A1)

The explicit forms of d„~(P) for J's up to 3 are given in

Berman and Jacob." In this paper, we adopt the fol-

lowing shorthand notation:

D„„~(Q)=D„~(v,8—,0), (A2)

where Q=(8, y) as usual. The integrals involving the
product of D functions are

kr
(Q)Dorm (Q) &sun~iais ( )

2jt+1

and if itis ——ilt+tns,

dQD„,„,"(Q)D„,"(Q)D„, ,"(Q)=
2js+1

X(jtpt jsiis~ jsps)( jlilljsitss
~
jsins) (A'4)

axis is chosen to be along the direction of 8 (in the c.m.
system) and the y axis may be taken to be along the
normal to the production plane. The angles (8,y), which
describe the direction of Bj in the BRF, are measured
with respect to this coordinate system. The angles
(Ht, yt), which are defined in the BtRF, describe the di-
rection of one of the pseudoscalars from B~. The coordi-
nate system for these angles are set up as follows: the
st axis is along the direction of Bt (in the BRF) and yt
axis is along ZXSt (both defined m the BRF), which is
invariant under the pure timelike Lorentz transforma-
tion from the BRF to the B~RF.

In terms of the angles 0 and Q~ deined above, we can
then evaluate experimentally the relevant moments
from (35b)

I
H(ELM) = PDi—s„z(Q')D„s'(Qt'),

S' '
(31)

(32a)

where 0' and Q~' are the angles for the ith event in the
8 resonance sample and E is the total number of events
in the sample. LSee Appendix A for the definition of D
functions in (31).j In general, if one takes an experi-
mental average of any real function f, the average f and
its error 5f may be evaluated by

Ke have used, frequently, the following two formulas
involving Clebsch-Gordan coefficients":

L(L+1)
(J1LO i J1)= — —1 (JOLO i JO)

2J(J+1)
(even L), (AS)

I(L+1) —tf2

(J-1L2~J1)=- (JOLO~ JO)
(L—1)(L+2)

(even L) . (A6)

APPENDIX 8
In order to further illustrate how one applies the spin-

parity analysis given in Secs. IV-VI, we take for our
detailed analysis the example", given in Sec. VI A,
namely, that of the following decay chain of 8:B(J&)-+
Br(2+)+Bs(0 ), Bt(2+) —+ 0 +0 . Therefore, the
method outlined here can be directly applied to the pos-
sible resonance' As decaying into s and f'(1250).

First, we define the angles Q(8, y) and Qt(8t, yt) more
precisely (see Sec. II). In the J3 rest frame (BRF), the s

' M. Rotenberg, R. Sivins, N. Metropolis, and J.K. Wooten, Jr.,
The 3j amE 6-j Symbols (The Technology Press, Massachusetts
Institute of Technology, Cambridge, Mass. , 1959); see the recur-
sion relation (1.49).

So, if H(litsLM) given in (B1) is real, one may use (32b)
to estimate its error.

Note that, because of (31b) and (31c), it is not neces-
sary to evaluate H(tttsLM) for negative values of its or
M. In addition, the relation (31d) implies that the
imaginary part of P(ELM) for even l should be zero
identically. Although (31) can be used to evaluate di-
rectly the moments needed in relations (59), (60), and
(62), it is instructive to write down the relations explic-
itly in terms of the angles (8,p) and (8t, pt); this we have
done for a few simple cases of the relations (59), (60),
and (62).

First, we shall use (59) in order to determine the pa-
rameter s=g(—)~+' for J&1 (e=+1 if J=O). By set-
ting L=M =0 in (59a), we obtain the following
condition:

(21 cos'Hr —14 cos'et+ 1)=0. (33)

So, if (33) is satisfied experimentally, one may conclude
that e= —1. Of course, as a consistency check, one can
consider other forms of (59a) by setting L greater than
zero. In addition, (59b) yields information on e if J is
one and (59c) and (59d) can be used to determine e for
the case J&2.

After having determined ~, we proceed to determine
the spin iteself using the formulas (60) and (61). Sup-
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pose J=0. Then, all EI(lesLM) is zero for L& 1.Further-
more, we should have

(cos'8l) = 11/21,

(cos481)=3/7.

Suppose J=1.Then, of course, all B(ELM) should be
zero for L&3. In addition, we have from (60a) for
I.=%=0

(21 cos'8l —42 cos'81+13)=0. (86)

Again, one can use (60a) for L= 2, as well as (60b) and

(60c) as a consistency check.
Next, vre give the spin formula valid for J&i. %e

have from (61) with L=2 and %=0.

Z, (20)= 10e{1—3/LJ(Jy1))},
where I4(20) can be calculated easily from (62), so that
we obtain the following spin formula:

((3 cos'8 —1)(21 cos'8l sin'81 —2))

(sin 8 cos 81 s111 81 cos2+I)

=21e 1— . (37)
J(J+1)

Ill llslllg (87), Ollc Inllst cvalllatc tile I'Rtlo of two ex-
perimental averages, which does not have Gaussian
distribution in general even though the averages them-
selves may be Gaussian. The reader is referred to other
works" "for the statistical treatment involved in deal-
ing with such a case.

Finally, we show how the formulas given here may be
checked analytically with a few simple expressions for
the angular distribution. First, assume J&=O . Then,
fl'oln (24) wc Obtalll thc 'NOPISSllsed Rllglllal distr lblltloll

I(Q,QI) = dMeI(Me, Q,QI) = e (3 cos281—1)2. (Bg)

Using this, it is easy to see that (84) and (85) are
satisied.

Next, assume J&=1 so that e= —I. In order to ob-
tain the simplest angular distribution consistent with
symmetry requirements, we set all pyy~ to zero except
poo~ and assume that only g» is not zero, i.e. g~~= g j ~

= ~g»= ~g»/0. Then the following angular distribu-
tion is easily obtained from (24):

I(Q,QI)~sin 8 Sill 81 Cos 81(1—COS2pl) . (89)

Of course, we can obtain different spin formulas from

(61) by using other allowed values of L and M.
If the numerator and denominator on the left-hand

side of (37) are consistent with zero experimentally,
it implies that the factor

Again, lt ls simple to sho%', using the angular distrlbu"
tion given above, that (83), (86), and (87) are satis-
fied. Suppose J"=1+ so that e=+1.As before, we as-
sume poo'&0 and g»&O. In a«ition, let us assume
goo&0. Then, from (24), we obtain

dMIItm" (%II)gII(MII)
I(Q QI) a cos'8(3 cos'8l —1)'

+sin'8 sin'8l cos'81(1+cos2q I), (810)

is either zero or too small for the given statistics and, of
course, (8/) cannot be applied; we must then try (61)
for other values of I.and M. The spin-dependent factor
on the right-hand side of (37) is given below explicitly
for diGerent values of J:

J= f 2 3 4 5

(1—3/P(J+1) j}= —0.5 0.5 0.'/5 o.g5 0.90

Thus, in general, a larger number of events is required
to determine the spin, if its value is high,

where 0, is an arbitrary constant. It is straightforward to
show that (810) satisfies (86) and (37).

It is rather remarkable to see that (87) is satisfied by
(310) independent of the arbitrary constant a. Note
that the constant o. rejects the admixture of twoorbital
angular mornenta, allowed (i.e., 1 and 3) in the decay
process 1+~ 2++0 . This is but a simple example of
what we have set out to do in this paper: %e have de-
vised spin-parity tests that are independent of both the
production and the decay dynamics of boson resonances
with sequential decay modes,


