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infinity faster than any inverse power of E, it can be
shown, by means of some simple manipulations, that

/” 51(E’) — const
E J

for E—+ow,

It follows immediately that

1 2 const
[ 1] ~ , for E—4 o,
| Dy(E) |2 E?
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and this fact ensures the convergence of the integral
appearing in Eq. (18).

We have therefore completed the proof of the exis-
tence of a local potential yielding the form (13) of the
phase shift.
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A general hehuty formalism is developed for the determination of spm and parity of boson resonances
of arbitrary spin which have sequential decay modes. The procedure is illustrated with a few simple but,
in practice, important decay modes, namely, 1-41~, 1£--0-, and 2++4-0~, where 1* and 2* mesons in
turn decay into 2 or 3 pseudoscalar mesons. The method proposed here is independent of the dynamics of

the production and decay process.

I. INTRODUCTION

E present in this paper a general helicity formal-
ism!2 that enables one to determine the spin
and parity of boson resonances with sequential decay
modes; we treat as the maximum complexity the case of
a boson resonance decaying into two intermediate bos-
ons of arbitrary spin, both of which in turn decay into
three pseudoscalar mesons. It is shown that the formal-
ism thus developed can easily be applied to cases when
the intermediate bosons decay into two pseudo-
scalar mesons or one of the intermediate bosons is a
pseudoscalar.

Our basic tool for the spin-parity determination is the
moments which are experimental averages of the prod-
uct of three D functions (see Appendix A and Ref. 12).
It is shown that these moments are conveniently pa-
rametrized in terms of the multipole parameters.® Our
main task in this paper has been to show that there exist

* Work performed under the auspices of the U. S. Atomic En-
ergy Commission.

1 For the helicity formalism, the reader is referred to the stan-
dard work: M. Jacob and G. C. Wick, AnnfPhys. (N. Y.) 7, 404
(1959). However, we use a slightly different convention for the
argun(lent (;))f D functlons, instead of their Dym/ (o, 6, — @), we use

nm ‘P:ﬂ

2We give three references for different approaches to spin-
parity analysis of bosons: M. Ademollo, R. Gatto, and G. Pre-
parata, Phys. Rev. 139, B1608 (1965), C. Zemach ibid. 140,
B109 (1965) ; E. de Rafael Ann. Inst, Henri Poincaré 5 83 (1966)

3N. Byers and S. Fenster, Phys. Rev. Letters 11, 52 (1963).

¢ See the first of two lectures by J. D. Jackson, High Energy
{Zzg%s;cs (Gordon and Breach Science Pubhshers, New York,

linear relations among different moments for certain
spin-parity combinations of the parent bosons and that
for some of the linear equations the coefficients them-
selves are known functions of the spin of the parent
bosons; this affords a straightforward means of deter-
mining the spin and parity of the parent bosons.

A remarkable aspect of this method is that it is inde-
pendent of the detailed dynamics of the production and
decay mechanism of the parent bosons. In addition, our
method is independent of the interference among the
three decay products of either of the intermediate bos-
ons. Our method does not apply, however, if there ex-
ists appreciable interference between the decay products
of one of the intermediate bosons with those of the
other. It is shown that our method can still be applied,
if we limit our analysis to those events for which the
interference is minimal. Of course, there is always the
problem of interference with background events. How-
ever, our method can be used if the interference is not
appreciable and if the moments for the background
events alone are small, as should be the case when the
background events consist mostly of phase-space events.

In Sec. IT, we derive the general angular distributions
starting with the Lorentz-invariant amplitude for the
production and decay of the parent bosons. We intro-
duce in Sec. IIT the multipole parameters and then the
moments and give the symmetry properties satisfied by
these moments. In Secs. IV-VI, we illustrate our spin-
parity analysis with simple but, in practice, important
examples. These include the case of a boson resonance
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decaying into a vector and a pseudoscalar meson,
which has been treated in our earlier work® and by
others,*8 as well as into a pseudovector and a pseudo-
scalar meson. In addition, we consider the decay
into two vector (or pseudovector) mesons and into a 2+
meson and a pseudoscalar meson. Finally, our method is
further illustrated in Appendix B with the example of
a resonance decaying into w4 f°(1250); the relevant
tests are given directly in terms of the experimentally
accessible angles.

It is hoped that our methods provide a timely tool for
analyzing the recently reported resonances® with decay
modes of p+p or 7+ f°(1250). It is perhaps inevitable
that, should higher-spin boson nonets exist, they would
have appreciable decay modes into the 0=, 1, or 2+
nonets.

II. ANGULAR DISTRIBUTIONS

Let us consider a reaction which produces a boson
resonance B with spin J and parity 7:

a+b— B(J")+c. 1)

The resonance B then decays into six pseudoscalar
mesons via two intermediate bosons B; and B, with
spins S1 and S, and parities 7; and 7., respectively:

B(J") — B1(S1™)+ Ba(Sa™)
astartas 2)
ast+astas,

where a3 through as denote the six pseudoscalar mesons.
The cross section for this chain of reactions is given by

do~

> |4 |2<§f—d cosﬁg) (qdM 5dQ)

P;Eqp spins for a,b,¢ r

dM
X (—ﬂ—l—dﬂld’hdM 32dM 452)

1

aM .
X (—]l-l——'dﬂgd')/sz 572dM 732) 5 (3)

2

where Er stands for the total energy in the c.m. system
of ¢ and b, and P;(Py) is the c.m. momentum of @ or
(B or ¢) and 6, is the angle between B and ¢ in the c.m.
system. M, M1, M, and M. are the effective masses

5S. U. Chung, Phys. Rev. 138, B1541 (1965).

6 M. Ademollo, R. Gatto, and G. Preparata, Phys. Rev. Letters
12, 462 (1964). See also Ref. 2.

7S. M. Berman and M. Jacob, Stanford Linear Accelerator
Rept. No. SLAC-43, 1965 (unpublished). See also Ref. 11.

8 C. Zemach, Nuovo Cimento 32, 1605 (1964).

? A 37 enhancement at around 1660 MeV has been reported at
the Heidelberg Conference, September 1967, with appreciable
decay mode into 7+ f°(1250) (unpublished). For a possible p+4-p
g«;s;rggcg)at 1401 MeV, see A. Bettini ¢t al., Nuovo Cimento 42A,

66).

SPIN-PARITY ANALYSIS FOR BOSON RESONANCES

1343

of Bi+ By, as+astas, astar+-as, and ar+a,systems,
respectively. ¢ and Q(6,¢) describe the magnitude and
direction of By momentum in the rest frame of B (BRF),
where we choose the z axis parallel to the direction of
B in the c.m. system. ¢1, 61, and 1 (g3, 05, and v,) are
the Euler angles for the configuration of as, a4, and a5
(as, ary, and ds) in the B1RF (B2RF) with 91(01,<p1)
[Q:(02,¢5)] describing the normal to the decay plane.
Again, the coordinate system for angles @ () has the
2 axis parallel to the direction of B; (Bs) in the BRF.10

The Lorentz-invariant amplitude 4 in (3) is given by

A~ 3 AMsd,M 45 Q1,71| 90| SiAs)

A2
XM 672, M 152, Q2,72 | Ma | SA)(STA1,S A 2,g,2 | 9T | JA)
X{¢,JA|T|a,b)d(M1,T1)8(M2,To)8(MpT5), (4)

where the first, the second, and the third factor in (4)
are the decay amplitudes for By, By, and B, and the
fourth factor is the transition amplitude for the reaction
(1). As usual, A, \, and \; denote helicities for B, Bj,
and By, respectively. 5(M 5,I's) is the Breit-Wigner form
given by

8(M 3,T5)=1/[Mp>— (M 5°—iT/2)*], (Sa)

where M° and I'z are the mass and width of the reso-
nance B. Likewise, we have

8(M 12,11 ,0)= 1/[M 12— (M1,2°—iT1 5/2) 7], (5b)

where M 2" and T » are the mass and width of By 5.
The decay amplitudes in (4) are given byt

(S1A1,S202,g,2 ([ JA)
=P’ (M 5,M 1,M3)Dir25"*(0,6,0), (6a)
(M 32, M 452, Q1,71| M1 [ S1As)
- Z,, F MM u,M M 5*) Dy S (01,0171),  (6b)

(M672;M782}92}'Y2 l My l Sz)\2>
=2 FA(M2,M e, M1s*) DyyS**(00,025v3),  (6¢)

where Fap,, F', and F,? are the helicity amplitudes for
B, By, and B, respectively, and the D, Y functions are
the (2J-1)-dimensional representation of the rotation
group as defined in Rose.? If B, decays into fwo pseudo-
scalar mesons a5 and a7, the decay amplitude is given by

(92,2 | M| Sha)= FA(M5) Dr,0%2*(2,65,0),  (6d)

where g2 and Qy(6s,¢3) are the magnitude and direction
of the ag momentum in the BoRF. The parity conserva-

10 For a more detailed definition of angles © and i, see A -
dix B. The angle ©; is defined in the same way as th: anegleI;{?n
:; IS\I 1\;[3 %ermalllzland M. ]'aTczb, Phys. Rev. 139, B1023 (1965).

. E. Rose, Elementary Theory of Angular M 1
Wiley & Sons, fnc., New York, 1957){( gular Momentum (Jobn
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tion in the decay process leads to the following sym-
metry relations!-41:

Fapd=eF 7, (7a)
Fl=n(—)*F,t, (7b)
Fr=ny(—)*F/?, (70)

F2=0 if n(—)%=—1, (7d)

where e is defined to be
e=nnne(—) 7S5, (8)

If B; and B, are identical particles, we have the addi-
tional relation?!

Fapg? (M, M1,M )= (=) Frp, (M,M,M)).
If a; and a5 are identical particles, we also have!!
F MMM 32 M 452) = (—)SF_ (M 1,M 15>, M 342). (9b)
Similarly, if as and ag are identical, we get
F2(M o, M g2, M%) = (— ) S2F_ 2 (M o,M 152, M &%) . (9¢)

Now, we define the density matrix for the B reso-
nance as follows:

(92)

pAAf‘I(MB)N/d cosfy Z (c,]A[T]a,b)

spins for a,b,¢

X{a,b| Tt|c,JA"). (10)

By this definition, the density matrix is in general a
function of M. The limits on the cosf, integration is
meant to correspond to the experimental cuts used in
case of the peripheral production of B. The differential
cross section can be written in terms of the density ma-

trix \=A1—Ne, N=M—N):
do
AM pdQdQ:dQ,
XD *(,0,0) Darn7(0,0,0) Dagu®*(01,01,0)
X Dy u51(€1,01,0) Drgy %2 * (02,02,0) Doy, 52 02,02,0) , (11)

~ pan? (M B)grpanng ™ (M B)

where summation is implied over repeated indices, and
we have integrated over dy: and dy: and introduced a
new parameter gappaag (M) which depends on the
helicity amplitudes:

g)\l)\zkx')\z’”v(MB) = /dMlszK(MB’Ml;Mz)Fkxth
XF)\IIM,J‘/dMMszuz |F |2

X/dM672dM782|F72I2’ (12)
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where K(M 5,M1,M5) contains all the kinematic factors
as given in the following:

1
K (M p,M1,M3)= 1_2"'2'(?1‘/ pi)lq/(M1M2)]

X | 8(M 5,T5)5(M1,T1)3(M,,T5) |2 (13)

Owing to the symmetry relations for the F’s as given
in (7) and the definition of g as given in (12), we obtain
the following properties for g:

S oAy = € n A Ay = €Ay
= gh—AaAr—Ag (14a)

g =mi(—)rtigr=mna(—)+1g", (14b)
(14c¢)

*
S A= Eaagang®

In case there are identical particles in the problem, we
have from (9a)

oy = (_ ) Jg)\z)\lh’h’”y= (—)Jg)q’\ PR Vg
= e a

(15a)
and, from (9b) and (9c),

=g =g = g (15b)

Now, we define I(M 5,2,01,02) to be the angular dis-
tribution for a given effective mass M,

do

I(M 5,0, %)~
M pdQddQ:

which is normalized to 1, ie.,

fdMBdeﬂldQJ(MB,Q,Ql,Qz) = 1. (16)

It is easy to see from (A3) that the normalized angular
distribution can be written!?

2741\ 725:1+1\ 725:+1
romaed=(= ) =) 5)
4 4r 47
X pan? (M B)gann g™ (M 8)Dan” *(Q) D7 (Q)
X Dhnsl *(QI)DM’MSI(QI)DM’& *(92)1))\2'752(92) (1 7)

with the condition!4

(18)

[o250]

f dMB Y psa? (M) 2= g (Mp)=1.
A

The angular distribution as given in (17) is not valid
if there is interference between the decay products of
B; and Bs. In order to apply (17) to such a situation, we
have to restrict our analysis to those events outside the

13We use the shorthand notation for D functions: Dm/(2Q)
=D,m’ (¢,0,0). See Appendix A.
1 Note that we do not require that 4 pan/ (Mp)=1.
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interference region. This restriction, in our formalism,
corresponds to restricting limits of integrations over
dM; and dM,, which simply means that the value of
&\aaag® has changed. This can be done in such a way
that all the symmetry relations of (14) and (15) are still
valid. Since we have chosen the normal to the decay
plane of B; (or B;) as the analyzer,!! the angular dis-
tribution (17) is valid even if there is interference among
the three decay particles of By (or By). In fact, if two
of the three decay products are identical, we simply
have the additional symmetry as given in (15b).

It is easy to apply (17) to a simpler decay mode of B.
Consider, for example, the decay of B into B; and B,
each of which in turn decays into fwo pseudoscalar
mesons, i.e.,

B(J7) — Bi(S1™)+ By(S2m).
N\ N

19)

It is clear from (6d) that we merely need to set u=»=0
in (17):

27+1\7251+1\ 725:+1
s (LYY
47 47 4r

Xpan? (M B)gapnanng (M B)Dar? *(2) Darn Y (2)
X D054 (1) Dy o5H(21) DagoS2*(R2) Diagro54(2) . (20)

Of course, the kinematic factor K(M5,M1,M5) which
enters in the definition of gy g [see (12)] will have
a different form owing to the change in the number of
final states.

We shall consider, as another example, a decay mode
of B into B; and B,, where B; is a pseudoscalar meson:

B(J") — Bi(S")+B3(07).
N

aztas  agtar

03+ d4+ as (2 1 )
Then, the angular distribution simplifies to
27+1\ /25+1
I(M3,0,2)= ( )( )mw" (M B)gan*(M 5)
v T
XD (QDarn? (D" (@) Dy, 5(R1),  (22)

where we have dropped the subscript 1 from the spin
and helicity of B;. Consider as a final example, the fol-
lowing decay mode of B:

B(]") - B1(S“‘)+Bz(0—) .
N
(23)

The corresponding angular distribution is obtained by
setting u=0 in (22):

2741\ 725+1
I(M 3,2,01)= (———)( )PAA"’ (M B)gv (M B)
47 47

XD () Darae? () Do (Q1) Dy o¥(R) .

az+ay

(24)
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III. MOMENT ANALYSIS

We now define the multipole parameter ¥ by?:4

IfLM*(MB) =E pAAIJ(MB) (JA,LM l JA) ) (25)

where we use the notation (jumijams|jsms) for the
usual Clebsch-Gordan coefficients. Because of our defini-
tion of paa’/(Mp) which depends on M3, the multipole
parameter ¢, also depends on M. Note that #,#=0
if L>2J and #°=34 pan?. We can express psa”’ in
terms of /¥ by inverting (25):

2L+1
o (M) =¥ (

p) UH)M (Mg)(JNLM|JA). (26)

If the initial particles ¢ and b in reaction (1) are not
polarized, the parity conservation in the production
process leads to the condition!!

pan?= (=) Np_s_p7, (27)
which in turn leads to the following symmetry on £z¥:
t M= ()M =M (28a)

Hermiticity of the density matrix implies the following
additional symmetry:

M= (—‘)MtL_M*. (28b)
By combining (28a) and (28b), we obtain
M= (=)L M (28¢)

so that £, is purely real (imaginary) if L is even (odd).

Next, we introduce what we shall call the experi-
mental “moments,” which are the experimental aver-
ages of the product of three D functions. We refer the
reader to other works!®!6 for the statistical analysis in-
volved in dealing with such averages. We define the
moments by

H (llmllzm'zLM ) = <DM mL(Q)D mloh(ﬂl)D maolz(Q,‘,)) ’ (293')

where m=m;—m,. We can express the moments in
terms of the angular distributions given in Sec. II by

H(limdgma LM )= / dMp / dQdNdI (M 5,2,01,Q5)

xDMmL(Q)meh(Ql)meh(Q2), (ng)
where the limits for the integration over dM 5 are meant
to correspond to the experimental cuts used to delineate
the B-resonance sample.

15 See Appendix, J. Button-Shafer and D. W. Merrill, Law-
rence Radiation Laboratory Report No. UCRL-11884, 1964
(unpublished).

16 See Appendix B, N. Byers, CERN Rept. No. 67-20 (Theoreti-
cal Study Division), 1967 (unpublished).
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Using (17), (25), (29), and (A4), we obtain

H(llmllgﬂ'LgLM) = /dMBtLM*(MB) > (])\’Lm ’ JA)

MA2A1/ e’

X (St 1'lom [ SA) (SN2 loms [ Sara)Y [V P (M B)
w

X (SlullolSw) (Szvlzo I Sgl/) s (303.)
where m=m1—ms, A=A1—M\g, and N'=\/—X\,’. Owing
to (18), we have the following normalization for the

moments:
H(000000)=1. (30b)

We shall henceforth omit the integration sign over dM p
in (30a), along with the argument Mp for {1 and
Daprng™: Whenever i and gapyag® appear together,

integration over dM g is implied.
We now list a number of properties of the moments.

First, it is obvious from (30) that we have

or

L>281 or 5>2S5,. (318,)

By using (14a), we obtain
H(l1— mala— ﬂlzLM) = (——)‘1+l?+LH(l1m1l2m2LM) (31b)

and, from (28a),

H(l1m1l2m2L~ M) = (—‘)HMH(h'mllz’nhLM) (31C)
and, from (14a), (14c), and (28c),
H*(ymlomo LM ) = (— )+ 2H (lyamylgmo LM) . 31d)

So, we see that it is not necessary to consider all the
values of m; and m, and, especially, we need not evalu-
ate the moments for negative values of M. Furthermore,
the moments H are pure real (imaginary) if /;+/, is even
(odd). From (31b), we have

HO0LOLM)=0 if h+h+L=odd, (32a)
also, from (31c),

If the particles By and B, are identical, we have from

(15a),
H(llmllgmgLM) = (—)Lﬂ(lzﬂizllmlLM) . (33)

As is clear from the discussion in Sec. II, the relation
(30) is meaningful so long as there is no interference be-
tween the decay products of By and those of B,. If the
interference is appreciable, we should limit our moment
analysis to those events for which the interference is
minimal. This restriction of events simply means that
the value of gy Will have changed due to the
corresponding change in the limits of integrations ap-
pearing in the defining equation for g [see (12)].

The essential idea involved in determining the spin
and parity of the parent resonance B is that we can
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evaulate a larger number of different moments than the
unknowns /¥ and gyamyay®. This means that we can
find linear relations among different moments, the co-
efficients of which involve the unknown spin J. This
affords a straightforward means of determining the spin.
Similarly, the parity can be determined due to the fact
that for certain spin-parity combinations we have the
additional condition that certain g’s are identically zero.
This leads to further linear relations among different
moments, which can be checked experimentally. We
emphasize that our spin-parity analysis is independent
of the production process of B; the multipole parameters
£ which contain all the production information are
treated as unknowns in our analysis, except for certain
symmetry relations implied by the parity conservation.

We list below the special cases of the relation (30).
If By and B; decay into two pseudoscalar mesons, we
obtain by using (20),

H (Z1M1Z2M2LM ) ={ LM *(S 10l10 l S 10) (S 20[20 ’ S 20)
X Z Sridaha Ay (J)‘,Lm l J>\) (Sl)\llllml ,SI)\I)

PSUEIS IOt
X (Sz)\z’lz’lﬂz ! Sg)\g) . (34)

If B, is a pseudoscalar meson, we get from (22)
H(mLM)=1M" 3" (JN Lm|JN)(SN'lm | SN)
AN
X2 gwH(Sul0|Su)  (35a)
”

and H(ImLM) is the experimental average given by
H(ImLM)=(Dyn"(2)Dmo" (1)), (35hb)

where we have dropped subscripts 1 from .Sy, A1, 41, and
my. Of course, all the symmetry relations given in (31)
and (32) are also satisfied by H(ImLM) with ly=ms=0.
If, in addition, B, decays into fwo pseudoscalar mesons,
we get from (24)

H(ImLM)=¢,*(S0I0|S0) 3= gy (N Lm|JN)
AN

X(SNtm|SN), (36)
where H(imLM) is to be measured as shown in (35b).

We shall illustrate our spin-parity analysis with a few
simple but rather important examples in the following
sections. In Sec. IV, we consider the decay of B into two
vector (or pseudovector) mesons. We have devised our
test in such a way that they can be applied with equal
facility to cases when the two vector (or pseudovector)
mesons are identical, e.g., B(J") — w-w: This has been
accomplished by considering always the combinations
[H (lmalomo LM )+ H (lymolym LM )] for even L [see
(33)]. In addition, we use only those moments with
hi+ly=even, so that all the moments H(LmlomoLM)
used are pure real. In other words, the imaginary part
of H(hmlsmeLM) ought to be identically zero [see
(31d)]. In Secs. V and VI, we treat the case when B,
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is a pseudoscalar. Again, we have used for our tests only
those moments H(imLM) with l=even; the imaginary
part of all H(imLM) used should be zero identically.

IV. B(J") — Bi(1¥)+ By(1%)

The analysis presented here applies to the cases when
B1,5(17) decays into two or three pseudoscalar mesons
or when B (1) decays into two pseudoscalars. The
fundamental relation we use is obtained from (34):

H (11M112M2LM) = tLM*(IOhO ] 10)(10l20 I 10)
2 gy (N L | TN (I Toma | 1N)
Ard2A1 Ne’
X (1)\2'121%2' 1)\2). (37)

That (37) can also be applied to the three-particle de-
cay mode of Bi(17) or B,(17) is seen as follows: Since
the spin is one, u and » of gaagay® can have 0, 1, or
—1. But the symmetry of (14b) restricts u and » to only
one value, i.e., u=v»=0, so that applying this condition
to (30), we simply get (37) if we set gy ng' = Erpaaryas
We have devised our tests so that they are independent
of whether B; and B, are identical particles or not.
From (37) we see that

H(hmydomeLM)=0 if I or ly=odd. (38a)

In addition, because of (32a), we have

H(L,0L,0LM)=0 if L=odd. (38b)

Now, by writing down explicitly the moments (37) for
different values of /1, m1, &, and m., one can prove the
following relations for even L:

941, * gg00(JOLO| JO) = H(0000LM )+ 5[ H(2000LM )
+H(0020LM)]+25H(2020LM), (39a)

lstLM*[guu(JOLO ] JO)+g1_11_1(J2LO l ]2)]
=4H(0000LM)— 10 H(2000LM )+ H(0020LM)]
+25H(2020LM), (39b)

18¢.M*[gro10+ go101) (J1LO| J1)=4H (0000LM )
~+5[H(2000LM )+ H(0020LM) ]
—S0H(2020LM),

— e(34/6)1L2* (g10107+ gor01) (J —1L2] J 1)
= H(2200LM)+H(0022LM )5 H(2220LM)
+H(2022LM)], (39d)

€(6/25)1,*g1111(JOLO| JO) = H(2222LM), (39)

(39¢)

where the parameter e has the form e=7(—)" [see (8)].

Ry(LM)
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Suppose B has spin 0, i.e., J=0. Then, we must have
H(hmilomo LM)=0 forall L>1. (40a)

In addition, by inspection of (39c) and (39d), we obtain
the following relations for L=M=0:

4+ 5[ H (200000)+ H(002000) ]

—50H(202000)=0, (40b)
H(220000)-+ H(002200)-+5[ H(222000)
+H(202200)]=0. (40c)

If the parity of Bis negative, i.e., e=n=—1, we have
from (14a) the condition gogeo=0, so that we obtain the
additional relation from (39a)

1-+ 5[ H (200000)+H(002000) ]

+25H(202000)=0. (41a)

This affords a means of determining the parity of B, if
goooo is not also zero for e=7n=-+1. By combining (39b)
and (39c), we obtain the following formula involving e:

75€H(222200) = 4— 10[EH(200000)+ H(002000) ]

-+25H(202000). (41b)

This gives an additional test for the parity of B.

Next, we consider the case J>1. If the spin and
parity of B are such that e is —1, goopo is identically
zero [see (14a)], and we have the following condition
from (39a) for even L:

H(0000LM )+S[H(2000LM )+ H(0020LM)]
+25H(2020LM)=0. (42)

Note that, since J is equal or greater than 1, we can
use (42) for at least two values of L, i.e., L=0or 2. In
order to use (42) for higher values of L, we must first
know the value of J, since H(limilomo LM )=0 if L>2J.
Once the value of e is known, we may determine the spin
itself as follows: If the factor

[ b0 s+ 0]
is different from zero, we may take the ratio of (39c) and
(39d) and obtain, by using (A5) and (A6),

2L(L+1) L(L+1)
Ere )
(even L>2),

:|II2R1(LM)=5e[2-—

(43)

where Ri(LM) is an experimentally measurable quan-
tity given by

H(2200LM)+H(0022LM)~5[H (2220LM )+ H (2022LM) ]

(44)
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The relation (43) is most useful for L=2 because of
its applicability for all values of /> 1. For higher values
of L, the condition H(LmlamsLM)=0 for L>2J could
make R;(LM) indeterminate. However, once the value
of J has been determined, one could use (43) for higher
values of L as a consistency check. It is possible to de-
vise other relations involving e and J. For example, if
€ is —1, the ratio

2H(2121LM)
H(212—1LM)+H(2—121LM)
(even L>2) (45)

Ry(LM)

is related to the spin J(>1) by

[ L(L+1) ]1/2 (Li)=1 L(L+1)
C—0E+2d T g+
(even L>2). (46)

This can be used as an additional test of spin J if e is
—1. Finally, we note that the parity of B can be ob-
tained by the relation e=n(—)’, once € and J has been
determined.

V. B(J")— Bi(1%)+B,(07)

As pointed out in Sec. IV, we can treat on an equal
footing the case of B1(1™) decaying into 2 or 3 psuedo-
scalars and that of By(1+) decaying into two pseudo-
scalars. These decay modes of B have been considered
by others®—2 and by this author in an earlier work.? We
simply list in Sec. V A the results again, since we have
used in this paper somewhat different conventions and
notations.!” In Sec. V B, we take up the case of Bi(1t)
decaying into 3 pseudoscalars.

A. B;(17) — 2 or 3 Pseudoscalar Mesons

The starting relation for this case is obtained from
(36)
H(ImLM)=1t,*(1000]10) 3_ gav(JN'Lm|JN)

AN
X(INIm|1N).  (47)

Using this equation, we easily obtain the following for-
mulas for even L:

311M*g0o(JOLO| JO) = H(00LM)+5H(20LM)

61 *g11(J1L0|J1)=2H(00LM)—5H(20LM), (48b)

(48¢)

(48a)

—e(3\/6) 1M g (J—1L2|J1)=H(22LM).

17 The moments H(mLM) are related to G*(imLM) defined in
Ref. 5, but there is difference in the argument of D functions; in
this paper we use Dun’ (¢,0,0) instead of Dum’/ (e, 6, — ) in Ref.
5. We also used a different coordinate system for the decay of B in
Ref. 5; there we used the normal to the production plane as the z

axis.
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If the spin of B is zero, the parity is simply =1 for
m=z1. Therefore, we have e=+1 for both n;=-+41
and n1=—1. Just as in Sec. IV, all H(ImLM) should be
zero for L>1. In addition, we should have H(0000)=1
and H(2000)=%.

Now consider the case when J is greater than zero.
The first information on the spin and parity of B comes
from the condition ga=0 for A or M’=0 when e=—1
[see (14a)]. In this case, it is easy to show that

(49a)
(49b)

H(00LM)~+5H(20LM)=0 (even L),
HQILM)=0 (all L>1).

These conditions are not expected to be satisfied in gen-
eral if € is 41, so that (49) yields information on e. If
¢ is known and if the factor

/dMBtLM “(Mp)gu(Mp)

is different from zero, we can take the ratio of (48b) and
(48¢) to get

L(L+1) 2
[ 2L(L+1) ] Rg(LM)=Se[2—-L(L+1)]
3(L—1)(L+2) J(J+1)

(even L>2), (50)

where we have used (AS) and (A6) and Ry(LM) is a
quantity to be determined experimentally:

2H(00LM)—S5H(20LM)
Rs(LM ) =
H(22LM)

We note that Eq. (50) is essentially the same as that
given in our earlier work.!® In practice, the above spin
formula should be used for L=2. If J turns out to be
greater than one, one may use higher values of L as
a check. The parity is obtained through the relation
e==q(—)7 for ;=-1.

(1)

B. By(1*) — 3 Pseudoscalar Mesons

We start with Eq. (352). From the symmetry relation
(14b), we have g\#=01if u is even, so that we have only
two values of u, i.e. u=2==1. Therefore, from (35a) we
have

H(lmLM) = ZLM*(I llOI 11)2 [g)\y\/+1+ (—' ) lg)\)\:_lj
AN

X (TN L | IN(INIm | 1N).  (52)

It is easy to show the following formulas for even L:

3% (oot +goo ") (JOLO| JO)
= H(00LM)—10H(20LH),

18 Compare with Eq. (23), Ref. 5.

(53a)
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3tLM*(gut g ) (J1L0| J1)
=H(00LM)+5H(20LM),

eV (g + g (T —1L2|J1)
=H(22LM). (53c)
If the spin of B is zero, we again have the condition
H(lmLM)=0 for all L>1. The parity of Bis 41 so that
e=n=-1. Furthermore, the following relations are
true for L=M =0, i.e., H(0000)=1 and H(2000)=—%.
If J is greater than zero, we first determine the value
of € by the condition that, if ¢ is —1, we should have
H(00LM)—10H(20LM)=0 (even L), (54a)
H(ILM)=0 (all L>1). (54b)

The spin J itself can be determined by taking the ratio
of (53b) and (53c), if the factor

(53b)

[dMBtLM*(MB)[gu“(MB)+gn‘1(MB)]

is different from zero:

2L(L+1) T2 L(L+1)
I:——-——————-] R(LM)=— 56[2— :]
3(L—1)(L+2) JU+D)
(even L>2), (55)
where Ry(LM) is to be determined by
H(0OLM)+5H(20LM
R(LM)= ¢ )+ SH ) . (56)
H(22LM)

Again, one would want to use (55) for L=2 and, as a
check, for higher values of L. The parity n of B is then
determined by the relation e=75(—)”. Finally, we note
that (54) and (55) can be used even if two of the three
decay products of B; are identical. This has been
achieved by considering only the combination gya*!

+gw" [see (15b)].

VI. B(J")— B1(2)+ B, (0")

We shall consider two decay modes of By;in Sec. VI A
we treat the decay of B into two pseudoscalars and in
Sec. VI B the decay of B; into three pseudoscalars.

A. B;(2*)— 2 Pseudoscalar Mesons
We have from (36)
H(ImLM)=1t,"*(2000| ZO)Z, ow(INLm|JN)
" X(2Nm|2N).  (57)

Using this, it is straightforward to prove the following
formulas for even L:
5¢.M*g0o(JOLO| J0)= H(00LM)~+5H(20LM)

+9H(40LM), (58a)
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10t *g31(J1LO| J1)=2H(00LM)+5H(20LM)
—12H(40LM), (58b)

10£2.M*g02(J2L0| J2) = 2H(00LM)—10H (20LM)
+3H(30LM), (58¢c)

—e(n/$)LM g (J—1L2|J1)=H(22LM)

+Q2vHHMA2LY), (58d)
3V (10/7) Y4 *goa(J —2LA| J1) = H(44LM).  (58e)

First, we want to determine the value of e=n(—)/*!
[see (8)]. If e is —1, we have from (14a) the condition
oa=0 for A or \'=0. Therefore, if ¢ is —1, we obtain
the following conditions:

H(OOLM)+5H(20LM)-+9H(40LM ) =0
(even L, J>1),

HMLM)=HQILM)=0 (L=1or2,J=1),

H22LM)— (33 H42LM)=0
(even L>2, J>2),

HQILM)+[3v/(6/5)JH(41LM)=0
(all L>1, J>2),

(59a)
(59b)

(59¢c)

(59d)

where (59a) follows immediately from (58a), and the rest
of the equations are shown easily by writing down (57)
explicitly for indicated values of / and m. Of course, if
J is zero, n is —1 so that e=-1.

Once e is known, we proceed to determine J in the
following manner: First consider the case J=0. Then,
as before, we must have H(imLM)=0 for all L>1. Also,
we must have H(0000)=1 and H(2000)= H(4000)
=2/7. Next, we consider the case J=1. Then, it is clear
that H(imLM)=0 for all L>3. In addition, we have
from (58c),

2H(00LM)—10H(20LM)+3H(40LM)=0

(L=0,2). (60a)

Also, by writing down (57) explicitly for /=1, we ob-
tain the following formulas:

H(22LM)—(3\/$H42LM)=0 (L=2), (60b)
HQLILM)—~(/T5)HALM)=0 (L=1,2). (60c)

Note that (59c) and (60b) are exactly the same for
L= 2. Therefore, if this condition is met experimentally,
it means either that J is one or that e is —1 for J>2.

Now, we derive the spin formula valid for all J greater
than zero. If the factor

/ M ot (M 5)gu(M z)

is different from zero, we can take the ratio of (58b) and
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(58d) and obtain
1/2 L(L+1
[—ZL_(’EEL_] Ra(LM)=5eI:2— ot )]
3(L—-1)(L+2) J(J+1)
(even L>2),

(61)

where Rs(LM) is to be determined by

2H(00LM)~+5H(20LM)—12H(40LM)
H(22LM)+(24/2)H(42LM)

In practice, one may use (61) for L=2. Should the
resulting J be higher than one, one could use higher
values of L in (61) as a consistency check. We note in
passing that it is possible to obtain another spin formula
applicable for J>2 by taking the ratio of (58b) and
(58¢). However, the resulting relation can be used only
for even L equal or greater than 4. As before, we can de-
termine the parity of B through the relation e=n(— )7+,
A more detailed version of this particular example is
given in Appendix B.

Rs(LM)=

B. B;(2*) — 3 Pseudoscalar Mesons

From (35) we can get the following formula:

H(ImLM)=1:2"(2110|21)3 [+ (—)’en]
W

XINLm|IN)2NIm|2)), (63)

where we have used the condition gyv*=0 if u is even.
In order that our analysis be applicable even if two of
the decay products of B; are identical, we consider only
the even values of J, so that only the combinations
(g4 ™Y enter in our formula. Note that the
factor (gawtl—gaw ) is identically zero, if there are
identical particles [see (15b)].

Using (63) we can prove in a straightforward way the
following formulas for even L:

1042M* (gog* '+ goq=Y) (JOLO| JO) = 2H (00LM)
+20H(20LM)—2TH(40LM)

5.4 (g4 g ) (J1L0| J1) = H(00LM)
+5H(20LM)+9H(40LM) ,

2081M* (g1 g2~ ) (J2L0O| J2) = 4H(00LM)
—40H(20LM)—9H(40LM),

—(e/A/6)tLM *(gut+ g H(J1LO | 1)
=H(22LM)— (3vHH(42LY),

— [(2/92/(10/7) Tt *(gast '+ gos™)
X (J—2IA|J2)=H(44LM).

(64a)
(64b)
(64c)
(644d)
(64¢)
Just as in Sec. VI A, our first task is to determine ¢ for

all values of J. If J is zero, we have n=—1 so that
e=+1. For higher values of J, we have the following
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conditions if e is —1:

2H(00LM)~+20H(20LM)— 27H(40LM) =0
(even L, J>1),

HMILM)=HQILM)=0 (L=1or2,J=1),

H(22LM)+(9/8)(\/)H(42LM)=0
(even L>2,J>2),

HQILM)—[(9/4)v/(6/5) JHA1LM) =0
(all L>1, J>2),

(65a)
(65b)

(65¢)

(65d)

where (65a) follows simply from (64a), and the rest of
the relations can be shown by writing down (63) explic-
itly for indicated values of ! and m.

Next we determine the spin J. Suppose J=0. Then
H(ImLM)=0{or all L> 1. In addition, we have H (0000)
=1, H(2000)=1/7 and H(4000)=—4/21. If J is one,
we must have H(ImLM)=0 for all L>3. Furthermore,
from (64c) we get

4H(00LM)—40H(20LM)—9H (40LM) =0

(L=0,2). (66a)

As in Sec. VI A, we can also show that
H(22LM)+(9/8)\/3H(42LM)=0 (L=2), (66b)
HQALM)+-3/SHAILM)=0 (L=1,2).  (66¢)

Again, (65c) and (66b) are exactly the same. Therefore,
this relation implies either that J is one or that e is —1

if J is greater than one.
Next, we derive the spin formula applicable if J is
greater than zero. So long as the factor

/ AM st (M B) gut (M p)+ g1 (M )]

is different from zero, we can take the ratio of (64b) and
(64d) and obtain

1 12
[_f_]i“r_)_} R6<LM)=56[2_L(L+”]

3(L—1)(L+2) J(J+1)
(even L>2),

(67)
where Re(LM) is given by

)_H(OOLM)+5H(20LM)+9H(4OLM) ”
 HQ2LM)—3(/DH@2LM) (©8)

By taking the ratio of (64c) and (64€), we can obtain
an additional spin formula (valid for J>2) independent
of (67). However, we do not give the explicit formula
here. Again, note that (67) is to be used for L=2. As
before, if J turns out to be greater than 1, we can use
higher values of L in (67) as a consistency check. Once
eand J have been determined, the parity » of B is given
by the relation e=n(—)7+1,

R(LM
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APPENDIX A

For easy reference, we collect here the formulas used
in the paper. The D functions used here are the same as
those defined in Rose,'? i.e.,

DI"”’»J (ayﬂyy) = e_i”adllmJ(ﬂ) e—-im'y . (AI)

The explicit forms of du»”(8) for J’s up to 3 are given in
Berman and Jacob.! In this paper, we adopt the fol-
lowing shorthand notation:

Dyn” ()= Dy’ (#,6,0) , (A2)

where Q=(0,¢) as usual. The integrals involving the
product of D functions are

(A3)

5#114231’1!2

" ) 4
fdQDﬂlm’l (Q)Dmmn(ﬂ) =E—:l—‘;

J1

and if mg=m1-+ms,

4
/- aeb, uamxia *(Q)D nzmziz(ﬂ)D mmlh(ﬂ) = 2j3+ 1

X (fuprfope]| Faus) (Fumagems| jsms). (A4)

We have used, frequently, the following two formulas
involving Clebsch-Gordan coefficients!®:

(J1LO|J1)=— [LEAD 1](JOL0|]O)
L27(J+1)
(even L), (AS)
- L(L+1) T2
(J—1L2|J1)=— _m] (JOL0|J0)
(even L). (A6)
APPENDIX B

In order to further illustrate how one applies the spin-
parity analysis given in Secs. IV-VI, we take for our
detailed analysis the examplegiven in Sec. VI A,
namely, that of the following decay chain of B: B(J") —
Bi(2¥)+B2(0~), Bi(2t)— 0+40". Therefore, the
method outlined here can be directly applied to the pos-
sible resonance® A3 decaying into 7 and f°(1250).

First, we define the angles Q(6,¢) and @1(61,¢1) more
precisely (see Sec. IT). In the B rest frame (BRF), the

19 M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr.,
The 3-j and 6-5 Symbols (The Technology Press, Massachusetts
Institute of Technology, Cambridge, Mass., 1959); see the recur-
sion relation (1.49).
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axis is chosen to be along the direction of B (in the c.m.
system) and the v axis may be taken to be along the
normal to the production plane. The angles (6, ), which
describe the direction of B; in the BRF, are measured
with respect to this coordinate system. The angles
(61, ¢1), which are defined in the BiRF, describe the di-
rection of one of the pseudoscalars from B;. The coordi-
nate system for these angles are set up as follows: the
2, axis is along the direction of B, (in the BRF) and y,
axis is along ZXB; (both defined in the BRF), which is
invariant under the pure timelike Lorentz transforma-
tion from the BRF to the B;RF.

In terms of the angles @ and @, defined above, we can

then evaluate experimentally the relevant moments
from (35b)

N
H(mILM)=— 3 DarnZ(Q9)Dmo'(217),
Ni=1

(B1)

where Q¢ and Q¢ are the angles for the ith event in the
B resonance sample and  is the total number of events
in the sample. [See Appendix A for the definition of D
functions in (B1).] In general, if one takes an experi-
mental average of any real function f, the average f and
its error 8 f may be evaluated by

1 N
f=—3% f: (B2a)
N =1
and 1r1 w 1 N \22
A (EAT

So, if H(lmLM) given in (B1) is real, one may use (B2b)
to estimate its error.

Note that, because of (31b) and (31c), it is not neces-
sary to evaluate H(ImLM) for negative values of m or
M. In addition, the relation (31d) implies that the
imaginary part of H(ImLM) for even I should be zero
identically. Although (B1) can be used to evaluate di-
rectly the moments needed in relations (59), (60), and
(62), it is instructive to write down the relations explic-
itly in terms of the angles (8, ) and (61,¢1); this we have
done for a few simple cases of the relations (59), (60),
and (62).

First, we shall use (59) in order to determine the pa-
rameter e=7n(—)7*! for J>1 (e=-1 if 7=0). By set-
ting L=M=0 in (59a), we obtain the following
condition:

(21 cos%1—14 cos?0,+1)=0. (B3)

So, if (B3) is satisfied experimentally, one may conclude
that e=—1. Of course, as a consistency check, one can
consider other forms of (59a) by setting L greater than
zero. In addition, (59b) yields information on e if J is
one and (59¢) and (59d) can be used to determine e for
the case J>2.

After having determined e, we proceed to determine
the spin iteself using the formulas (60) and (61). Sup-
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pose J =0. Then, all H(lmLM) is zero for L>1. Further-
more, we should have

{cos0,)=11/21, (B4)

{cos*:)=3/7. (BS)

Suppose J=1. Then, of course, all H(imLM) should be

zero for L>3. In addition, we have from (60a) for
L=M=0

(21 costf—42 cos?;+13)=0. (B6)

Again, one can use (60a) for L=2, as well as (60b) and

(60c) as a consistency check.
Next, we give the spin formula valid for J>1. We

have from (61) with L=2 and M =0.
Rs(20)=10e{1—3/[JU+1)T},

where R5(20) can be calculated easily from (62), so that
we obtain the following spin formula:

{(3 cos?0—1)(21 cos®f; sin?f;—2))

(sin%f cos?6; sin%6; cos2¢1)

=21 1—

. 7
J(J-H)] B

Of course, we can obtain different spin formulas from
(61) by using other allowed values of L and M.

If the numerator and denominator on the left-hand
side of (B7) are consistent with zero experimentally,
it implies that the factor

/ dM pt:2*(M 5)g11(M 5)

is either zero or too small for the given statistics and, of
course, (B7) cannot be applied; we must then try (61)
for other values of L and M. The spin-dependent factor
on the right-hand side of (B7) is given below explicitly
for different values of J:

J=1 2 3 4 5 o
(1-3/[JJ+1)]}=—0.5 0.5 0.75 0.85 0.90 --- 1

Thus, in general, a larger number of events is required
to determine the spin, if its value is high,
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In using (B7), one must evaluate the ratio of two ex-
perimental averages, which does not have Gaussian
distribution in general even though the averages them-
selves may be Gaussian. The reader is referred to other
works!®:16 for the statistical treatment involved in deal-
ing with such a case.

Finally, we show how the formulas given here may be
checked analytically with a few simple expressions for
the angular distribution. First, assume J*=0". Then,
from (24) we obtain the normalized angular distribution

I(Q,Ql)E/dMBI(MB,Q,Q1) = %(3 cos?0;— 1)2 . (BS)

Using this, it is easy to see that (B4) and (BS) are
satisfied.

Next, assume J7=1" so that e=—1. In order to ob-
tain the simplest angular distribution consistent with
symmetry requirements, we set all pyy7 to zero except
poo” and assume that only gy is not zero, i.e. gru=_g 11
= eg11=€g-117%0. Then the following angular distribu-
tion is easily obtained from (24):

I(9,21)~sin?% sin%; cos?0;(1—cos2¢:). (B9)
Again, it is simple to show, using the angular distribu-
tion given above, that (B3), (B6), and (B7) are satis-
fied. Suppose J7=1* so that e=--1. As before, we as-
sume poo’#0 and g;15#0. In addition, let us assume
2005%0. Then, from (24), we obtain

1(2,Q:1) ~a cos?(3 cos?f;—1)?

-+sin?% sin?0; cos?6:(1-+cos2¢1), (B10)
where a is an arbitrary constant. It is straightforward to
show that (B10) satisfies (B6) and (B7).

It is rather remarkable to see that (B7) is satisfied by
(B10) independent of the arbitrary constant a. Note
that the constant « reflects the admixture of twoorbital
angular momenta, allowed (i.e., 1 and 3) in the decay
process 1% — 2*+--0~. This is but a simple example of
what we have set out to do in this paper: We have de-
vised spin-parity tests that are independent of both the
production and the decay dynamics of boson resonances
with sequential decay modes.



