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Correspondence between Unstable Particles and. Poles in 8-Matrix
Theory: The Exponential Decay Law
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(Received 22 January 1968)

The discussion on the correspondence between unstable particles and poles of the S matrix, started in a
previous paper, is continued with particular attention to the decay law. It is shown that the previous formal-
ism can be modi6ed to obtain an S matrix, satisfying all the usual requirements of analyticity, unitarity,
and asymptotic behavior, which exhibits an isolated resonance m@h exponential decay without an accompany-
ing pole in the unphysical sheet. The existence of a local potential which yields the S matrix considered
is also proved.

1. INTRODUCTORY CONSIDERATIONS The evaluation of the integral
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' 'N a recent paper' it has been shown that it is possible
-- to build up 5 matrices, satisfying all the usual
requirements of analyticity, unitarity, and asymptotic
behavior in energy, and exhibiting an isolated sharp
resonance, without an accompanying pole in the un-
physical sheet. This has been obtained by constructing
a phase shift which goes rapidly through s./2 with
positive derivative and which possesses the desired
analytic properties. Such a phase shift gives rise to a
bump in the cross section and to a time delay of the
emitted wave packet, and this leads to the usual
interpretation of the phenomenon as the production
of an unstable system.

Usually, however, when one speaks of an unstable
system, one also requires the exponential decay law for
a large time interval, and this feature of the process
has not been discussed in detail in I.

It can be easily understood, at least qualitatively,
that the development of the decaying system depends
on the detailed behavior of the phase shift as a function
of the energy and is not automatically guaranteed
by the rapid variation through w/2 of the phase shift.
In fact, the exponential decay law occurs for times larger
than the mean lifetime of the system. Since the time
dependence of the process is obtained by means of an
integration over the relevant interval of the energy
I

see Eq. (3) below), for large times we are analyzing
the scattering amplitude with an oscillating function
of the energy of very short wavelength, so that also
the details of the amplitude become important.

To see explicitly how the decay law can depend on the
details of the resonating phase shift, we look at a ver
simple, although unrealistic, example. Let us assu
that the scattering phase shift has the following for

8(E)=0 for E&e—~xF,

using the approximation

h=—(2mE)'" (2ma)'"(1+E/2a+ ~ ~ )
leads to the following time dependence:

j.6
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w= (m/2a)"'. (2)

We observe that the result (2) is not due to the un-

physical presence of edges in the assumed phase shift.
In fact, as shown below, given two phase shifts Bi(E)
and 8s(E), the two resulting decay laws differ as little
as one wishes for 6nite times, provided

I bi(E)—~s(E) I

ls made SUKciently small within the lntelestlng range
of energies.

For the above reasons, if one wishes to obtain also
the exponential decay law, one cannot simply build
up a phase shift going rapidly through w/2, as in I, but
one must also take care of the details of the energy
dependence in the resonance region. In this paper we
shall show how the formalism introduced in I can be
modi6ed to obtain an 5 matrix with all the usual
properties, and possessing an isolated sharp resonance
with the exponential decay law, without an associated pole.

2. COMPARISON BETWEEN TWO
DECAY LAWS

2
8(E)=-s,w+—(E—a) for a——,'rrl'& E&a+-,'farl',

r

We compare here the decay laws obtained from two
phase shifts bi(E) and bs(E) which differ very little in
the relevant energy interval.

The decay law resulting from a given phase shift is
governed by the modulus of the integral2

(1)

b(E) = w for E)a+arrrl'. Z(r, t) = g(r,E)e 'e'f(e~'~i~& 1)/2i jdE, (3)—
' G. Calucei, L. Fonda, and G. C. Ghirardi, Phys. Rev. 166,

1'l19 (1968). This paper will be indicated as I in what follows.
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2R. G. Newton, Scatter&kg Theory of 8'uncs end I'articles
(McGraw-Hill Book Co., New York, 1966), Chap. 49.
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where g(»,E)=f(E)v'~; and f(E) is the energy form series which is absolutely and uniformly convergent.
factor of the incoming wave packet, Now let The substitution x= vb/K2 leads to

~2(E)= ~~(E)+v(E)

Co

I ~ ~
I g(» E)v i//tom—ug(E)(v2/e(E) 1)dE

[ f(E) I [sine(E) [dE. (4)

&21'5 ~
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b(E)=l + Z II'+2k' ~ Ei"+26't

{E—a)P2//!/.

(v'-1)'dv. (7)

For any reasonable impinging wave packet the integral
Jg"

I f(E) [dE is convergent. Since, moreover, f(E) is
chosen to be appreciably di6crent from zero only in a
6nite interval around. the resonance energy, it follows
that

I &q—&i I
can be made arbitrarily small by making

e(E) suKciently small in this region. Therefore, if
B~(E) gives rise to a pure exponential decay law for a
certain time interval, 82(E) will give rise to the same
decay law in the time interval considered, with a super-
imposed disturbance which can, however, be made
very small. The result of Kq. (4) shows also that the
actual value of the derivative at the resonance point is
not of crucial relevance for the time development of
the state.

The unusual time dependence of Eq. (2) can now be
simply understood. Let us consider the phase shift
corresponding to a Breit-Vhgner resonance

bs w(E) = arctan L
—I'/2(E —u))

and the phase shift of Eq. (1), which has the same
derivative at E=a. Even though, for I' —+ 0, both phase
shifts approach the step function v.6(E—u), the dif-
ference between them at the points u+v I'/4 is equal to
arctan(2/v) which does not depend on I". Therefore
the above argument cannot be applied to this case.

3. APPROXIMATION OF A BREIT-WIGNER
PHASE SHIFT

We start now by considering the phase shift of Eq. {5),
which can bc wrlttcn Rs

b(E) = —',v+21'

and we try to express this function as a series of poly-
nomials which converges in an interval of the real axis
u d«&E&«u+d with /!))I—', /! &u. We write

b(E) =-,'~+
I'+26'

2LP
/

2
1+ -I —x'—1 dh (6)

I"+26'kh'

and we observe that in the region consid. ered x' «&(E—u)'
«& 6' the integrand can be expanded in a geometrical

The absolute vahlc of thc Integral Rt thc right-hand side
is certainly less than V2; therefore, writing

b{E)= b.(E)+E-(E)
with

&21'd ~ —26,2 '! '
zI'+2k' ~-~ I'+26'J

(E-a)VK/d

(v' —1)'dv, (9)

21'd,
/

2h'
E (E) &

I"+46'kl"+2LV

~high shows that IE (E) I
can be made arbitrarily

small by increasing m. It is clear that b~(E) is a poly-
nomial in E of degree 2n —j., approximating the Sreit-
%igner phase shift in the energy interval considered.

The so-obtained function 8„(E) cannot be chosen as
a physical phase shift, because it does not possess the
collect asymptotic bchavlol Rt, zcI'0 and in6nitc cIlcl glcs.

An acceptable phase shift will be obtained by
multiplying b (E) by two factors governing, respectively,
the zero and in6nite energy behavior. Care must be
taken, however, that the resulting phase shift remain as
near as one wishes to the Breit-signer phase shift in
the relevant energy interval.

As regards the zero-energy limit, we con6ne ourselves,
for simplicity, to an S-wave scattering and wc consider
the identity

(P 1/I( E u)
—1/2

1=—
I

—
I I1+

Cur I,

(2k —1)!!(u—P ~

(11)
4u~ &-o (2k)!! 4 u )

valid for [E—u[ &u, which is certainly veri6ed when

[E u[ &6, being b, &u. The—absolute value of the mth
remainder of the above series is less than

[1—E/u I
"+'I 1—

I
E u[ /u J '(E/u)'"—-

so that the function

(2k —1)!!u—Q~
z

~

~ ~

u I / =o (2k)!! u

besides having the correct aero-energy behavior, can be



NDUNSTABLE T(CLFS A~

is equation is oThe function g(» r pp
tt r,ng and unde«he

earing in
tained, in the case of s-wave scattering

do not Possess s-w-waveothesis that both &
bound states through the formula

169

close to 1, in the interval of interest

tion of the above argument one cou

1' 't o 'd thd the inhnite-energy imi,As regar s
function

cn — bc&0F(E,c)=exp( —c n= ex —c ln'I 1+(E—a)/(a+5)]);, c

ro at infinity faster than any inverse
th tb o 1 hoi

b d b't '1r c this function can e mthe parameter c,
' '

e m
to 1 in the usual energy in eclose to in

we consi er e

(16)g("")=
o

p(E,r is
' c-the solution of the-e s-wave radial

fo th ot ~t' lv,Schrodinger equation or t e po
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2 Chap. 20.
B. M. Levitan, Dokl. Aka .

k SSSRS" F" 1577, 557 (1951); Izv. Akad. Nau
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(P " bt(E') constdE', for E-++co.
OE' —E E

in6nity faster than any inverse power of E, it can be and, this fact ensures the convergence of the integral
shown, by means of some simple manipulations, that appearing in Eq. (18).

Ke have therefore completed the proof of the exis-
tence of a local potential yielding the form (13) of the
phase shift.

It follows immediately that

const—1,for E~+co,
-IDt(E) I'
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A general helicity formalism is developed for the determination of spin and parity of boson resonances
of arbitrary spin which have sequential decay modes. The procedure is illustrated with a few simple but,
in practice, important decay modes, namely, 1 +1, 1++0, and 2++0, where 1+ and 2+ mesons in
turn decay into 2 or 3 pseudoscalar mesons. The method proposed here is independent of the dynamics of
the production and decay process.

I. INTRODUCTION

E present in this paper a general helicity formal-
s

~

~ ~

ism' ' that enables one to determine the spin
and parity of boson resonances with sequential decay
modes; we treat as the maximum complexity the case of
a boson resonance decaying into two intermediate bos-
ons of arbitrary spin, both of which in turn decay into
three pseudoscalar mesons. It is shown that the formal-
isrn thus developed can easily be applied to cases when
the intermediate bosons decay into two pseudo-
scalar mesons or one of the intermediate bosons is a
pseudoscalar.

Our basic tool for the spin-parity determination is the
moments which are experimental averages of the prod-
uct of three D functions (see Appendix A and Ref. 12).
It is shown that these moments are conveniently pa-
rametrized in terms of the multipole parameters. ' ' Our
main task in this paper has been to show that there exist

*Work performed under the auspices of the U. S. Atomic En-
ergy Commission.

~ For the helicity formalism, the reader is referred to the stan-
dard work: M. Jacob and G. C. Wick, Ann. )Phys. (N. Y.) 7, 404
(1959). However, we use a slightly different convention for the
argument of D functions, ' instead of their D„~(q, e, —q), we use
D„~(y,8,0).

~We give three references for diferent approaches to spin-
parity analysis of bosons: M. Adenmllo, R. Gatto, and G. Pre-
parata, Phys. Rev. 139, 31608 (1965); C. Zemach, ibiX 140,
3109 (1965);E. de Rafael, Ann. Inst. Henri Poincare 5, 83 (1966).'

¹ Byers and S. Fenster, Phys. Rev. Letters ll, 52 (1963).
4 See the 6rst of two lectures by J. D. Jackson, High Energy

Physics (Gordon and 3reach Science Publishers, New York,
1965).

linear relations among di6erent moments for certain
spin, -parity combinations of the parent bosons and that
for some of the linear equations the coeKcients them-
selves are known functions of the spin of the parent
bosons; this a6ords a straightforward means of deter-
mining the spin and parity of the parent bosons.

A remarkable aspect of this method is that it is inde-
pendent of the detailed dynamics of the production and
decay mechanism of the parent bosons. In addition, our
method is independent of the interference among the
three decay products of either of the intermediate bos-
ons. Our method does not apply, however, if there ex-
ists appreciable interference between the decay products
of one of the intermediate bosons with those of the
other. It is shown that our method can still be applied,
if we limit our analysis to those events for which the
interference is minimal. Of course, there is always the
problem of interference with background events. How-
ever, our method can be used if the interference is not
appreciable and if the moments for the background
events alone are small, as should be the case when the
background events consist mostly of phase-space events.

In Sec. II, we derive the general angular distributions
starting with the Lorentz-invariant amplitude for the
production and decay of the parent bosons. We intro-
duce in Sec. III the multipole parameters and then the
moments and give the symmetry properties satisfied by
these moments. In Secs. IV—VI, we illustrate our spin-
parity analysis with simple but, in practice, important
examples. These include the ca.se of a boson resonance


