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The discussion on the correspondence between unstable particles and poles of the S matrix, started in a
previous paper, is continued with particular attention to the decay law. It is shown that the previous formal-
ism can be modified to obtain an .S matrix, satisfying all the usual requirements of analyticity, unitarity,
and asymptotic behavior, which exhibits an isolated resonance with exponential decay without an accompany-
ing pole in the unphysical sheet. The existence of a local potential which yields the S matrix considered

is also proved.

1. INTRODUCTORY CONSIDERATIONS

IN a recent paper! it has been shown that it is possible
to build up .S matrices, satisfying all the usual
requirements of analyticity, unitarity, and asymptotic
behavior in energy, and exhibiting an isolated sharp
resonance, without an accompanying pole in the un-
physical sheet. This has been obtained by constructing
a phase shift which goes rapidly through =/2 with
positive derivative and which possesses the desired
analytic properties. Such a phase shift gives rise to a
bump in the cross section and to a time delay of the
emitted wave packet, and this leads to the usual
interpretation of the phenomenon as the production
of an unstable system.

Usually, however, when one speaks of an unstable
system, one also requires the exponential decay law for
a large time interval, and this feature of the process
has not been discussed in detail in I.

It can be easily understood, at least qualitatively,
that the development of the decaying system depends
on the detailed behavior of the phase shift as a function
of the energy and is not automatically guaranteed
by the rapid variation through /2 of the phase shift.
In fact, the exponential decay law occurs for times larger
than the mean lifetime of the system. Since the time
dependence of the process is obtained by means of an
integration over the relevant interval of the energy
[see Eq. (3) below], for large times we are analyzing
the scattering amplitude with an oscillating function
of the energy of very short wavelength, so that also
the details of the amplitude become important.

To see explicitly how the decay law can depend on the
details of the resonating phase shift, we look at a very
simple, although unrealistic, example. Let us assume
that the scattering phase shift has the following form

8(E)=0 for E<ag—3%rT,
2
8(E)= §1r+—I—‘—(E——a) for e—irI'SE<La+1al, (1)

ME)=m for E>q+inT.

1 G. Calucci, L. Fonda, and G. C. Ghirardi, Phys. Rev. 166,
1719 (1968). This paper will be indicated as I in what follows.
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The evaluation of the integral

1 a+T/2
9(rt)= —_
% J a—T/2

¢ir—ED[ 280 14,

using the approximation
k= (2mE)\~2ma)'*(1+E/2a+---),
leads to the following time dependence:
16
T2(4/T4wr—t)2(wr—t)?
w=(m/2a)/2. 2

We observe that the result (2) is not due to the un-
physical presence of edges in the assumed phase shift.
In fact, as shown below, given two phase shifts 6;(E)
and 8:(E), the two resulting decay laws differ as little
as one wishes for finite times, provided |8;(E)— 8:(E)|
is made sufficiently small within the interesting range
of energies.

For the above reasons, if one wishes to obtain also
the exponential decay law, one cannot simply build
up a phase shift going rapidly through »/2, as in I, but
one must also take care of the details of the energy
dependence in the resonance region. In this paper we
shall show how the formalism introduced in I can be
modified to obtain an S matrix with all the usual
properties, and possessing an isolated sharp resonance
with the exponential decay law, without an associated pole.

|9(ry0) | 2= [singrT(wr—1) ]2,

2. COMPARISON BETWEEN TWO
DECAY LAWS

We compare here the decay laws obtained from two
phase shifts 6;(E) and 8:(E) which differ very little in
the relevant energy interval.

The decay law resulting from a given phase shift is
governed by the modulus of the integral?

)= / e B (5~ 1)) 2B, (3)

2R. G. Newton, Scattering Theory of Waves and Particles
(McGraw-Hill Book Co., New York, 1966), Chap. 19.
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where g(r,E)= f(E)e®*, and f(E) is the energy form
factor of the incoming wave packet. Now let

3(E)=81(E)+e(E);
then

/ g7, E)eiFtgkio1(E) (gie(®) _1)dE,
A

o0

< / | f(E)| |sine(E)|dE. (4)
A

1
[La— L] =~
2

For any reasonable impinging wave packet the integral
Ja* | f(E)|dE is convergent. Since, moreover, f(E) is
chosen to be appreciably different from zero only in a
finite interval around the resonance energy, it follows
that [ £1— £:| can be made arbitrarily small by making
€(E) sufficiently small in this region. Therefore, if
8:1(E) gives rise to a pure exponential decay law for a
certain time interval, 8,(E) will give rise to the same
decay law in the time interval considered, with a super-
imposed disturbance which can, however, be made
very small. The result of Eq. (4) shows also that the
actual value of the derivative at the resonance point is
not of crucial relevance for the time development of
the state.

The unusual time dependence of Eq. (2) can now be
simply understood. Let us consider the phase shift
corresponding to a Breit-Wigner resonance

Spw(E)=arctan[—T/2(E—a)] (5)

and the phase shift of Eq. (1), which has the same
derivative at E= a. Even though, for I' — 0, both phase
shifts approach the step function m3(E—a), the dif-
ference between them at the points e-=7T'/4 is equal to
arctan(2/7) which does not depend on TI'. Therefore
the above argument cannot be applied to this case.

3. APPROXIMATION OF A BREIT-WIGNER
PHASE SHIFT

We start now by considering the phase shift of Eq. (5),
which can be written as

E—a

")

8(E)=3%r+42T
() zT+ /; Lt T2

and we try to express this function as a series of poly-
nomials which converges in an interval of the real axis
a— AL EL e+ A with AT, A<a. We write

E)=3m+
I'24-2A%

E—a 2A2 2 —1
X/ [1+ (——x”—l)] dx (6)
0 T'242A%2\A2?

and we observe that in the region considered ¥2< (E—a)?
< A? the integrand can be expanded in a geometrical
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series which is absolutely and uniformly convergent.
The substitution x=1A/v2 leads to

V2TA = ( —2A? )j
24242 =0 \I'2A2

6(E)= %ll {

(B—a)VE| A
X/ (22 —1)dv. (7)
0

The absolute value of the integral at the right-hand side
is certainly less than v2; therefore, writing

with
V2TA = —2A2% \7
Ru(E)= z( )
T242A2 j=n \I'?42A2
(E—a)VZ/A
X f (@*—1)ids, (9)
0
we have
2A2 n
|Ra()] < ( ) . )
I2+4A2\I'?+2A2

which shows that |R.(E)| can be made arbitrarily
small by increasing #n. It is clear that 8,(E) is a poly-
nomial in E of degree 2n—1, approximating the Breit-
Wigner phase shift in the energy interval considered.

The so-obtained function 8,(E) cannot be chosen as
a physical phase shift, because it does not possess the
correct asymptotic behavior at zero and infinite energies.

An acceptable phase shift will be obtained by
multiplying §,(E) by twofactors governing, respectively,
the zero and infinite energy behavior. Care must be
taken, however, that the resulting phase shift remain as
near as one wishes to the Breit-Wigner phase shift in
the relevant energy interval.

As regards the zero-energy limit, we confine ourselves,
for simplicity, to an S-wave scattering and we consider
the identity

SO

valid for |E—a|<a, which is certainly verified when

| E—a| <A, being A<a. The absolute value of the mth
remainder of the above series is less than

|1—E/a|™"[1— | E—a|/a](E/a)'

so that the function

N2 (2k— 1)1 a—b>’°
Za(E)=(— — ,
= (D z Q)1 ( a .

besides having the correct zero-energy behavior, can he
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made arbitrarily close to 1, in the interval of interest
| E—a| <A, by increasing m. With a slight modifica-
tion of the above argument one could deal with the
higher angular momenta.

As regards the infinite-energy limit, we consider the
function

F(E,c)=exp{—cIn 14 (E—a)/(a+b)]}; b,¢>0

which goes to zero at infinity faster than any inverse
power of E. It is easily seen that by properly choosing
the parameter ¢, this function can be made arbitrarily
close to 1 in the usual energy interval.

Finally, we consider the function

Sn.m(E0)=Zm(E)on(E)F(E,c). (13)

This function has the correct zero- and infinite-energy
behavior and approaches, as well as one wishes, a Breit-
Wigner phase shift in the interval |E—a|<A. We
remark that the above procedure does not require I'
to be very small.

The analytic continuation 8..m(2,c) of the above
function to complex energies does not possess any
singularity apart from the kinematical cut from 0 to
+ 0, and the dynamical cut from — e« to —b, and is
zero at the branch point z=—b. These conclusions hold
also for the other sheets of the Riemann energy surface.
The corresponding .S matrix €2%(=) has no singularities,
apart from the above-mentioned cuts, in any sheet of
its Riemann surface, and goes to 1 when |z| —+ .

We have therefore completed our task of building
up an .S matrix giving rise to a resonance, which has the
exponential decay law apart from the usual deviations
at very small and large times, without having any
singularity in the unphysical sheets which can be as-
sociated to the unstable particle.

4. INVERSION PROBLEM

We shall discuss in this section the following problem:
Does there exist a local potential yielding the phase
shift of Eq. (13)? Obviously, we are not interested in
obtaining the explicit form of the potential, but simply
in showing that it exists.

According to the formalism of the inversion problem,
the potential U,, which gives rise to a given phase
shift, is obtained through the formula

d
e(.)1(7’)=“Uo(1’)—2;1{(7’,1’), (14)

where K(7,#’) is the solution of the linear integral equa-
tion of Gel’fand and Levitan®*

K(r)=gr)— ] WKy, (15)

2 Reference 2, Chap. 20.
4T, M. Gel'fand and B. M. Levitan, Dokl. Akad. Nauk SSSR
77, 557 (1951); Izv. Akad. Nauk SSSR Ser. Fiz. 15, 309 (1951).
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The function g(r,r') appearing in this equation is ob-
tained, in the case of s-wave scattering and under the
hypothesis that both U; and Vo do not possess s-wave
bound states, through the formula

glr)= / AE) e ENeolEr).  (16)

In Eq. (16), ¢o(E,r) is the solution of the s-wave radial
Schrédinger equation for the potential Vo:

a?

_.:i—;SOO(E,T’) +’Uo(7’) soo(E,r) = k2<po(E,r), B2=2mE
7

subject to the boundary condition

hng e Er)/r=1;

here
dh(E)=dp(E)—dpo(E)
with
dodE)  2mk
dE  ©|D{E)|?

and D;(E) is the s-wave Jost function associated with
Vi(r). We choose Vo(r)=0 so that

(p(](f) = (1/k) sinkr, Do(E) =1 y

and we remember that D(E) is given in terms of the
phase shift of Eq. (13) by the formula

D(E)= expl:———— / i ﬂw]

The existence of the potential Vi(r) is automatically
guaranteed® if the kernel of Eq. (15)

|G| r")=g(' ") (r—1")
is of the Hilbert-Schmidt type, that is, if the integral

°° 2mk, 1 2
T1G,G, 1= / iE [—[————— 1]
0 7 L|Dy(E)|?
r 1
X / dr'— sin%ky’ }
0o k2
i m 1 2
[ ool
0 7l"k I DI(E) I 2
1
X <r— — sin2/er> }
2k

is convergent. The existence of a potential which gives
rise to a given phase shift depends therefore in a crucial
manner on the way in which |D,(E)| tends to 1 when
E tends to infinity.

In our case, by recalling that the phase shift of Eq.
(13) is a continuous function of E which decreases at

17

(18)
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infinity faster than any inverse power of E, it can be
shown, by means of some simple manipulations, that

/” 51(E’) — const
E J

for E—+ow,

It follows immediately that

1 2 const
[ 1] ~ , for E—4 o,
| Dy(E) |2 E?
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and this fact ensures the convergence of the integral
appearing in Eq. (18).

We have therefore completed the proof of the exis-
tence of a local potential yielding the form (13) of the
phase shift.
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A general hehuty formalism is developed for the determination of spm and parity of boson resonances
of arbitrary spin which have sequential decay modes. The procedure is illustrated with a few simple but,
in practice, important decay modes, namely, 1-41~, 1£--0-, and 2++4-0~, where 1* and 2* mesons in
turn decay into 2 or 3 pseudoscalar mesons. The method proposed here is independent of the dynamics of

the production and decay process.

I. INTRODUCTION

E present in this paper a general helicity formal-
ism!2 that enables one to determine the spin
and parity of boson resonances with sequential decay
modes; we treat as the maximum complexity the case of
a boson resonance decaying into two intermediate bos-
ons of arbitrary spin, both of which in turn decay into
three pseudoscalar mesons. It is shown that the formal-
ism thus developed can easily be applied to cases when
the intermediate bosons decay into two pseudo-
scalar mesons or one of the intermediate bosons is a
pseudoscalar.

Our basic tool for the spin-parity determination is the
moments which are experimental averages of the prod-
uct of three D functions (see Appendix A and Ref. 12).
It is shown that these moments are conveniently pa-
rametrized in terms of the multipole parameters.® Our
main task in this paper has been to show that there exist

* Work performed under the auspices of the U. S. Atomic En-
ergy Commission.

1 For the helicity formalism, the reader is referred to the stan-
dard work: M. Jacob and G. C. Wick, AnnfPhys. (N. Y.) 7, 404
(1959). However, we use a slightly different convention for the
argun(lent (;))f D functlons, instead of their Dym/ (o, 6, — @), we use

nm ‘P:ﬂ

2We give three references for different approaches to spin-
parity analysis of bosons: M. Ademollo, R. Gatto, and G. Pre-
parata, Phys. Rev. 139, B1608 (1965), C. Zemach ibid. 140,
B109 (1965) ; E. de Rafael Ann. Inst, Henri Poincaré 5 83 (1966)

3N. Byers and S. Fenster, Phys. Rev. Letters 11, 52 (1963).

¢ See the first of two lectures by J. D. Jackson, High Energy
{Zzg%s;cs (Gordon and Breach Science Pubhshers, New York,

linear relations among different moments for certain
spin-parity combinations of the parent bosons and that
for some of the linear equations the coefficients them-
selves are known functions of the spin of the parent
bosons; this affords a straightforward means of deter-
mining the spin and parity of the parent bosons.

A remarkable aspect of this method is that it is inde-
pendent of the detailed dynamics of the production and
decay mechanism of the parent bosons. In addition, our
method is independent of the interference among the
three decay products of either of the intermediate bos-
ons. Our method does not apply, however, if there ex-
ists appreciable interference between the decay products
of one of the intermediate bosons with those of the
other. It is shown that our method can still be applied,
if we limit our analysis to those events for which the
interference is minimal. Of course, there is always the
problem of interference with background events. How-
ever, our method can be used if the interference is not
appreciable and if the moments for the background
events alone are small, as should be the case when the
background events consist mostly of phase-space events.

In Sec. IT, we derive the general angular distributions
starting with the Lorentz-invariant amplitude for the
production and decay of the parent bosons. We intro-
duce in Sec. IIT the multipole parameters and then the
moments and give the symmetry properties satisfied by
these moments. In Secs. IV-VI, we illustrate our spin-
parity analysis with simple but, in practice, important
examples. These include the case of a boson resonance



