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We have extended the partial-wave analysis of the reaction E E—+ A~ from our data in the energy
region 1660 to 1900 MeV to the data at higher energies (1900 to 2215 MeV) from other experiments. This
analysis has established the resonant nature of Y&*(1910)and measured its spin and parity as J = —,'+. The
earlier assignment J~= —,

'+ for I'&*(2030) by Wohl et al. has been con6rmed. The mass, width, and A~ branch-

ing ratio were measured as 1902+11MeV, 52+25 MeV, and 0.08+0.04 for I"1*(1910),and 2032+6 MeV,
160~16MeV, and 0.41+0.03 for I'1~ (2030). In addition we found a suggestion for the existence of a J = ~&+

resonance at 1880 MeV with a width of 220 MeV.

I. INTRODUCTION

HK study of the reaction A. E ~ Am- has proven
to be a useful method for learning more about the

quantum numbers and resonance parameters of F1~
resonances. Ke have published the results of a partial-
wave analysis of this channel, between 1660 and 1900
MeV center-of-mass (c.m. ) energy, which yielded in-

formation on several I"1~ resonances. ' %ohl, Solmitz,
and Stevenson identified lrt*(2030) from a study of the
reaction E p —+ ttt.x' between 1900 and 2100 MeV and

made the spin-parity assingment J"= ~+.'
The I=1 total EE cross section measured by Cool

e/ al. ' and navies et a/. 4 shows a shoulder which is

consistent with a resonance at 1910 MeV with a width

of 60 MeV. In addition, the I=1 total cross section at
higher energy shows a peak at 2252 MeV with a width

of 200 MeV. Our earlier work' ' suggested that the
shoulder at 1910 MeV was due to a J~= 2+ resonance.

This study, which combines our experimental data
(1660 to 1900 MeV) with the data of Wohl et al.'
(1900 to 2100), Trower' (1945 MeV), and Dauber'
(2151 and 2215 MeV), was undertaken primarily to
establish the resonant nature of Ft*(1910) and to
determine its spin-parity assignment. Other goals in-

cluded: verification of the spin-parity assignment for
I' t*(2030); measurement of the mass, width, and Atr

branching ratio for both the V&*(1910)and I'&*(2030);
possible study of Yt*(2252); and determination of the

f'Work done under auspices of the U. S. Atomic Energy
( ommisslon.

* Present address: Stanford Linear Accelerator Center, Stan-
ford Calif.

~ W. M. Smart, A. Kernan, G. E. Kalmus, and R. P. Ely, Jr.,
Phys. Rev. Letters 17, 556 (1966).

~ C. G. %'ohl, F. T. Solmitz, and M. L. Stevenson, Phys. Rev.
Letters 17, 107 (1966). The data are available from the authors.

' R. L. Cool, G. Giacomelli, T. F. Kycia, B. A. Leontic, K. K.
Li, A. Lundby, and J. Teiger, Phys. Rev. Letters 16, 1228 (1966).

4 J. D. Davies, J. D. Dowell, P. M. Hattersley, R. J. Homer,
A. %.O'Dell, A. A. Carter, K. F. Riley, R. J.Tapper, D. V. Bugg,
R. S. Gilmore, K. M. Knight, D. C. Salter, G. H. Stafford, and
E. J. N. Wilson, Phys. Rev. Letters 18, 62 (1967).

'Wesley M. Smart (Ph.D. thesis), Lawrence Radiation Lab-
oratory Report UCRL-17712, 1967 (unpublished).

W. Peter Trower (Ph.D. thesis), University of Illinois Report
COO-1195-54, 1966 (unpublished).

Philip M. Dauber, Ph.D. thesis, Department of Physics,
University of California, Los Angles, 1966 (unpublished),

169

behavior with energy of the nonresonant parts of the
partial-wave amplitudes in the Ax channel.

This partial-wave analysis of the reaction E E~ Am

establishes the existence of I"t*(1910), determines its
spin-parity assignment as J =~+, and measures its
mass, width, and Am branching ratio as Eg=1902~11
MeV, F=52~25 MeV, and x~ ——0.08~0.04. The
branching ratio in channel c, x, is equal to the ratio
of the partial width I', in channel c to the total width.
In addition, the spin-parity assignment J =2+ for
&t*(2030) is verified and the resonance parameters
measured as Eg ——2032~6 MeV, I'= 160~16MeV, and
xe =0.41&0.03. No conclusion regarding V&*(2250)
could be reached with the available data; however, we
find a suggestion for the existence of Yt*(1880) with
a width of 220 MeV and J~= ~+. The nonresonant parts
of each of the partial waves up to 69 can be adequately
described, over the energy region 1660 to 2215 MeV
of the data, by no more than six parameters, A, 8, C,
D, E, andF:
2' —(Q +fr+ Ckv) e~(D+E e+F k~)

if 2+Bk+Ck') 0 (1a)

T=O if A+Bk+Ck'&0, (1b)

where k is the incoming c.m. momentum.

II. DATA

Table I summarizes the data used in this analysis.
The angular distributions and polarizations for the
first ten energies listed in the table came from our study
of the reaction E e ~ hz in a deuterium bubble
chamber. "The cross sections for these ten energies
are twice the cross sections for the reaction E p —+ Ate',

obtained from a companion run with hydrogen in the
bubble chamber. ' Conservation of isotopic spin requires
the cross section for E e —+ Am to be twice that for
E p —+An.o.

The cross sections, angular distributions, and polari-

R. %. Birge, R. P. Ely, G. E. Kalmus, J. Louie, A. Kernan,
J. S. Sahouria, and W. M. Smart, in Proceedings of the Second
Athens Topical Conference on Resonant Particles, Athens, Ohio,
1965 (University of Ohio, Athens, Ohio, 1965), p. 296; J, Louie
(private communication}.
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Thai.K I. Summary of the data used in this analysis.

~C.XG.

(Mev)

1675
1705
1730
1750
1770
1790
1810
1830
1855
1885
1896
1945
1986
2026
2065
2109
2151
2215

Number
of

events

144
394
463
632
626
598
489
496
468
108
719
281
553

3412
388
520
394
274

Bins in
angulal
dlstrl-
bution

9
14
15
19
20
20
17
17
16

7
20
15
20
20
20
20
16
15

Bins
ln

polari-
zation

Experiment
(reference
number)

Smart (1,5)
Smart (1,5)
Smar~ (1,5)
Smart (1,5)
Smart (1,5)
Smart (1,5)
Smart (1,5)
Smart (1,5)
Smart, (1,5)
Smart (1,5)
Kohl (2)
Trower (6)
Kohl (2)
Kohl (2)
Kohl (2)
Kohl (2)
Dauber (7)
Dauber (7)

D
D
D
D

D
D
D
D
D
H
H
H
H
H
H
H
H

Total 10959 300 140

' A. H. R,osenfeld, A. Sarbaro-Galtieri, %. J. Podolsky, I.R.
Price, P. Soding, C. G. kohl, M. Roos, and W. J. Willis, Rev.
Mod. Phys. 39, 1 (1967).

zations at the remaining eight energies came from three
studies of E p ~ A.x' in hydrogen bubble chambers. ' ' '
The cross sections at these eight energies were also
normalized to E e ~A~ {i.e., the I= 1 cross section).
Thc data wclc rcbinncd so Rs to hRvc Rt, lcRst 10 cvcnts
or so in each angular distribution bin and 40 events
in each polarization bin.

In a bubble-chamber experiment the shape of an
angular distribution is determined easily (after cor-
rection for biases) from a histogram of the number of
events versus the cosine of the c.m. production, angle.
For measuring a cross section the beam must be
normalized, and chamber density, scanning efficiency,
and bookkeeping losses determined, etc. Thus the cross-
section measurement is open to considerably more
errors than the measurement of the angular distribu-
tion. If an angular distribution of 20 bins is converted
to a differential cross section by using the cross-section
measurement, any error in the cross section is introduced
into 20 data points, rather than the one data point
it actually represents. To avoid this problem wc fit
the cross sections and the shapes of the angular dis-
tributions separately. Because this analysis uses data
from four diferent experiments, this procedure was
particularly important.

The angular distributions were expressed as a func-
tion of the cosine of the c.m. meson scattering angle
(E8); the polarization wa's calculated from the ob-
served A-decay asymmetry relative to the production
normal 8=XXv?/IXX'~, accordmg to the formula
Pq 8= (3/a~)(p A) where p is a unit vector parallel
to the momentum of the proton in the A decay, and
o,q is 0.66.'

b(8) =N P LT)+—T( jI'P(cos8), (2b)

where A. is the incident c.m. wavelength divided by 2x,
I'~ is the /th-order Legendre polynomial, and EP(cos8)
= sin8dI'&(cos8)/d(cos8) is the first associated Legendre
polynomial. The differential cross section I and polariza-
tion P are given in terms of a and b by

I=do/dg= jaJ'+ Jf J' (3a)

IP= 2 Re(a*b)8. (3b)

The polarization is restricted to be along n by parity
conservation in strong interactions. In order to obtain

»R. D. Tripp, Ann. Rev. Nucl. Sci. -15, 325 (1965). The
notation in Tripp s article is followed here.

The reaction E E~ Ax is one of a large class called
formation experiments, in which a resonant amplitude
is excited when the c.m. energy of the E g system
corresponds to the energy of the resonance. If other
amplitudes are small compared to the resonant
amplitude, its existence is clearly demonstrated by the
rise and fall of the total cross section as a function of
energy for the reaction. Unfortunately, in the channel
E Ã —+ Am the nonresonant amplitudes are not small,
and a more detailed examination of the angular dis-
tributions and polarizations must be made to determine
the mass, width, and branching ratio Of the resonance.
Also the total cross section gives only a lower limit for
the spin and no information on the parity of the
1csonRncc.

To obtain the more complete information available
in a formation experiment, it is necessary to measure
the angular distributions and polarizations of the 6nal
baryon in addition to the total reaction cross section,
and then decompose the amplitude into partial-wave
amplitudes, i.e., eigenstatcs of angular momentum and
parity. A more comprehensive discussion of the theory
of partial-wave analysis in formation experiments can
be found in an article by Tripp. '0

In a reaction with spin 0+spin —,
' —+ spin 0+spin —',

(such as E; E +Avr)—the transition operator M is
given by

M=a(8)+b(8)a ri.

There are two amplitudes: a, the non-spin-Rip, and b,
the spin-Qip amplitude. If wc de6nc E to be a unit
vector along the incident E c.m. momentum and f
along the 6nal m c.m. momentum, the u and b amplitudes
are functions of 8 (cos8=X.&); e is the Pauli spin
operator, and 8= {XX~)/(~EX~~) is the normal to
the production plane. The relations between a(8) and
b(8) and the complex partial-wave amplitudes T,+ (t is
the final orbital angular momentum, J= t+-,') are

a(8) =)( Q L(1+1)T)++3T( ]I'((cos8) (2a)
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Tmxx II. Various notations used for partial-wave amplitudes.
The parity I' of the two-particle system in the 6nal state has been
calculated from P = (—1)V'gP~= —(—1)' for the usual case of a
pseudoscalar meson, M, and even-parity baryon, B.

Tl+ To+ T1 T1+ Tg Tg+ 1'I Tg+ T4 T4+
l2J 51 P1 P3 D3 DS FS P7 G7 G9
JJ' 1— 1+ 3+ 3—' 6— 6+ g+ "I— 9—

2

a more direct relation between the measured distribu-
tions I and IP and the partial-wave amplitudes, it is
customary to make the expansions

I=K' Q A„P (cos8) (4a)

IP=N2 P B„P '(cos8), {4b)

Re T -05 0.5

FIG. 1.Argand diagram for a resonant partial-wave amplitude in a
reaction channel. The circle at radius 0.5 is the unitary limit.

"R. D. Trjpp, xn Proceedzrlgs of the Igterwukolck School of
Physics Erlrico Fermi, Vureewa, Italy, Colrse 33 (Academic Press
Inc., New York, 1966).

and then refer to tables'0" relating the A and 8 co-
eS.cients to the partial-wave amplitude W. Table II
is useful in converting between the various notations
used. The parity I' of the two-particle system in the
final state has been calculated from P= {—1)~ P~P~
= —(—1)' for the usual case of a pseudoscalar meson

M and even-parity baryon 8.
The variation with c.m. energy of the partial-wave

a,mplitude is, in general, unknown. However, in the
special case of a resonant amplitude, it is governed by
the Breit-VA'gner formula

T= 2 (1'.1'.P'/f(&~ —&)—~1'2j (5)

where E is the c.m. energy, Eg the energy of the
resonance, 1', the partial width in the incident (elastic)
channel, 1'„ the partial width in the final (reaction)
channel, and F=P;I';, where the summation is over all

decay channels of the resonance.
A careful study of Eqs. (2) and (3) shows that the

transformation T~+~ Tg+~, T~ ~ T~&+ (i.e., chang-
ing the parities of all amplitudes) leaves I invariant but
changes the sign of P. Also the transformation

Tr+ ~ TP* has the same effect. The first is called the
Minami transformation; the second is the complex-
conjugation transformation. Measuring the polariza-
tion removes two of the four possibilities, but additional
information is required to completely specify the solu-
tion. Making measurements at several energies and
then applying the signer condition" to a resonant
amplitude is suQicient to remove the ambiguity. This
condition requires rapidly varying resonant amplitudes
to traverse the complex plane in a counterclockwise
direction, and is implicit in Eq. (5). Figure 1 is an
Argand diagram, which displays the energy behavior
of a partial-wave amplitude in the complex plane. Note
that there are two possible trajectories for a resonant
amplitude, depending on the sign of the numerator in
Eq. (5). The choice of trajectories depends on the
SU(3) assignment for the resonance and has been
discussed previously. "The circle at radius 0.5 is the
unitary limit for partial-wave amplitudes in a reaction
channel.

Equations (2) and (3) also show that I and IP are
invariant under the transformation Tg~e*~Tr+. In
the elastic channel this degeneracy is removed by the
optical theorem

&ma(0') = (k/kr) gr,

which relates the imaginary part of the forward-
scattering amplitude to the total cross section. How-
ever, no such relation exists for an inelastic channel,
so that the degeneracy is usually taken into account
by dehning the phase of one of the partial-wave
amplitudes.

At one energy there is sufhcient information in the
experimental distributions I and IP to just determine
all the partial waves (but not to resolve the ambiguity
discussed above, or to remove the degeneracy in the
inelastic channels). If only the first e partial waves are
present, then the expansions (4) require terms up to
order (e—1).""One must determine 2n quantities to
describe the e complex partial waves. The differential
cross section I provides n (Ap Ag ' ' 2 y) of these
quantities, and the polarization measures e—1 (Bq, B~,

, B r) more. For the elastic channel the optical
theorem provides the remaining relationship to com-
pletely determine the n partial waves; for the inelastic
channels the one undetermined parameter corresponds
to the over-all phase degeneracy. Since precise data,
particularly for the polarization, are often not available,
one must make assumptions to reduce the number of
free parameters to be deterrn~~ed from the data.

The large amount of accurate data in the xX elastic
and charge-exchange channels has permitted several
authors to publish detailed phase-shift analyses up to
c.m. energies of j.600 MeV. These analyses di8er
basically in the method used to ensure smooth energy
dependence of the phase shifts and absorption param-
eters as a function of c.m. energy in the absence of any
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general theory for this dependence. Roper" used a
power-series expansion in k (the c.m. momenta), plus
Breit-signer resonance amplitudes. Bransden" uses a
different parametrization based on dispersion relations
and the analytic properties of the partial-wave ampli-
tudes. Bareyre' 6nds a unique solution by fitting data
at each energy separately and then selecting the solu-
tion that joins smoothly to the lower-energy solution.
Auvil'5 and Donnachie" require smooth behavior of
single-energy solutions plus dispersion-relation calcula-
tions for the smaller partial waves.

All these phase-shift analyses used two advantages
of the xÃ elastic problem not available in the inelastic
reaction E E~An. The optical theorem [Eq. (6)j
removes the phase ambiguity from each energy solution
in the elastic channel. To match the phase of solutions
at diGerent energies in an inelastic channel requires an
assumption for the energy dependence of one partial
wave. The xE channels have accurate data for a wide
c.m. energy range, from threshold to at least 1600 MeU,
permitting a smooth continuation of the less complex
low-energy solution to higher energies where l=3 or 4
amplitudes are required.

To do a partial-wave analysis on the data of this
experiment, the energy behavior of each amplitude was
parametrized and then all the data were 6tted together.
This procedure overcame the two difficulties discussed
above and also insured that the signer condition was
upheld. This was basically Roper's approach, ' but far
fewer parameters for energy dependence were required
to adequately 6t the E E —+Ax data.

The partial waves were parametrized by combina-
tions of Breit-%igner resonances and power-series
expansions in k. The resonant part of the amplitudes
was given by

T= l "9'.1' )'"/% —&—-' 1'), (7)

where p is the phase angle of the resonant amplitude
at resonance energy; for &=0 the amplitude is pure
positive imaginary at resonance. The energy dependence
of the partial widths has been approximated as

1', ~ [k 2/(k, 2+X') j"k;/E

by Glashow and Rosenfeld, '~ where X is a mass related
to the radius of interaction and k; and I; are the mo-
mentum and orbital angular momentum of the decay

'2 L. D. Roper, R. M. Wright, and B.T. Feld, Phys. Rev. 138,
B190 (1965).

'g B. H. Bransden, R. G. Moorhouse, and P. J. O'Donnell,
Phys. Rev. 139, $1566 (1965); Phys. Letters 19, 420 (1965),' P. Bareyre, C. Bricman, A. V. Stirling, and G. Villet, Phys.
Letters 18, 342 (1965).

5 P. Auvil, C. Lovelace, A. Donnachie, and A. T. Lea, Phys.
Letters 12, 76 (1964).' A. Donnachie, R. Kirsopp, A. T. Lea, and C. Lovelace, in
Proceedings of the Thirteenth Annual International Conference on
High-Energy Physics, Berkeley, 1966 (University of California
Press, Berkeley, 1967), p. 176.' S. L. Glashow and, A. H. Rosenfeld, Phys. Rev. Letters 10,
192 (i963).

T=O if A+m+Ck&0, (1b)

where k is the incident c.m. momentum. The pai.ameters
A, 8, C, D, E, and Ii were either varied or set equal to
zero. For the resonant part of an amplitude [Eq. (7)],
the quantities (x,x„)"2 [= (F,F„)U'/Fj, Ez, I', snd $
were variables. If a particular partial wave contained
both a resonant and nonresonant part, Kqs. (1) and (7)
were simply added together.

For each 6t a hypothesis was made as to which
partial waves were resonant [Eq. (7)].The nonresonant
part of each partial wave was approximated by Eq. (1).
A set of parameters was chosen to describe each hypoth-
esis and reasonable starting values were guessed for
each parameter. These starting values were used to
calculate the cross sections, angular distributions, and
polarizations. The calculated quantities x,' were com-
pared with the observed data points x,' and their
errors Ax to find X':

where the index i runs over all the experimental data
points. The X' function was then minimized with respect
to all the parameters by the variable metric method~
using the program vARMn written at Lawrence Radia-
tion Laboratory by Heals. "

' S. R. Deans and W. G. Holladay, Hull, Am. Phys. Soc. 11,
516 (1966).' J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley k Sons, New York, 1952), Chap. VIII; also see
Ref. 12.

'0 W. C. Davidon, Argonne National Laboratory Report ANL-
5990 Rev. , 1959 (unpublished)."E. R. Beals, Lawrence Radiation Laboratory, LRL Computer
Library Report (unpublished}.

products of the resonance in the ith channel. Glashow
and Rosenfeld found X=350 MeV from a study of the
SU(3) predictions for the partial widths of the
y(J~=2 ) octet. 'r Deans and Holladay found that
X=175 MeV gives a better 6t to the A(1236) reso-
nance. ' Blatt and Weisskopf' derive (nonrelativisti-
cally) an expression for the energy dependence of 1',
which is identical in form with Eq. (8) for /=1, but
differs somewhat for higher / values.

Both the Glashow-Rosenfeld form [Kq. (8)$ and the
Blatt-Weisskopf form for the energy dependence of F
were tried in Gtting the data. In both cases the best
fit was obtained with X=0, i.e., a simple k;/E depen-
dence. The Glashow-Rosenfeld form [Eq. (8)] with
with X= 175 MeV gave an almost identical fit; in view
of the work of Beans and Holladay, ' this form with
X=175 MeV was used for the results quoted in this
article.

The nonresonant part of each partial-wave amplitude
was parametrized by

T= (A+8k+Ck')e' ~~+x'+~""

if A+Bk+Ck') 0, (1a)
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vARMn' is a general 6tting program for determining
the local minimum of a function of many parameters.
It requires the calculation of the analytic partial deriva-
tives of the function with respect to each parameter.
It then uses an iterative procedure to find a local
minimum of the function. At each iteration the mini-
mizing program was supplied with the value of X' and
the analytic derivatives of X with respect to each param-
eter. These partial derivatives dehne a gradient direc-
tion for the most rapid variation of X'. A matrix
containing approximate second-partial-derivative in-
formation was used to modify the gradient direction.
In this modified direction the X' and gradient values
of another point were calculated. Then a X' minimum
in this direction was found by using a cubic approxima-
tion. A quadric approximation to the second derivatives
in this direction was used to correct the matrix, and a
new iteration was started.

After a satisfactory minimum was obtained, the
values of the parameters were displaced randomly from
their minimum values, and the above procedure was
repeated as a consistency check. Approximately 20 min
was required to complete a fit for 50 parameters to 440
data points on the CDC 6600 computer if a reasonable
set of starting values was chosen.

After solutions have been obtained for several differ-
ent parametrizations, the X' values for each can be
compared, and parametrizations that do not 6t the
experimental data can be rejected. This is done by
comparing the confidence level,

f
T/~

K N ~ Am (I=I)
I

~ Louie
It'Oh I—Fit +5

T rower
Dauber

II

O

1.7 1.8
I

1.9 2.0
E, (Pe V )

I

2. 1

I

2.2

l'. 'ic. 2. The I= 1 total cross section for E E —+ Avr, obtained by
doubling the cross section measured for I6 p ~ A~0. The curve
is calculated from 6t 5, which was the best 6t to the combined
data.

Fit 1a 0 I--

of the partial-wave analysis of this energy region have
already been published. ' ' The peak at 2025 MeV
corresponds to the F'&*(2030), J =-,'+, reported by
kohl, Solmitz, and Stevenson. '

C.i .= (2') ~ e "'~ dy; t= (2X2)'~~ —(2z—l)'&2,
DB

0.2
Pf

which is the probability that another experiment would
give a worse fit, assuming that the parametrization
accurately describes the actual situation. Here I is the
number of degrees of freedom, i.e., the number of
independent data points minus the number of free
parameters. The equation is valid for e)30.

IV. RESULTS OF THE PARTIAL-WAVE
ANALYSIS

Figure 2 shows the experimental cross-section points
and their errors for E E~ Acr. The curve is calculated
from 6t number 5, which is described later in this
section. The cross sections were plotted in units of
o/krP, X being the incident E c.tn. wavelength
divided by 2x. These units correspond to Ap, the hrst
coe%cient of the I egendre expansion, since integrating
the expansion Eq. (4a) over all angles yields

0- = 4+A'A p.

Fit tb

Re T
-O. I

0 I--

0.2

The major features of the E A -~ A7r cross section in
this energy region are two broad peaks, one centered
at 1770 MeV and one at 2025 MeV. The lower bump
corresponds to the V~*(1770), J~= ~5, and the results

FIG. 3. Argand diagrams for the partial waves {real part versus
imaginary part) v hich best 6t the data above 1950 MeV with
the hypotheses of constant S1, P1, P3, D3, D5, P5, and G9
partial waves plus (a) resonant F7 and constant G7, and (b)
resonant G7 and constant F7 partial waves. Fit 1a has a con6dence
level of 0.007; for 6t 1b it is 10~.
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TABLE III. Summary of the parametrization used for each partial-vive amplitude used in the 6ts described in Sec. IV. The number
under each amplitude indicates how many parameters LEq. (1)] were allowed to vary, in the order A, D, 8, E, C, P, while the re-
maining ones were kept axed at zero. The letter R indicates that a Breit-Wigner resonant amplitude LKq. (7)g was added to Eq. (1)
for that partial @rave. The resulting x', number of degrees of freedom (e), and con6dence level are also given.

ig
15
2
3$
3b
4
5
6
7

Si Pi
2
2
6
6
6
6

4+R
4+R
4+R

P3

2
2
6
6

4+R
6
6
6
6

3+
3+
3+
3+
3+
3+
3+

R
R
R
R
R
R
R

Amplitudes
D3 DS F5

2
2
6

4+R
6

4+R
4+R

6
4+R

R
2
R
R
R
R
R
R
R

67

2

3
3

3
3
3
3

2
2
3
3
3
3
3
3
R

x'

194
376
464
435
472
434
418
455
429

149
149
394
394
394
392
390
392
391

0.007
10 4

0.008
0.077
0.004
0.071
0.161
0.014
0.089

As a consistency check, the parity assignment for
the Fi*(2030) was verified in fits la and lb. Only the
data for the six highest energies were used, in order to
isolate the Fie(2030). In fit la a single —,'+ resonant
amplitude PEq. (7)j was hypothesized; in fit lb a s
resonance was tried instead. In each case the remaining
eight partial waves were assumed to be independent
of energy; i.e., Eq. (1) with B=C=E=F=O and only
A and D variable. In both fits the over-all phase am-
biguity was removed by defining p=w for the J=-,'
resonant amplitude. The mass Eg, width I', and the
magnitude at the resonant energy (zzzxs )'" of the
resonant amplitude were also allowed to vary, for a
total of 19 parameters.

The solutions that minimize p' for the 1a and 1b hy-
potheses are shown in Figs. 3(a) and 3(b), and the final
Xs and confidence levels (C.L.) are listed in Table III.
The J = s+ assignment of Wohl ef a/. for Fie(2030),
fit 1a, is seen to make a reasonably good fit to the data,
(C.L.=0.007) while the alternative s assignment is
totally inadequate to fit the data (C.L.=10 s4). Both
solutions are plotted against the experimental A;/As
and B;/Bp coefficients in Fig. 4.

The next step, fit 2, was to attempt to fit all the data
at the 18 energies with the well-established Fi*(1770),
J~=s, and Fi*(2030),J~= s7+, resonances plus energy-
dependent nonresonant amplitudes. The number of
parameters varied in. the nonresonant part of each
partial-wave amplitude is shown in Table III. All
six parameters in Eq. (1) were allowed to vary for
the Qrst six partial waves, except for the Ds wave—
where only A, 8, and D were nonzero —in addition to
the resonant F'i*(1770) amplitude. Only three param-
eters (A, B, and D) were used for the G7 and G9
amplitudes, while the P7 wave was described entirely
by the Fi*(2030) amplitude. In this and all remaining
fits the over-all phase degeneracy was removed by
defining &=0 for Yi*(1770). The partial-wave ampli-
tudes that best fit the data are shown in Fig. S. The
points along the curves correspond to energies at which
the experimental data were available (Table I). The
X' and confidence level for fit 2 are shown in Table III.

The confidence level of 0.8% shows that this fit to
the data is not unreasonable.

Since the I=1 total cross section shows a shoulder
that is consistent with a resonance of mass 1910 MeV
and width 50 MeV, '4 a resonance of this mass and
width was tried in the series of fits 3.This resonance was
tried in the F3, D3, DS, F5, F7, and G7 waves; in each
case (except F7) the number of parameters used to
describe the background in that partial wave was
reduced, from 6 to 4 (C=F=0) or from 3 to 0. The
mass and width of the new resonance were held 6xed
at 1910 and 50 MeV; only the magnitude and p were
allowed to vary. The only hypothesis that was an
improvement over fit 2 was fit 3a, which establishes
the Fi*(1910) as J~=~s+. The confidence level for fit
3a has increased to 7.'7% compared with 0.8% for fit 2.
The same number of parameters (six) describing the FS
partial wave were allowed to vary in each case. The
only change was to allow part of the IiS partial wave
to come from Fi*(1910)in fit 3a. It is easy to see that
the complicated energy dependence of the Iis wave
(Fig. 6) with the Fie(1910) included could not be ob-
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Im T

Fit 2
0.3--~05

P)

Re T
-O.P.

I

I

0.3

Fxo. 5. The partial-wave ampli-
tudes from 6t 2 with resonances
in the D5 and Ii 7 waves. The dots
indicate the energies at which data
were available, as listed in Table
I. The solution for the Gj wave
was essentially constant, even
though the [parametrization per-
mitted energy variation.

tained with the power-series expansion in k fEq. (1)j
used in fit 2, even though the same number of param-
eters were allowed to vary in each case. The next most
probable fit in the series was 3b, which is for a ~3+

assignment. The confidence level of 0.4% for this fit
is less than the 0.8% for fit 2. Fit 3b is included in
Table III to show that J"=~+ is the only spin-parity
assignment for Yie(1910) allowed by the data.

Fit 4 (Table III) is the same as fit 3a, except that
mass and width of the Yi*(1910)were allowed to vary
as well. The slight decrease in confidence level, from
7.7% in fit 3a to 7.1% in fit 4, indicates that the mass
and width for Yi*(1910)measured by Cool et al.' and
Davies et ul. ' are within errors of the values measured
in this analysis.

Fit 2 was found from our earlier fits to the lower ten
energies" by adding the higher-energy data one energy
at a time. While doing this we noted the solutions for
the P1 amplitude went through violent changes as the
data from I900 to 2050 MeV were added. This sug-
gested the possible existence of a resonance in the Pj
partial wave.

In fit 5 a Breit-Wigner resonance amplitude was
added to the Pi partial wave and the number of param-
eters used to describe the nonresonant part of the Pi
wave was reduced from six to four. The resulting fit
has a confidence level of 16.1% and is the best fit to
the data, and is shown in Fig. 6. The Ej resonance had

(x~ )'I'=0.11+0.03, E„=1880&40 MeV, M= 220
+150 MeV, and p= 27+26 deg. In going from fit 4 to
fit 5, two additional parameters were added, and the X'

dropped by 16. Clearly the parametrizism of fit 5 is a
better approximation to the partial waves; the question
is how seriously to take the existence of a Yi*(1880)
with J~= ~+.

Probably the most encouraging fact for the existence
of this resonance is that the fitting program could find
a X' minimum with reasonable values of (x~,)'~', Eit, I',
and P. The effect of such a El resonance on the total
EE cross section would be extremely small; assuming
the same elasticity as the Yie(1910) one would find
the contribution to the cross section only 3 as much and
the width four times as broad as the Yi*(1910).Another
channel, such as Zm, would be the logical place to
look for confirmation of this resonance. This analysis
alone can only suggest the existence of Yie(1880), width
220 MeV and J = ~i+. The A;/Ae and J3,/Be coefEcients
calculated from fit 5 are shown in Fig. 7, plotted against
the experimental coeKcients.

Fit 6 shows the e8ect of adding the Ej resonance to
fit 2, but leaving out the F5 Yi*(1910)resonance. Fit 7
is the same as fit 5, except that the G9 nonresonant
amplitude has been replaced by a resonant amplitude
with Eg and F fixed at 2252 and 200 MeV, correspond-
ing to the Yi*(2250) discovered by Cool et aL in the
E X total cross section. ' The over-all fit to the data is
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FIG. 6. The partial-wave ampli-
tudes from 6t 5 with resonances
in the P1, D5, P5, and P7 partial
waves.

uantum numbers Fi~(1770), Fi*(1880), Fi~(1910), and F',*(2030).The quantities measured or
veriied in this analysis are italicized; quantities sugges e y

Mass

(MeV)

1775&7
(1882+40)
190Z+11
203Z+6

%'idth
r

(MeV)

146+9
(222+150)

5Z+Zs
160+16

Spin
J

5/Z
(1/2)
5/Z
7/Z

Parity
P

(+)
+
+

0.071&0.009
(0.012+0.007)
0.006+0.003
0.045+0.004

0.45

0.08
0,11

0.16+0.0Z

0.08+0.04
0.41+0.03

(deg)

0
(—27+26)

34+Z1
174+8'

ers E . 1 z determined in it 5. Only the diagonal elements of the error matrix are quoted
1

'
bet en the a ameters. The aramet rs a giveenfor each parameter. However, the form of Eq. (1) introduces large corre ations e ween e p

here with sumcient precision o e u
'

h
' ' ' t b used to reproduce the partial waves as shown in Fig. 6.

Par-
tial

wave

51
P1
P3
D3
D5
p5
p7
G7
G9

1.298+0.3
—0.008+0.16
—0.343+0.3—0.187&0.3
—0.451+0.2
—0.084&0.04

0.018+0.03
—0.055&0.02

8
(BeV/c)-i

—3.271+1.0
0.321&0.3
1.364+1.0
0.758&1.0
0.683+0.2
0.188&0.06

—0.006+0.04
0.118&0.03

C
(Sev/c)~

2.263+0.8

—1.074+0.8
—0.514&0.8

D
(radians)

—1.81+2.8
2.73+0.9

11.17&4.5
—10.74&4.4

5.24+0.2
1.74&2.4

—0.18+0.35

(radians)
(SeV/c) i

11.27+ 9.7
—4.43+ 1.3

—20.19'14.4
36.47+14.5

—2.74+3.5

p
(radians)
(SeV/c)~

—14.69+ 8.0

11.80+11.2
—30.30+11.7
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FIG. 7. Comparison of the A;/Ao and j3;/Ao coeKcients cal-
culated from 6t 5 with those obtained from the experimental
data. The values for the cross section (Ap) are shown in Fig. 2.

poorer; any information about Ft*(2250) must await
data at higher energies and an analysis that includes
higher partial waves.

v. coen, vs~OpS

The major result of this analysis was to establish
the resonant character of the Fr*(1910) reported by
Cool et cl.' and to make the spin-parity assignment
J~= ~~+. Other results include: the veri6cation of
J~= sr+ assignment for Fi*(2030) made by Wohl ef al.s;
the measurement of the parameters of the I'~* reso-
nances in this'energy region; the general behavior of the
nonresonant partial-wave amplitudes; and the sug-
gestion of a new resonance, Y'i"(1880) with J~=st+.

Table IV summarizes the parameters of Ft*(1770),
Fr*(1880), Yr*(1910), and Fr*(2030) determined in
6t 5. The quoted errors are the statistical errors cal-

cu1ated in the fitting program, increased by a factor
of two. The statistical errors have been doubled in an
attempt to include uncertainties arising from the partic-
ular parametrization chosen for the nonresonant
partial-wave amplitudes and from the somewhat cd hoc
energy dependence used for I' in the Breit-Wigner
resonance formula. With two exceptions Pin f'it 2, for
Yt*(2030), xivgxs was 0.041 (1.1o) and P was 182
MeV (1.5o)], the corresponding resonance parameters
found in fits 2, 3a, 4, 6, and 7 agreed to within the quoted
errors of the parameters from Qt 5. Since a study of a
reaction channel measures only the product of the
elastic and reaction branching ratios, x~ has been
calculated from the measured product (x&rcxs ) by
using the latest world-average values for x~g.22

There is at present no general theory to explain the
behavior of nonresonant partial-wave amplitudes. How-
ever, this partial-wave analysis yields rough measure-
ments of these amplitudes in the reaction E Ã —+ Ax.
The sum of the nonresonant and any resonant part of
each amplitude is shown in Fig. 6 for Gt 5. The A, 8,
C, D, E, and F parameters for this fit are given in
Table V. Only the diagonal elements of the error matrix
are quoted for each parameter. However, the form of
Eq. (1) introduces large correlations between the param-
eters. The A, 8, C, D, E, and P parameters are given in
Table V with sufhcient precision to enable one to use
them to reproduce the partial waves as shown in Fig. 6.

The measurement of P for each resonance yields in-
formation on its SU(3) assignment; detailed discussions
of this have already been published for F&*(1770),
Fi*(1910),and Ft (2030).s "Since Ft*(1880) is in phase
with Y*(1770), the restrictions listed in Ref. 23 for
Fi*(1770) also aPPly to Fra(1880).

Sote added in proof. In the series of fits 3 (see Sec. IV)
we have also tried $1 and E1 assignments for Fi*(1910).
Neither fit to the data was as good as Gt 2. For $1,
y'/e was 469/394 and C.L.=0.005; for P1, y'/n was
467/394 and C.L.=0.006.
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