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Using an N/D-type ansatz, a modified dispersion relation for the partial-wave amplitudes is derived.
The equations, if applied to the first resonance in pion photoproduction, allow a fairly complete incorporation
of our phenomenological knowledge of the pion-nucleon final state together with a systematic treatment
and estimate of the terms to be neglected in practice. Various possibilities of including unknown or un-
certain high-energy contributions are discussed and applied. Explicit results for the multipoles Ey,372,

M43/ are presented.

INTRODUCTION

HE uncertainties involved in the present-day
evaluation of the partial-wave amplitudes M 1,32
and E;;%? are of the same order of magnitude as
several of the other J=%, £ partial-wave amplitudes.
The determination of these smaller amplitudes from
experimental data is extremely sensitive to the theory
used for the first resonance, since a complete partial-
amplitude analysis has not been possible up to now.

In spite of several recent attempts to improve the
evaluation of the partial-wave amplitudes of the first
resonance,® a systematic treatment—including esti-
mates of the terms necessarily neglected to get a
practical result—is still lacking. This is partly due to the
fact that in the usual formalism the well-established
theoretical and phenomenological knowledge about the
first resonance was in no lucid way separated from our
ignorance or hypothetical assumptions, so that the
influence of the latter on the final result was not clear.

In this paper it is therefore the main aim to derive
an N/Dresult for E13/2 and M 1,32, in which the present
knowledge about the first resonance—following mostly
from pion-nucleon scattering—is incorporated as com-
pletely as possible. Furthermore, the result should be
suitable for a systematic study of the neglected terms
in practical applications. Unknown important contribu-
tions should be summarized in terms of as few parame-
ters as possible. We shall use as basic assumptions (a)
analyticity, (b) the knowledge of the phase in a finite
interval, and (c) asymptotic properties of the ampli-
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tudes. The results derived from the assumptions are,
of course, not restricted to pion photoproduction. But
the following experimental facts about the first reso-
nance will be decisive for the application of our results
to the multipoles of pion photoproduction: (1) The
possibility of applying the Watson theorem to obtain
the phase ¢ of the partial amplitudes up to the region
of the second resonance, although the strict threshold
for two-pion photoproduction is already around the
first resonance. (2) The fact that ¢<w and very near
tow at the end of the interval, where ¢ is known. (3) The
decrease of the ratios ImM143/2(W) /ImM 1,3/2(W &) and
ImEy32(W) /ImE . 32(W ) for W>>W g, where Wg is
the resonance energy. Finally, in order to apply our
results we need an explicit representation for the
partial-amplitude dispersion relations, particularly of
the inhomogeneous term. Up to now one has obtained
this only by projecting fixed-t dispersion relations.”
This method yields a result for the inhomogeneous term
which is strictly valid only in the region of the first
resonance. But at present it has to be applied also at
higher energies, so that in this way an arbitrariness
of the final results might be introduced, which has to
be bypassed. This point will be discussed thoroughly in
Sec. V.

Our starting point is the paper of Finkler.! His
result will be generalized. The question of uniqueness of
the solutions for Ei%? and M1*”?, emphasized in
Refs. 2 and 3, will not arise.

Instead of the type of ambiguity discussed there, we
find—from a practical point of view—that we must
introduce at least one free parameter in each partial
amplitude because of the unknown high-energy behavior
of the inhomogeneous term.

Finally, we mention that in the following we use
units such that #=c=m,=1 except for the amplitudes.
In these units the nucleon mass M =6.722 (or 6.952) if
the =t (or w°) mass is chosen for m,. All amplitudes are
given in units of 1072%/(m.c), so that , e.g., ImM 1,372 is

7]. S. Ball, Phys. Rev. 124, 2014 (1961).
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of order unity around the resonance. If not otherwise
stated, m.=m,*.

I. OUTLINE OF THE METHOD
A. Notation

For convenience in numerical calculations we shall
use the parity-conserving helicity amplitudes Fy/T-1(W)
introduced in Ref. 8. J denotes the total angular mo-
mentum and I the two isovector amplitudes 3, 2.
M=%, £ is the helicity index and the signatures == dis-
tinguish the parity for each J (for further explanation,
see Ref. 8). For J=% and § we give the relation to the
more familiar multipole notation® (with the isospin
index I dropped).

F12V%=V2E,,, F1/21’2+= —V2M,_,

F3/2”21—'—:0, (1.12)
F1p3* =3V2(3E1+Myy),
Fypp?* = W3 (En—Mu), (1.1b)
Byt = — V2 (—3Ms + By ),
Fa3/%t = —(\/8)(M -+ E,.). (1.1¢)

It will be useful to separate from the F’s a kinematical
function #,7#(I¥) including the threshold factor

F\TEI(W) =T =(W)H\ £ 1 (W) (1.2)

with

_CEFW) (g

J+ —
U\ (W) P12

(1.3)

In (1.3), ¢ and % are the momenta of the meson and
photon in the c.m. system, respectively, and C(W) is
a kinematical function. The quantities ¢, &, and C are,
in terms of the total energy W,

s=W?2, (1.4a)
s—M?
c(w)= p [W+M)*—1]'"2, (1.4b)
s
¢*=(1/4s)[s— (M +1)*][s— (M —1)*], (14c)
k=(s—M?)/2W. (1.4d)

B. Basic Assumptions
1. Dispersion Relation

The partial amplitudes of the first pion-nucleon reso-
nance A(1236) [denoted by H\(W)] satisfy the disper-
sion relation

1 ImH\W)
ReH\(W) = Hy, 1mn(W)+—-P / aW'———2, (1.5)
M+1 W,’-W

™

( SV;’). Schmidt and G. Schwiderski, Fortschr. Physik 15, 393
1967).
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where Hy, (W) is the inhomogeneous term specified
in Sec. IT C.

2. Asymptotic Properties

If it is assumed that the total pion-photoproduction
cross section is finite for W —w on the positive real
axis (W —+ ), then one has at least

W—+tw:

| EL.(W)| — const, |M1.(W)| — const, (1.6a)
and according to (1.1)—(1.3)
W—o+ow:

|W3H,2| — const, |WZ2Hj2| — const.  (1.6b)

Then, because of (1.6b), one can introduce the functions
h(W)=H\(W)
11 =

T W) mp1

W' ImH\(W)

1.7a
e )

with

(1.7b)

Using unitarity and time-reversal invariance in
Compton scattering, one can even show that

W ——+o:
| Er,(W)| — const/W, |My.(W)| — const/W, (1.6¢)

so that the bounds for # in (1.7b) can be raised by one
unit. But we shall not use this stronger assumption in
the following.

We assume sufficient smoothness conditions (like a
Holder condition; see, e.g., the discussion in Ref. 10,
Sec. 2.II), so that

n<2 for A=1,
<1 for N=3.

5 W'n TmH\(W')
W—+4w: P / aw—————
M1 wW—-w
const/W#, (1.8)
with 8>0. Because of (1.6) and (1.8),
W—>+w: |Woh»(W)| — const/W8. (1.9)
Now using the identity
1 I W W W\
()]
wW—-w |74 w w w
WhN\' 1
H=)=— o
wi/w-w

with />0, one derives from the dispersion relation

( 10 7, Hamilton and W. S. Woolcock, Rev. Mod. Phys. 35, 373
1963),
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(1.5) the relation

1 o 2\ 1
Hyim(W)=—| ps+—+---+ + (W),
Wi w Wn1
. (1.11a)
with
1 00
g)\,i=_/ dWW”Ime(W), 0= (lllb)
™ J M+1

Equation (1.11), together with (1.9), shows explicitly
the leading asymptotic terms of the inhomogeneous
term Hy,inn for W on the positive real axis.

3. Phase ox(W) of the Partial Amplitudes
Finally, we assume that the phase ox(W) of H (W),
H\(W)=|H\(W)|eir) (1.12)

is known for W on the physical cut, up to the point
W=W>. ox(W) is independent of A and given by the
(experimental) values for the pion-nucleon phase shift
as; of the A(1236) resonance (Watson theorem) as long
as inelastic effects can be neglected. According to the
phase-shift analyses!! this should be possible at least
up to the second resonance.

4. D Function
With the assumption ¢, the D function

m(W)) (1.13)
w

1™
DX(W)=exp(—— aw’

™ J M+1 W"—

is completely known in the W-plane cut along M+1<W
<W,. In the following we shall assume

ga)\(W)\) <, (1.14)

so that
lm[ (W —W,)DA\(W)]=0.

W->W)

(1.15)

The D function (1.13) obeys the dispersion relation

1 ™ ImD,\(W')
D\(W)=1+- aW'————. (1.16)
™ J W+1 W/"— W
The same applies for Dy~(W):
1 "M ImD\~}(W)
Dy (W)y=1+- aAW'——— . (1.16)
T™J M+1 W,'_ W

C. Derivation of the Main Result
1. Basic Formula

In this section it is our aim to derive a new repre-
sentation for H\(W) starting from the dispersion

UL. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev.
138, B190 (1965); P. Auvil, A. Donnachie, A. T. Lea, and C.
Lovelace, Phys. Letters 12, 76 (1964); P. Bareyre, C. Bricman,
A. V. Stirling, and G. Villet, sbid. 18, 243 (1965).
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relation (1.5) and using the other assumptions specified
in Sec. I B.
We introduce the N function

N\(W)=H\(W)D\(W), (1.17)

having all singularities of H)(W) except the low-
energy part of the physical cut Li: (M+1)<W<W,.
NA(W) has the same asymptotic behavior as H\(W)
since Dy(W)—1 for W —. Let us also define the
modified N function Ny*(W) by

N4 (W)= N\(W)—N\»W), (1.18)
with o DyW') TmH\(W)
ZV;."(W):l / a2 I () (1.19)
T™Jwy W’—W

N\“(W) is regular on the total physical cut, so that the
application of Cauchy’s theorem yields the represen-
tation

_ 1 D\(W’) discH\N(W')
Na(w)== f aw
™ Ly W"‘" W
1 DA
= aw’
21r1: Ly W’— W

X[H i (W) —Hy i~ (W) ]
= —1—- dWIDX(W,)H)\'inh(W,) .
w'—w

2wt J ¢
In (1.20), Hy (W) [or Hy i~ (W)] denotes the
definite limit of the inhomogeneous term Hy imn(W)
if W approaches the unphysical cuts L, along any path,
which remains, however, on the left (or the right) of
L,. The contour C is a closed infinite contour surround-
ing the unphysical singularities in a counterclockwise
sense. The vanishing of the contributions of the infinite
circle is a consequence of the asymptotic assumptions
already made implicitly in the representation (1.5).
For any W far from a cut, one can easily contract the
contour C, which now surrounds the point W and the
low-energy part L; of the physical cut. One therefore
arrives at the result

N (W)= Hy,mn(W)D\(W')
1 " Hy,imn(W') ImDA\(W')
_- / aw' '
™ J M+1

w—-w
Approaching L, from the left or right, one obtains from
(1.21a) for WEL,

N(W)=H,sux(W) ReDy(W)
_lp /’W" dWIH)\,inh(W’) Ime(W’).
T J Ml

w'—-w
For numerical calculations it is suitable to rewrite

(1.20)

(1.21a)

(1.21b)
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(1.21) by means of (1.16) into the form
N\“{W)=Hx.iun(W))+D\(W)

W
X[Hx,inh(W)—Hx,inh(Wx)]——/ aw’
™ J M41
Hy,isa(W")—Hyx,inua (W)
X ImD\(W"), (1.21a%)

w'-w

and correspondingly also (1.21b).

From (1.21a’) the transition to Finkler’s result! is
easy. He uses, where allowed, the sharp-resonance ap-
proximation for the phase ¢x:

=0 for W<Wkg,
=z for W>Wag, (1.22)

which yields the following approximate form for Dy(W):
D\(W)=(W—Wg)/(W—W)). (1.23)

[Wr~8.87(m,=m,+), resonance energy]. In this ap-
proximation, the last integral in (1.21a’) is zero, so that

N\(W)=~H),wmn(W>)

W—Wke

+

[Hxin(W)—Him(W2)] (1.24)

—Wh
if one neglects, as did Finkler, the high-energy contribu-
tion N\MW).

2. Inclusion of Asymplotic Properties

To incorporate more explicitly the asymptotic proper-
ties (1.6b), we proceed in the following way: Let
Py,.(W) be a polynomial of degree #,

P)\,n(W)z (W_Wl)(W_W2) te (W_ Wﬂ) ) (125)

with arbitrary constants W;, which will be specified
below, and with # chosen in accordance with (1.7b).
Let ay,;, bx,; be the constants

.00

1
P / AWWID\(W) TnEA(W?), (126
m™J W)
1 [
b)\,z=—/ dW’W”H)\‘inh(W') Ime(W’). (1.27)
m™J M+1
Then the representation
n—1
Na(W)=H,umn(W)D\(W)+ ) 2 abn(W)
A =0

Pra(W)
w'-w

1 1 M
X(dk,z—b)\_l)— {—/ aw
Py (W) w J sy

1 Py, (W)
XH)\'inh(W') Ime(W')——/’ AW —
m™J W) W"‘“ W

XD)\(W,) Ime(W’) } (1.28)
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is identical to (1.18), (1.19), and (1.21a) because of
the identity

Pru(W) Pra(W') n1
—= + X oW, (1.29)
W'—W  W'—W i

where c\b'® is a polynomial of degree (n—1—1). From
(1.28) and (1.8), it follows that the asymptotic proper-
ties (1.6) are fulfilled if the subsidiary conditions

ani—bi=exr1,
with

!
=y dhigni-i, 1=0,1,.--(n—1) (1.30)

=0

are applied. The constants e; are defined by the asymp-
totic expansion

Hy,isn(W)DA(W)
1 éx,1 ek
=—(em+—+- . .+——)+ W), (1.31)
w w wk

following from (1.11a), with

WHIYV\(W)—0 for W—+wo. (1.32)
The constants dy ; are defined by
A dae
DAW) =1 - - - (1.33)
W w?

and g is taken from (1.11b). In the sharp-resonance
approximation (1.22) and (1.23), one has

1
oa=Wrelg, g)=—[ daW’ ImH\(W') (1.34)
T™J M1
and
dao=l, dai=W\—Wg, -+,
d)\,lcz (W)\"‘ WR)W)\"—'I, ey, (135)
so that

!
=2, drigr1—i

i=0
1
=Wl (Wh—Wr) 3 WA—TW )=\l
i=1
(1.36)
Therefore, one obtains in this limit
n—1 n—1
> ol (Weni=gn X ol (W)W,
=0 =0
143
W\—W

where the definition (1.29) for the ¢’s has been used.
One should note that the result (1.37) is exact for n=1.

[Pra(W)=Pir (W], (1.37)



1300

Using (1.37), we write the expression (1.28) in the
form corresponding to (1.18) and (1.21).

NA(W)=N\¥(W)+NH W), (1.38)
1 1 r> Py (W'
N)\"(W)= _/ dWr_”'_(_VQ
Py (W) 7 Jw, wW'—w
XD\(W') ImH\(W'), (1.39)
F4N / P)\,n(W)\)
N\ W)=Hy ian(W)D\(W)+ 1—
\AW)=Hp,iaux(W)DA\(W) Wx-—-W\ Px,n(W))
1 1, ImD\(W")
— —/ aw'————
Proa(W) m ) s w'—w
XPra(W)Hy, mu(W'). (1.40)

The result (1.38)-(1.40) is a direct consequence of the
dispersion relation (1.5), the further assumptions in
Sec. II B, the Cauchy theorem, and the approximation
(1.37). With (1.38)-(1.40) we are able to formulate
approximations in practical applications which fulfill
the asymptotic properties (1.6b). Since the application
of the Cauchy theorem always yields a unique result,
there is also no ambiguity in the representation (1.38)-
(1.40). Its usefulness stems from the fact that it is
adapted to a systematic study on the basis of a few
pieces of information about the first resonance, which
we must have from other sources, e.g., experiment.

One should note that Hy\(W) following from (1.13),
(1.17), and (1.38)—(1.40) is by construction independent
of the parameters Wy and W, [of (1.25)7], which we have
left free up to now. Any dependence on these parameters
would imply that some of the approximations to be
made are unjustified. Now in practice, when one evalu-
ates N\(W) at low energies W, one would like to neglect
the high-energy contribution Ny*(W) (1.39) or N\*(W)
(1.19). Then the parameter W, is fixed by the need for
the contributions (1.19) or (1.39) to be negligible at the
energies considered. In our case, W5 has to lie at least
above the second resonance W,>11, as will be dis-
cussed in the following section.

If W,>11, the phases ¢\(W) are needed up to rather
high energies in order to calculate D)(W). At these
energies one has to expect a serious deviation from the
Watson theorem in its simple form. Instead of

%(W) =0£33(W) ’ (1-41)
one then has to write
oA(W)=az(W)+Aer(W), (1.41)

where Ao\(W) arises from inelastic processes. To these,
Ay is related by a generalization of the Watson
theorem. Then as;(W) is the real part of the phase shift
for the pion-nucleon scattering amplitude belonging to
the first resonance.

J. ENGELS AND W. SCHMIDT
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Finally, let us consider the difference

A)‘(W) =’-N)\“(W)—N)\“(W) =N)\h(W)—N)\h(W)

1 n—1
= > Cxl'"(W)a)\_l. (142)
P)\.n(W) =0

If at least one of the zeros W, of Py .(W) goes to
infinity, then this difference goes to zero. There is some
evidence that an optimal A\(W) is obtained if Py,.(W))
=0. Because of the strong singularity of D\(W) at
W =W, (see Sec. IT A), the largest contributions to the
integrals (1.19) and (1.26) for Ny*(W) and ay,; come
from a very narrow region at the lower end W’ ~W), of
the integration interval. Therefore, one has the approwi-
mate relationship

ax,1
N\W)

which we need only for /=0 and 1. Using (1.29),
(1.42), and (1.43), one obtains

A)\(W) . P)\,n(W)\)
NA W) Paa(w)’

from which follows the condition Py .(IW))=0 for the
best A)\(W).

By this consideration, one of the zeros of Py, .(W)
should be practically always fixed. But the condition
Py,.(W))=0 has also the additional advantage that
it suppresses the contributions at the end of the inte-
gration interval for N *(W) (1.40) by giving a larger
weight to the low-energy region, where Hy mn(W) is
better known.

= (Wr—W)Wit for WKWy, (1.43)

(1.44)

II. NUMERICAL APPROXIMATIONS

Before we turn in Sec. III to the evaluation of the
partial amplitudes H,(W) starting from Eq. (1.40), we
discuss the numerical results for the D function, the
approximation of the inhomogeneous term Hy inn(W),
and consider the neglect of the high-energy contribu-
tion N\*(W) (1.39).

A. Numerical Results for D, (W)

Near the branch point W=W) of the D function
(1.13), the modulus of D\(WW) is infinite and may be
represented in the form

[ DA(W) | = |W—=W|=e@DIf(W),  (2.1)

where f(IW) is finite at W=W,. In our applications the
function (W—W,)Dy(W) usually appears, which is
finite at W =Wy because of assumption (1.14). Numeri-
cal results for (W—W,)D\(W) are plotted in Fig.
1(a) for three values of W=11.022, 12.022, and 13.012,
and with the assumption that the phase o\(W) is
given by (1.41) [Fig. 1(b)]. From Fig. 1(a) it follows
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ES

T8 DA (W) (W-Ws)

904
o
8 10 12 1% w
1.04 RA(W)
1op—>=t 9 W0
-\.\_\~\\\\\
—
036 ~. \\
AN
092 \
\
Fic. 1. (@) ReD\(W)(W—W,), 10XImD\(W)(W—W>) for

Wi =11.022, 12.022, 13.022; (b) phase ox(W)=a33(W); (c) the
ratio Ry\(W) (2.3).

that apart from a very narrow region at W=1W,, the
function (W—W,) ReD\(W) follows roughly a straight
line as is suggested by the narrow-width approximation
(1.23).

Important for applications is an estimate of the un-
certainty in (W—W,)D,(W) caused by a failure of
assumption (1.41), which is (as already mentioned) to be
expected above the second pion-nucleon resonance
N*(1518) according to Ref. 11. We tentatively, there-
fore, replaced Eq. (1.41) by the assumption (1.41%),

i [q(W)—q(11.0)]
qg(W)—q(11.0

W)=3ir
Ae(i) [¢(13.022)—g(11.0)]

where (W) is the unit step function. Equation (2.2)—
according to which ¢\(W) would deviate from (1.41)
above the second resonance—is simply an assumption to

study possible effects on Dy(W). The ratio Ry(W) of the
modulus of the new D function to the old one,

1 ™ Apr\(W')
R)‘(W)=exp(——; /M+1dW - -—W>, (2.3)

O(W—11.0), (2.2)

is shown in Fig. 1(c). It varies at W=Wpg from 1.0
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SRA(Wg)<0.97, if Wy varies between 11.022<W)
<13.022 and if Ae\(W) is taken according to (2.2).
Since at W=13.022 a violation of (1.41) by Ap\(W)
=20° [asin (2.2)] is at least to be expected, the present
ignorance of Apy\(W) gives an upper bound for W),
which seems to lie around W=12.

B. High-Energy Contribution N)*(W)

To estimate the high-energy contribution N)*(W)
(1.39) for WKWy, we write

|| < - ’
Py.(W)lw
Py, .(W")
————D\(W’) ImH\(W')
w'—w
‘ImF A | Pra(W) D)(W')‘
B Pr.(W) lxJwy u)\3/2—<W/)
=x>\m(W,W,~) ) (24)
with _
ImF}‘3/2—(W)
WL TR
ImFﬁ“"(WR)
and
ImF\3/2~(Wg)|1
L a1
Py (W) r
°° Py, (W) D)\(Wl)l
X / aw’
Wi w3E=(WHHW

In the third line of (2.4) we applied the mean-value
theorem to take out from the integral the unknown
part ImF\3/2=(IW) (W denotes the mean-value parame-
ter). In Fig. 2 the ratio ma(W,W,)/|Hxmun(W))| is
plotted against Wy for W)=12.022 and different
polynomials Py (W) with

H1/2,inh(12~022)=0‘51; H3/2.inh(12-022>='_2~40,
ImPFy o3 2~(Wg) =248, ImFs,3(Wg)=—4.29. (2.7)

According to (1.24), one obtains in the sharp-resonance
approximation
N\(W )= H ;un(W)), (2.8)

so that
| N\EW)/NA(W &) | Saonma(W W) | Hy (W) | . (2.9)

For Py n=o(W)=1, the main contribution to the integral
(2.4) comes from a small region at the lower end of the
integration interval because of the singularity in D\(W)
at W =Wy, so that in this case the mean-value parameter
W=Wh. For n=1, ny\(W) has a sharp minimum, if the
polynomial P, n(W) has a zero at Wi=W,. Since for
W1=W ) the mean-value parameter W>>W, one expects
that generally also the ratio x) (2.5) decreases. For n=2
no minimum appears, if one of the zeros, say, W,
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20

15 -

Pij2,0*1 —

P1j2,4= W-W,

Pyj2,2= (W-Wq) (W-Wy)

12 b 1 18 20
—_— w1

F16. 2. The ratio #x(Wg)/Hxwmn(W>) for Wx=12.022 and dif-
ferent degrees #=0, 1, 2, of the polynomials Py .(W).
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contribution should be damped for W<<W,, (a) if the
degree # of the polynomials P,,, (W) is larger than zero
and (b) if one of the zeros W;=W,. If x,<1072, the
ratio (2.9) is also <102 for =1 and W;=W, as one
realizes from Fig. 2. For W)>12, it is reasonable to
assume that x, <1072,

C. Results for Hy,inn(W)

From fixed-# dispersion relations one derives an
explicit result for Hym(W) in terms of a partial-
amplitude expansion, which converges in the region of
the first resonance;

H)\,inh(W)=H)‘(W)p.t‘c.+AH)\,inh(W) ) (210)

where H)(W),.1... denotes the pole-term contribution,?
and

1 Lol
AHx,inh(W)=—'/ dW' 3 [ImHY—(W")K\¥ (W,W')
M1

T L’
—ImHX+H(W")K\Y (W,—W')],
L'={2J'2I' 2V},

(2.11)

Some numerical results for the exact kernels K)Z'
(taken from Ref. 8) are shown in Fig. 3 for W=10.

Typical for low values of J’ is the smooth behavior
in W, so that one can approximate (2.11) by

. . . ~ L'—f7 L L=
=W). The function #\(W) decreases with W, and, for AH) (W) thlq Le¥—K\¥ (W, W2™)
W >W,, is of the same order as #, (W) at the minimum s
for n=1. Therefore, the influence of the high-energy — g TR\E (W, —WHa\EH)], (2.12)
2.50.10'5f- 2,500
1.25x0°F 1.25x0°} -
X — K/~ iow")
80 85 90 95 100 105 110 1,5 W s
 — K 0.wh T 80 85 90 95 100 105 10 I.5W
- ;> o, L
-1.25640%+ _ 1256
3 _———'T,:sj'— ) . _____——"
-2.50x107 1 - -— K5 (10,w") -2.50x107 _,_"—'KQB'I(IO,W')
0,250} 0.2501
30,0
0.2s) 33, )
KI (]0,w') 0.125
[ K32 (10W)
ik b 4 relmivelondivadiod T - -
_____________ -
-o. /3:——- ------ -0.125} S~<o
0.125 \K,' (0,w") K3¥o,w') T
- KM oW T ==l
-0.250} ~-0.250} ===

F1G. 3. The kernels Kz2/":2" (W W’) for J =4, § for fixed W=10.
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Tasre 1. Estimate of the different contributions (up to J=%) to the mhomogeneous term H»,inn(W) at
=Wgr=8.73 according to the respresentation (2.12).
K\L'(8.73, W) gV KN [HA(8.73)p .
2r 2w P & w A=} A=} A=} A=3
S1 1 1 1 -1 2.0 10.23 0.0002 —0.0046 0.001 0.0024
S3 3 1 1 —1 6.1 10.23 0.0001 —0.0023 0.001 0.0036
Py 1 1 1 +1 4.1 10.23 0.0014 —0.0046 0.012 0.0049
Py 3 1 1 +1 —4.8 10.23 0.0007 —0.0023 —0.007 —0.0029
Py 3 3 1 +1 1.60 8.73 0.11 —0.08 0.185 0.017
3 3 3 +1 —6.25 8.73 —0.12 0.02 0.769 0.016
Py 1 3 1 +1 —1.3X1073 10.23 0.19 —0.26 —0.001 ~—10"*
1 3 3 +1 —-3.0X107! 10.23 —0.02 0.02 0.010 0.002
Dy 1 3 1 -1 0.0 10.73 —0.01 —0.10 0.000 0.000
1 3 3 -1 —2.7 10.73 —-0.01 0.02 0.074 0.015
Dg; 3 3 1 —1 —2.2X102 10.23 —0.06 —0.04 0.003 ~—10"4
3 3 3 —1 1.8X10? 10.23 0.00 —0.04 ~10™4 0.002
Dis 1 5 1 -1 1.0X10-3 10.73 3.9 —5.4 0.011 0.002
1 5 3 -1 4.3X1073 10.73 -0.5 0.9 —0.006 0.001
Dss 3 5 1 -1 1.1X10°3 10.73 18.4 —2.7 0.057 0.001
3 5 3 —1 1IN\ 1073 10.73 —1.0 10.4 —0.003 —0.004
Fis 1 5 1 +1 9.1X10 10.73 —0.8 —14 —0.002 ~5.1075
1 5 3 +1 —1.1X10"2 10.73 0.0 0.4 0.001 0.001
Fss 3 5 1 +1 —2.0X10™* 10.73 —1.3 -0.7 0.001 ~5.10"8
3 5 3 +1 3.7X10~ 10.73 0.0 —04 ~10™4 ~35.104

with )
. / AW TmHEEWY).  (2.13)
M1

The advantage of the approximation (2.12) is that
details about the imaginary parts ImHZ' (W) do not
necessarily have to be known. To determine the in-
fluence of ImH%* for J’<% on the solution of the
first resonance only some estimates of the “coupling
constants” gI’+ and the mean-value parameters W)2'=
are needed. According to Fig. 3, the dependence on the
parameter W)L’ which also depends of course on W,
should not be critical in the cases considered.

Because of the threshold factor (¢%)" in the kine-
matical factor (1.3), the high-energy region in (2.13)
is strongly suppressed for = (J'4%)>0. The quantity
¢’k becomes 10 around the second resonance, exactly
at W’=10.75. Therefore, an estimate of the order of
magnitude of g% should be possible using only the
low-energy data for ImH '+,

In Table I, results for the contributions gZ'+K,Z" to
AH) inn (W =W g) are gathered. One observes, for A=%, a
strong influence of the Dy; resonance and of some of the
J=% final states, apart from the first resonance itself.
On the other hand, all J=% contributions seem to be
small, and partly cancel for the P waves. The coupling
constants g&'£, estimated as in Ref. 12, are to be con-
sidered only as very rough guesses apart from the first
and second resonance. The total result for Hy inn(W) is
shown in Fig. 4 with the J=2 coupling constants g%’
taken from Table I. The g%”’s for the first resonance
correspond to the later solutions 2, 4, 5, 6, and 8 in Fig.

127, Engels, W. Schmidt, and G. Schwiderski, External Report
No. 3/67-1 Gesellschaft fiir Kernforschung, Karlsruhe, 1967
(unpubhshed)

5; those of the second resonance are again taken from
Table I. All other couplings are neglected. Note that
according to (2.12), Hj (W) becomes flat above the
second resonance. But at these energies one has to con-
sider the results in Fig. 4 with the utmost care, since
the partial-amplitude expansion (2.11) does not con-
verge above E=500 MeV according to the postulates of
the Mandelstam representation.’

III. RESULTS FOR THE MULTIPOLES
M,,32 AND E, 32

In the case of the first resonance it is more suitable
to discuss numerical results in terms of the multipoles
M,,%? and E143/? (1.1) than in terms of helicity ampli-
tudes F»3/2~. The reason for this is that the enhancement
due to the resonance is very pronounced in M,3/2, and
is not so strong in Ey,3/2 because of a cancellation in the
pole-term contribution. E1,3/2 is therefore particularly
sensitive to some of the approximations. The N func-
tions corresponding to Ei;. and My, are

3/2(W)
Nz(W )'—*“( /E )N1/2(W)+N3/2(W)—-) (3.1a)
1/2
Dss(W) V3
Nau( )‘“(m 1/2(W)—N3/2(W);), (3.1b)
so that
Ne(W)
1 kC(W R
Ey (W)=qkC(W)—— Doa)
My (V) =ghC )) (3.2)
3/2
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F16. 4. Hy,wn(W) according to (2:12) for the solutions 2, 4, 5, 6, 8; ms=ms0.

according to (1.1), (1.2), and (1.7). We shall assurne in
the following that

D1p(W)=Ds(W), 3.3)
which is justified (a) if one puts
Wijp=Wspp= maX(WI/%Wm) ’ (34)

where Wy, Wsjs are lower bounds for W following
from the considerations in Sec. II, and (b) if in{the
interval M4+1<W<Wy,;=W3,» the Watson theorem
(141) is valid, so that P1/2= P3/2= Q33

In the following we use as reference for the compari-
son of M1,3/2 the old result of Chew, Goldberger, Low,

ImM32w,)
3% A CR—
| l I
| I l
I | I
! L l
375 Ifz ————— s ————
| | !
| | '
! | I
| | |
360 &z 3
ImE?’.z(W;)
015 020 025

Fic. 5. The present range of uncertainty of ImMy,32(Wy) and
ImE,32(Wy), Wr=9.01 (E;=320 MeV) and m,=m,o.

169
H3/z,inh
E[MeV]
200 400 600 800 1000 4200 4400
and Nambu (CGLN)?:
My P(W)cern= M1y, 2+ M1, 22, (3.52)
Uy k etess sinag
My tr=—e T, (3.5b)
fa ¢
. My P2 =1%efkgeioss cosazsF (W), (3.5(3)
with
po=3(gp' +1—gn)e/2M , (3.5d)
3 1—22 1—o M
Fu(W) =——[1+ ln——]—— . (3.5¢)
4q® 20 1+4olW
v=g/(1+¢»)'"?, (3.56)

¢#=1/137.0388, f*=0.080, g»'=1.7928, (3.52)
gv=—1.9131.

We shall usually - consider the ratios

. Ra(W) =My »2(W) /M1 (W)oern  (3.62)
an
Re(W)=En32(W)/M13%(W). (3.6b)

A. Results Following From N,“(W) [Eq. (1.21)]

From the appfoximate relation (1.24) follows the
relationship

N\(Wg)=Hy,im(Wy). 3.7

Equation (3.7) demonstrates the critical dependence
on the high-energy behavior of Hy,imu(W), if one calcu-
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TasLE II. The parameters g, Hy, inb, 00/ (Wr—Wz), and Hy,imn(W)) for the solutions 1, 2, -+ -, 9. Wy=12.25, W =9.17, and #, = m.,0.

Solution 2172 Hipion gue/ Wie—Wgr) Hizion(Wirs) g3/2 Hsginn  gare/(Wae—Wr) Haszion(Way2)
1 1.59 0.53 0.52 0.49 —6.02 —1.99 —1.95 —2.36
2 1.50 0.50 0.49 0.49 —6.11 —2.03 —1.98 —2.37
3 141 0.47 0.46 0.49 —6.21 —2.06 —2.02 —2.37
4 1.67 0.55 0.54 0.50 —6.30 —2.09 —2.05 —2.37
5 1.58 0.52 0.51 0.50 —6.39 —2.12 —2.07 —2.37
6 1.49 0.49 0.48 0.50 —6.49 —2.16 —2.11 —2.38
7 1.75 0.58 0.57 0.52 —6.58 —2.18 —2.14 —2.38
8 1.66 0.55 0.54 0.52 —6.67 —2.22 —-2.17 —2.38
9 1.58 0.52 0.51 0.52 —6.76 —2.25 —2.19 —2.39

lates the N function N,“(W) in the region of the first
resonance. We mentioned at the end of Sec. ITI C that
the result (2.11) for Hy, mn(W) becomes doubtful for
energies W above the second resonance. In view of this
difficulty we used therefore the following semiphenome-
nological ansatz for Ny“(W):

N\*(W)=Hy,son+ReDy(W)[Hy.ios(W) — H ) inn]

1 7 Hy,inn(W")—H,1:an(W>)
——/ aw’
™ J M+1 W,_‘W

XImDy(W").  (3.8)

Equation (3.8) is identical with (1.21a’) on the physical
cut if Hy inn=H> inn(W>). In (3.8) the difference

Hy (W) —Hy (W) (3.9)

appears only under the integral, which gives a small
contribution at our energies compared to that of
H,\ inn and which is not very sensitive to the high-energy
behavior of Hy,imn(W).

031

0.2 4

Fic. 6. Results for Rg,
Ry according to Sec. 0.4
IIT A; solutions 2, 4, 5,
6, 8; dashed line, solu-
tion 5 with My »2/2=0;

We shall calculate the difference (3.9) up to the energy
W using the approximation (2.12) for Hy,inn(W). The
values for the coupling constants g&'# are taken from
Table I apart from those of the first resonance. But the
dependence on the first group of constants is not
critical. To determine the coupling constants g3 —= g,
of the first resonance, one establishes a linear relation
between the constants Hy,mn and gy This relationship
is obtained by expressing in the definition (1.11b) for
g the integrand ImH,(W) by means of (1.13), (1.17),
and (3.8). In Eq. (1.11b) we have chosen as cutoff the
energy W,=11.0 (E,~800 MeV). The parameters
H,\ iun are then fixed in such a way that at one point
W;=9.01 (E;=320 MeV), which is near to the reso-
nance, ImM . 32(W;) and ImE..3/2(W;) lie within
certain limits (Fig. 5). These are given by the present
status of the phenomenological interpretation of the
70 photoproduction data.!?

In Table 1T results for ),inh are shown and compared
with Hy inn(W>) for solutions 1-9 which correspond to
the points 1-9 indicated on the ImM.32(Wj)—
ImE.32(W ) plane (Fig. 5). In all cases the difference

dash-dot line, see Sec. 200
III B, case (b); 7z =m.o.

~=0.14

=02

=03

13 J. Engels, A. Miillensiefen, and W. Schmidt (to be published).

01 ]
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Fic. 7. Results for M1,3/2 and E,,3/% according to solution 5; m, =m0,

between the parameters Hy inn and Hy,ian(Wh) is to be
noted. There are several possible reasons for this
discrepancy: (a) failure of the approximation (2.12) for
Hy,in(W), (b) a systematic error in D\(W) because of
the uncertainty of the phase ¢\ above W) >11, or
finally, (c) a too optimistic estimate of the high-energy
contribution N\*(W) (1.19), which has been neglected.
In Fig. 6 we show the results for Rg and Ry correspond-
ing to solutions 2, 4, 5, 6, and 8. At threshold the dif-
ferences between these solutions are negligible. The
relationship to the old result of CGLN isin no case a
simple functional behavior. In Fig. 7 the actual result
for E1;3/2 and M 1,372 is shown.

B. Results Following From N,*(W) [Eq. (1.40)]

For Py .(W=W,)=0 one obtains from (1.40) the
relationship
N\ (W)= g/ (Wax—WE). (3.10)

This relation now replaces Eq. (3.7), since we shall
always assume that one of the zeros (say, Wi) of
Py (W) is equal to Wy. This choice for the zero Wy is
in accordance with the discussion on the neglect of the

Tasre IIL The ratios Ny*(E)/Nu*(E) and Nz*(E)/N g*(E) for
E=500, 600 MeV, Pyn=W —W», Wx=12.25, and m,=m.o.

E

Solution 2 4 5 6 8 (MeV)
Ny*/Ny* 094 095 094 095 095 500
_ 084 087 087 08 08 600
Ng*/Ngv 104 102 103 118 102 500
106 104 104 106 104 600

high-energy contribution in Sec. IT B. For W1=W, the
integral in (1.40) does not depend strongly on the high-
energy behavior of the inhomogeneous term Hy,imn(W)
evaluated in the region of the first resonance. Therefore,
a good prediction should be possible in the case that the
coupling constants gy [or generally g, if (1.37) is not
used] are known. In this connection one should perhaps
stress that the g\’s (or, generally, g),») are genuine free
parameters, which have to be fixed from other sources.
It makes no sense to introduce N#(W) into (1.11b),
since it is satisfied by the strict result (1.28).

We shall now calculate N\%(W) with the coupling
constants g, taken from Table II and we shall compare
with the corresponding solutions N,“(W). We consider
two possible choices of Py,.(IW):

(@) A=3,%; n=1: P (W)=Ps (W)=W—W,,
(b) X=3; n=2: P (W)=W-W\)W—-W)),
A=%; n=1: Py (W)=W-W,).

Case (a). Since there is agreement within 1-29,
between Hy,inn(W) and the corresponding g/ (Wy—Wg)
in Table IT, one cannot expect large differences between
N\«(W) and N *(W) at the resonance because of the
relation (3.10). It turns out that noticeable differences
(>1%) exist only for higher energies E>450 MeV as is
indicated by the results in Table III, which is to be
expected. But at these energies it seems at the moment
impossible to decide empirically between the two types
of approaches to NV)(W). Theoretically we would expect
that predictions based on the result (1.40) for N\«(W)
are superior for #>1 to those based on (1.21) for
N\(W), since for W1~ W, the neglect of the high-energy
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TaBLE IV. Effect of the variation of the zero W for Ng* and Na* calculated with Pyjs,o(W)= (W —W\)(W—W3)
and Py (W)=W—W); Wx=12.25 and m,=m,o.
\{(MeV) E(MeV)
W, 300 400 500 W, 300 400 500
Na#/Na Wi—1 0.98 0.93 0.80 Ng¥/Ng» Wi—1 1.28 14.39 —1.82
W 0.98 0.95 0.87 W 1.20 9.65 —0.56
Wi+1 0.98 0.96 0.89 Wi+1 1.16 7.43 —0.07

contribution should be more justified. We have checked
that variations of Wy=~W) of the order W1—W, =21
lead only to insignificant changes (19,) in the region of
the resonance.

Case (b). It is notable in this case that changes
already appear in the region of the first resonance,
particularly in the ratio E13/2/M 1,372 if one compares
again solutions with the same coupling constants g
(see, e.g., curve 5 in Fig. 6). This emphasizes again that
the prediction of E;.%/2 needs a particularly careful
treatment of the high-energy contributions. We also
found that the results are more sensitive to small
changes in the zero W, of P12 than in case (a) (see
Table IV). Partly this may be due to the approxi-
mation (1.37). But this has to be used as long as it is
impossible to improve the result (1.34) for g1 or as
long as gy,1 is not treated as a further free parameter.
Finally, we mention that the type 5’ of solution for
E.32/M 3% in Fig. 6 is more favored by present
experimental data.!®

IV. CONCLUSION

Different types of N/D representations have been
derived for the partial amplitudes of the first resonance.

The results are suitable for a phenomenological treat-
ment of the first resonance in pion photoproduction.
Parameters are introduced which characterize uncertain
or unknown high-energy contributions in the basic
equations of the theory. With the help of these parame-
ters, the asymptotic behavior of the approximations is
also controlled.

A systematic treatment of the influence of the phe-
nomenological parameters revealed their importance
for a correct prediction of the resonant multipoles. It
follows with respect to the large magnetic dipole exci-
tation M1;%/% that a prediction of the height of the
resonance [ImM,#2(Wg)] is only possible with a
presumable error of 10%,. For the small electric quadru-
pole excitation Ey;3/2 the situation is worse; even the
sign of ImFE;,3/2(Wg) cannot be predicted, and this
quantity has to be considered as a completely free
parameter. But also with respect to functional behavior,
high-energy contributions are more important for E;,3/2
than for M1,3/2 in the region of the resonance. Their
uncertainty could make it necessary to introduce
further parameters, primarily in E.3/2(W) to get the
right energy dependence.



