
P 8 YS ICAL REVIEW VOLUME 169, NUMBER 5 25 MAY 1968

Calculation of the a(1236) Resonant Partial A1nplitudes in
Pion Photoproduction*

J. ENGEX, S

Institut fur Theoretische Eernphysik der Technischen Hochschule, Eurlsruhe, Germany

AND

W. SCHMl:DTf

Institut fur Experimentelle Eernphysik, Gesellschuft fur Eernforschung, Eurlsruhe, Germany

(Received 30 October 1967)

Using an S/D type an-satz, a modified dispersion relation for the partial-wave amplitudes is derived.
The equations, if applied to the first resonance in pion photoproduction, allow a fairly complete incorporation
of our phenomenological knowledge of the pion-nucleon 6nal state together with a systematic treatment
and estimate of the terms to be neglected in practice. Various possibilities of including unknown or un-
certain high-energy contributions are discussed and applied. Explicit results for the multipoles EI+'/',
M~+'/' are presented.

INTRODUCTION

HE uncertainties involved in the present-day
evaluation of the partial-wave amplitudes M~+'"

and E~+"' are of the same order of magnitude as
several of the other J=-'„~ partial-wave amplitudes.
The determination of these smaller amplitudes from
experimental data is extremely sensitive to the theory
used for the 6rst resonance, since a complete partial-
amplitude analysis has not been possible up to now.

In spite of several recent attempts to improve the
evaluation of the partial-wave amplitudes of the 6rst
resonance, ' ' a systematic treatment —including esti-
mates of the terms necessarily neglected to get a
practical result —is still lacking. This is partly due to the
fact that in the usual formalism the well-established
theoretical and phenomenological knowledge about the
6rst resonance was in no lucid way separated from our
ignorance or hypothetical assumptions, so that the
influence of the latter on the final result was not clear.

In this paper it is therefore the main aim to derive
an E/D result for Er+'~' and 3fi+'", in which the present
knowledge about the first resonanc- following mostly
from pion-nucleon scattering —is incorporated as com-
pletely as possible. Furthermore, the result shouM be
suitable for a systematic study of the neglected terms
in practical applications. Unknown important contribu-
tions should be summarized in terms of as few parame-
ters as possible. We shall use as basic assumptions (a)
analyticity, (b) the knowledge of the phase in a finite
interval, and (c) asymptotic properties of the ampli-
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tudes. The results derived from the assumptions are,
of course, not restricted to pion photoproduction. But
the following experimental facts about the 6rst reso-
nance will be decisive for the application of our results
to the multipoles of pion photoproduction: (1) The
possibility of applying the Watson theorem to obtain
the phase y of the partial amplitudes up to the region
of the second resonance, although the strict threshold
for two-pion photoproduction is already around the
first resonance. (2) The fact that q (z- and very near
to w at the end of the interval, where q is known. (3) The
decrease of the ratios ImMi+'I'(W)/ImMi+'"(Wit) and
ImEr "'(W)/ImEi s"(Wa) for W))Wit& where Wit is
the resonance energy. Finally, in order to apply our
results we need an explicit representation for the
partial-amplitude dispersion relations, particularly of
the inhomogeneous term. Up to now one has obtained
this only by projecting 6xed-t dispersion relations. '
This method yields a result for the inhomogeneous term
which is strictly valid only in the region of the 6rst
resonance. But at present it has to be applied also at
higher energies, so that in this way an arbitrariness
of the final results might be introduced, which has to
be bypassed. This point will be discussed thoroughly in
Sec. V.

Our starting point is the paper of Finkler. ' His
result will be generalized. The question of uniqueness of
the solutions for Ej+'" and Ml+' ', emphasized in
Refs. 2 and 3, will rot arise.

Instead of the type of ambiguity discussed there, we
find —from a practical point of view —that we must
introduce at least one free parameter in each partial
amplitude because of the unknown high-energy behavior
of the inhomogeneous term.

Finally, we mention that in the following we use
units such that A= c=m =1 except for the amplitudes.
In these units the nucleon mass 3f=6.722 (or 6.952) if
the n.+ (or w') mass is chosen for res . All amplitudes are
given in units of 10 'ts/(m c), so that, e.g. , ImMr+'" is

7 J. S. Ball, Phys. Rev. 124, 2014 (1961).
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Z. Asymptotic PropertiesI. OUTLINE OF THE METHOD

A. Notation
If it is assumed that the total pion-photoproduction

cross section is 6nite for 8' —+~ on the positive real
axis (W —++ ao), then one has at leastFor convenience in numerical calculations we shall

use the parity-conserving helicity amplitudes Fzs+ r(W)
introduced in Ref. 8. J denotes the total angular mo-
mentum and I the two isovector amplitudes ~, —,'.
P = —,', —,

' is the helicity index and the signatures + dis-
tinguish the parity for each J (for further explanation,
see Ref. 8). For J=-,' and s we give the relation to the
more familiar multipole notation' (with the isospin
index I dropped).

W~+ao:

I &&+(W) I
~ const, I M&+(W) I

~ const, (1.6a)

and according to (1.1)—(1.3)

W ~+ ao:

I
W'H~ts

I
~ co~st,

I
WsHsts

I
~ co~st. (1.6b)

Then, because of (1.6b), one can introduce the functions~1/2 ~~~0+y ~1/2 ~2~1—
p

P 1/2 —0 (1») k,.(W) =H, (W)

of order unity around the resonance. If not otherwise where H&;„h(W) is the inhomogeneous term speci6ed
stated, m =m +. in Sec. II C.

Fgts'" =-s'&2(3Eg++M&p),

Fsts'" =(V's)(~~+—M~+) (1 1b)

W'« ImH&(W')dW', (1.7a)
M+ j. 8"—8"

Fyts += s&2( 3Ms—+&s—) y

F,t,&~+= —(g-')(M, +E, ). (1.1c)

with
+C2 for A= g ~

for (1.'lb)
It will be useful to separate from the Ii 's a kinematical

function stq~+(W) including the threshold factor

Fps+'(W) = N),s+(W) H), s"'(W),
Using unitaritv and time-reversal invariance in

Compton scattering, one can even show that
1.2

with W ~+ ao:
C(WW)(gk)s 't'

Ngs+(W) =+
P—1/2

so that the bounds for I in (1.7b) can be raised by one
unit. But we shall not use this stronger assumption in
the following.

We assume sufficient smoothness conditions (like a
Holder condition; see, e.g., the discussion in Ref. 10,
Sec. 2.II), so that

In (1.3), q and k are the momenta of the meson and
photon in the c.m. system, respectively, and C(W) is
a kinematical function. The quantities q, k, and C are,
in terms of the total energy 5',

(1.3) I ~i+(W) I
~ const/W~

I M~+(W) I
~ const/W, (1.6c)

s=8'
s—M'

C(W) = P(W+M)' —1]'12,
16ms

(1.4a)

(1.4b)
W —++ao: P

W'" ImH), (W')
dW —+

8"'—W'

const/We, (1.8)
g'= (1/4s)Ls —(M+1)'](s—(M—1)'] (1.4c)

k = (s—M')/2W.

B. Basic Assumptions

1.Dispersioe Relation

(1.4d)

1
ReHg(W) =H), , ;„h(W)+—P

ImHg(W')dW', (1.5)8"—5'

'W. Schmidt and G. Schwiderski, Fortschr. Physik 15, 393
(rW7).' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1345 (1957).

The partial amplitudes of the 6rst pion-nucleon reso-
nance A(1236) [denoted by Hz(W)] satisfy the disper-
sion relation

with P)0. Because of (1.6) and (1.8),

W -++~:
~
W "kq"(W) ~

~ const/We. (1.9)

Now using the identity

1 W' W'~' W'~ '-'-
= ——1+ + i+ +

W W W& Wi
W'' 1

with /)0, one derives from the dispersion relation

' J. Hamilton and W. S. Wool&ock, Rev. Mod. Phys 3&) 373
(1963),
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(1.5) the relation

3. Phase qi(W) of the Partial Amplitudes

Finally, we assume that the phase az(W) of Hz(W),

Hi(W) =
~
H), (W)

~

e'r"t~i, (1.12)

is known for W on the physical cut, up to the point
W= W&,. yz(W) is independent of X and given by the
(experimental) values for the pion-nucleon phase shift
n33 of the A(1236) resonance (Watson theorem) as long
as inelastic eGects can be neglected. According to the
phase-shift analyses" this should be possible at least
up to the second resonance.

4. D Flection

With the assumption c, the D function

1 w"
q y(W')

Bz(W)=exp( — dW' (1.13)
W' —W

is completely known in the W-plane cut along M+1 &W
&Wq. In the following we shall assume

so that
q»(Wi) &~,

lim[(W —W~) D&, (W)j=0. (1.15)

The D function (1.13) obeys the dispersion relation

W'g

D),(W) = 1+—
ImDg(W')

dW' (1.16)

The same applies for Di '(W):

g), c gX, n—1», ~(W)=—g),+ —+ + +4"(W),
W W Wn —1

(1.11a)
with

oo

g&,;=— dW W' ImHi(W), gi, o
=—

g&, . (1.11b)
M+1

Equation (1.11), together with (1.9), shows explicitly
the leading asymptotic terms of the inhomogeneous
term Bq, ;„q for W on the positive real axis.

1¹"(W) =—
Dg(W') ImHg(W')

dW'- . (1.19)

Nz"(W) is regular on the total physical cut, so that the
application of Cauchy's theorem yields the represen-
tation

1 Di(W') discHi, (W')
¹"(W)=— dW'

7I W—W

Di(W')
dW'

W' —W

XPK„;.~+(W') —H~, .i,-(W')]

27K Q

Dy(W')Hy, ; g(W')
dW'

W' —W
(1.20)

In (1.20), Hi;„q+(W) for Hq, ;„i, (W)j denotes the
definite limit of the inhomogeneous term Hi, ;„i,(W)
if W approaches the unphysical cuts I.„along any path,
which remains, however, on the left (or the right) of
I. . The contour C is a closed in6nite contour surround-

ing the unphysical singularities in a counterclockwise
sense. The vanishing of the contributions of the inhnite
circle is a consequence of the asymptotic assumptions
already made implicitly in the representation (1.5).
For any W far from a cut, one can easily contract the
contour C, which now surrounds the point W and the
low-energy part I& of the physical cut. One therefore
arrives at the result

Ni, (W) =Hi„; g(W)Di(W')

relation (1.5) and using the other assumptions specifmd
in Sec. IB.

We introduce the X function

¹(W)=Hi(W)Di(W), (1.17)

having all singularities of Hq(W) except the low-

energy part of the physical cut I.i. (M+1)&W&W&.
Nz(W) has the same asymptotic behavior as H&, (W)
since Di(W) —+1 for W~~. Let us also defme the
modi6ed N function Nz (W) by

N), "(W)= Ng(W) —¹"(W),
with

TPg

Di '(W)=1+—
ImD -'(W')

dW' . (1.16')
WI W

1 ir& Hi, ; i,(W') ImDi(W')
(1.21a)

C. Derivation of the Main Result

I. Basic Forml, k
In this section it is our aim to derive a new repre-

sentation for Hi, (W) starting from the dispersion

"L. D. Roper, R. M. Wright, and B. T. Feld, Phys. Rev.
138, B190 (1965); P. Auvil, A. Donnachie, A. T. Lea, and C.
Lovelace, Phys. Letters 12, 76 (1964); P. Bareyre, C. Bricman,
A. V. Stirling, and G. Villet, ibid. 18, 243 (1965).

——p
M+1

Hi, ; g(W') ImDi(W')
dW' (1.21b)

W' —W

For numerical calculations it is suitable to rewrite

Approaching I.j from the left or right, one obtains from

(1.21a) for WQI. i

N~"(W) =II,;. (W) ReDX(W)
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(1.21) by means of (1.16) into the form is identical to (1.18), (1.19), and (1.21a) because of
the identity

%"(W)=Hi. h(p"~)+D) (w)
8'g

Xph, h(w) HX ' h(wx)$ ——
M+1

Hi. h(w') —H~, ~(w))
X ImDi(w'),8"—8'

Pi, (W) Pg, (W)
+P ci, ' "(W)W" (1 29)

8 '—8' 8"—8' l-p

and correspondingly also (1.21b).
From (1.21a') the transition to Finkler's result' is

easy. He uses, where allowed, the sharp-resonance ap-
proximation for the phase qq.'

q ),=0 for 8'(8'g,
for 8')8'g,

ax, l—b)„l=e),l,
with

l

e„,=g d,„g, ;, l=0, 1, (n —1) (1.30)

(1.21a')
where cq™is a polynomial of degree (rs —1—l). From
(1.28) and (1.8), it follows that the asymptotic proper-
ties (1.6) are fulfilled if the subsidiary conditions

which yields the following approximate form for Dz(w):

Di(w) = (W—Ws)/(W —W),) . (1.23)

[Wing=8. 87(m =m, +), resonance energy]. In this ap-
proximation, the last integral in (1.21a') is zero, so that

Xg(W) =H)„;„g(w),)
8'—IVY

+ [H), ,;,h(w) —H)„;„h(wg)] (1.24)
O' —8'),

are applied. The constants el are dered by the asymp-
totic expansion

Hi„;„h(w)D),(w)

1 eq, i ei„q)=—e~,o+ + +—I+ V&(W) (1 31)
w

'
w w~i

following from (1.11a), with

W~'Vq(w) ~ 0 for W+ ~ . (1.32)
if one neglects, as did Finkler, the high-energy contribu-

The constants d&,; are defined bytion Zv z"jvv'j.

Z. Iwclgsiors of Asymptotic Properties

To incorporate more explicitly the asymptotic proper-
ties (1.6b), we proceed in the following way: Let
Pz,„(w) be a polynomial of degree n,

P), ,„(w)= (W—Wi) (W—W2) (W—W„), (1.25)

~X,1 dX, S

D), (W) =1+ +- +8" (1.33)

and, gq, ; is taken from (1.11b). In the sharp-resonance
approximation (1.22) and (1.23), one has

dW'W'&D, (W') ImH&(WI),
7l P'y

(1.26)

with arbitrary constants W;, which will be specifmd
below, and with rs chosen in accordance with (1.7b).
Let aq, l, bq, l be the constants

coo

and
d)„o=2, d), ,1=5'~—8'
A, i =(W).—Ws)w~" ', (1.35)

g), i=Wz'g)„gi= — dW' ImHg(w') (1.34)
M+1

Wg l

b„,=— dw'W"H)„;„i, (w') ImDg(w') . (1.27)
jcasp

M+1

Then the representation
l

=gg(Wii'+(W), —Ws) Q W~' 'Ws' ') =g) Wi' ~

1V),(w) =H)„; h(w)Dg(w)+ Q c),' "(W)
p), „(w) t 0-

Therefore, one obtains in this limit
(1.36)

W')t

X(a~, &
—bi, i)—

P), , „(W)

2
XHz, ;„h(w') ImDi(w') ——

Pg, (W')
dS" 5"—8'

Pg, „(W')
dS"

8"—8'

P c),'"(W)ei„i=gal, P cg' "(W)w~'

gz
[Py, (W) —Pi, „(wg)], (1.37)

8"),-lF

XDg(w') ImHi(w') where the definition (1.29) for the c's has been used.
One should note that the result (1.37) is exact for ss= 1.
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Using (1.37), we write the expression (1.28) in the
form corresponding to (1.18) and (1.21).

Finally, let us consider the difference

Ai(W) =
¹

"(W)—
¹

"(W)=¹"(W) —¹"(W)
1Vg(W) =1Vg"(W)+¹"(W), (1.38)

P cg'"(W)a)„i. (1.42)
P), , (W) i=oPi, ,„(W')

d8"
1¹"(W)=

W'g

R, (W)~

XPy, (W')Hi, „. h(W'). (1.40)

P)...(W) m. s), W W If at least one of the zeros W; of Pq, (W) goes to
XDi(W') ImHi(W'), (1.39) infinity, then this difference goes to zero. There is some

evidence that an optimal A&,(W) is obtained if Pi,„(Wi,)
=0. Because of the strong singularity of Di(W) at

P„(W) W=W&, (see Sec. II A), the largest contributions to the
integrals (1.19) and (1.26) for ¹"(W)and aq, ~ come

ImDi(W') from a very narrow region at the lower end 5"'=Wz of
the integration interval. Therefore, one has the approxi
mate relationship

The result (1.38)—(1.40) is a direct consequence of the
dispersion relation (1.5), the further assumptions in
Sec. II B, the Cauchy theorem, and the approximation
(1.37). With (1.38)—(1.40) we are able to formulate
approximations in practical applications which ful611
the asymptotic properties (1.6b). Since the application
of the Cauchy theorem always yields a unique result,
there is also no ambiguity in the representation (1.38)—
(1.40). Its usefulness stems from the fact that it is
adapted to a systematic study on the basis of a few
pieces of information about the 6rst resonance, which
we must have from other sources, e.g., experiment.

One should note that Hq(W) following from (1.13),
(1.17), and (1.38)—(1.40) is by construction independent
of the parameters Wi and W; [of (1.25)], which we have
left free up to now. Any dependence on these parameters
would imply that some of the approximations to be
made are unjustified. Now in practice, when one evalu-
ates 1Vq(W) at low energies W, one would like to neglect
the high-energy contribution ¹"(W)(1.39) or Ez~(W)
(1.19).Then the parameter Wi is 6xed by the need for
the contributions (1.19) or (1.39) to be negligible at the
energies considered. In our case, Wq has to lie at least
above the second resonance S'q&11, as will be dis-
cussed in the following section.

If Wi) 11, the phases pi, (W) are needed up to rather
high energies in order to calculate Di, (W). At these
energies one has to expect a serious deviation from the
Watson theorem in its simple form. Instead of

v ~(W) =n»(W)

one then has to write

(1.41)

yi, (W) =n»(W)+Aqi (W), (1 41')

where Ap&, (W) arises from inelastic processes. To these,

Apz is related by a generalization of the Watson
theorem. Then n»(W) is the real part of the phase shift
for the pion-nucleon scattering amplitude belonging to
the first resonance.

= (Wi,—W) W), ' for W«Wg, (1.43)¹"(W)
which we need only for /=0 and 1. Using (1.29),
(1.42), and (1.43), one obtains

Ai(W) Pi„„(Wi)

¹"(W) Pi„„(W)
(1 44)

II. NUMERICAL APPROXIMATIONS

Before we turn in Sec. III to the evaluation of the
partial amplitudes H&,(W) starting from Eq. (1.40), we

discuss the numerical results for the D function, the
approximation of the inhomogeneous term Hi„;,h(W),
and consider the neglect of the high-energy contribu-
tion ¹~(W)(1.39).

A. Numerical Results for Di(W)

Near the branch point 8'=8'q of the D function
(1.13), the modulus of Di, (W) is in6nite and may be
represented in the form

IDi(W) I

=
I
W—W~I "'~""f(W), (21)

where f(W) is finite at W= Wi. In our applications the
function (W—W&,)Dz(W) usually appears, which is

finite at W= Wi because of assumption (1.14). Numeri-
cal results for (W—Wi)Di, (W) are plotted in Fig.
1(a) for three values of W&, = 11.022, 12.022, and 13.012,
and with the assumption that the phase q», (W) is
given by (1.41) [Fig. 1(b)]. From Fig. 1(a) it follows

from which follows the condition Pq „(Wi)=0 for the
best Ai(W).

By this consideration, one of the zeros of Pi, „(W)
should be practically always fixed. But the condition
Pi, „(W&,)=0 has also the additional advantage that
it suppresses the contributions at the end of the inte-
gration interval for ¹"(W)(1.40) by giving a larger
weight to the low-energy region, where Hi, , ;~i,(W) is
better known.



AMPLITUDES IN m PHOTOPRODUCTION 1301

D~(w}(w-w&j
&~Eh(Wir) &~0.97, if Wh varies between 11.022&Wh
&13.022 and if Aph(W) is taken according to (2.2).
Since at W=13.022 a violation of (1.41) by Aph(W)
= 20o [as in (2.2)] is at least to be expected, the present
ignorance of Aph(W) gives an upper bound for Wh,
which seems to lie around 8'=12.

B. High-Energy Contribution Nh" (W)

To estimate the high-energy contribution N&, "(W)
(1.39) for W«W)„we write

q, (w)

gpe

P), ,„(W')
X Dh(W') ImBh(W')5"—8'

10

a,(e)
1.04-

54

with

ImFhp" (W) 1 " Ph, (W') Dh(W')
dW'

Ph, (W) s s „Nh'I' (W') W' —W

= pp), is&(W,W;), (2.4)

pp
8 9 CQ

0.96

0.92.

ImF hpi' —
(W)

X))),—
ImFhsis (Wit)

ImFh'" (Wit) 1
eh(W, W;) =

Ph, (W)

(2.5)

+IG. 1. (a) ReD)i (5') (W —8"7r), 10XImD& (8') (5'—IV&) fOr
W), =11.022, 12.022, 13.022; (b) phase p), (W) =rrpr(W); (c) the
ratio Eg(W) (2.3).

that apart from a very narrow region at 8"=8'z, the
function (W—Wh) ReDh(W) follows roughly a straight
line as is suggested by the narrow-width approximation
(1.23).

important for applications is an estimate of the un-
certainty in (W—Wh)Dh(W) caused by a failure of
assumption (1.41), which is (as already mentioned) to be
expected above the second pion-nucleon resonance
N*(1518) according to Ref. 11.We tentatively, there-
fore, replaced Eq. (1.41) by the assumption (1.41'),
with

[V(W) —a(11 o)]
mph(W) =-p, s. 0(W—11.0), (2.2)

[g (13.022) —g (11.0)]
where Q~(W) is the unit step function. Equation (2.2)—
according to which ph(W) would deviate from (1.41)
above the second resonance —is simply an assumption to
study possible effects on Dh(W). The ratio Rh(W) of the
modulus of the new D function to the old one,

(2 3)

is shown in Fig. 1(c). It varies at W= Wit from 1.0

Ph, „(W') Dh(W')
dW' . (2.6)

sih'i' (W') W' —W

In the third line of (2.4) we applied the mean-value
theorem to take out from the integral the unknown

part ImFh'" (W) (W denotes the mean-value parame-
ter). In Fig. 2 the ratio nh(W, W;)/~Hh, inh(Wx)

~

plotted against 8"~ for IVY = 12.022 and different
polynomials Ph, „(W) with

H&p;„h(12.022) = 0.51, H3/S, ieh(12.022) = —2.40 x

ImFi s'" (Wa) =248 ImFs s'" (Wit) = —4.29. (2.7)

According to (1.24), one obtains in the sharp-resonance
approximation

»(Wz)=&h, h(Wh), (2.8)
so that

(W)/N)x(WB)
~
&+)x+X(W W ')

~
+X,i h(WX)

~

~ (2.9)

For Py p(W) —=1, the main contribution to the integral
(2.4) comes from a small region at the lower end of the
integration interval because of the singularity in D), (W)
at 8"=5'~, so that in this case the mean-value parameter
W=Whx. For e=1, ash(W) has a sharP minimum, if the

polynomial Ph, „(W) has a zero at W& ——Wh. Since for
H/'I =8"q the mean-value parameter 8'))S'q, one expects
that generally also the ratio xh (2.5) decreases. For I= 2

no minimum appears, if one of the zeros, say, 8'&



i302 J . ENGELS AN D W . S C H M I D T

t I n„(W„)

20-

Psia, o

contribution should be damped for W«W~, (a) if the
degree 00 of the polynomials P&„„(W)is larger than zero
and (b) if one of the zeros W;= Wq. If x~( 10 ', the
ratio (2.9) is also (10 ' for 00= 1 and Wt ——Wq as one
realizes from Fig. 2. For TVq & 12, it is reasonable to
assume that xq &10

10.

PE/2, D

P31),) W- Wq

C. Results for Hq, ;eq(W)

From fixed-t dispersion relations one derives an
explicit result for H), , ; q(W) in terms of a partial-
amplitude expansion, which converges in the region of
the 6rst resonance;

Hg, ' Q(W) Hg(W) p. f..,.+DH) „Q(W), (2.10)

where Hq(W), .t . denotes the pole-term contribution, '
and

5 ~

1
»), h(W) =-

M+1

dW' Q LlmHz' —(W' )E&,z'(W W')
L'

12 18 20~Wq

Fro. 2. The ratio aq(Ws)/Hq, ~q(Wq) for Wq=12.022 and dif-
ferent degrees a=0, 1, 2, of the polynomials P&„„(W).

= Wq. The function Nq(W) decreases with Wq and, for
WQ)Wq, is of the same order as tsq (W') at the minimum
for e= 1. Therefore, the inhuence of the high-energy

—lmH~'+(W')EP'(W, —W)], (2.11)

I.'= (2J',2P,2~')

Some numerical results for the exact kernels Eq
(taken from Ref. 8) are shown in Fig. 3 for W= 10.

Typical for low values of J' is the smooth b ehavior
in W', so that one can approximate (2.11) by

».„..(W) = Z Pg'-E"'(W, W"'-)
L'; 2J'&5

gr"+E),r"(W —W—),~'+)], (2.12)

jl

2.50410 2.50~10

1.25ilo

8.O 8.5 9.0 9.5 10.0

K ', "(lo, w')

10.5 11.0 11.5 W'

1.25xlo

K,
' ' (10W )

~ ~ I ~ ~ ~

8.0 8.5 9.0 9.5 10.0 10.5 1 1.0 11.5 W

"3-l, 25sl 0

«3-2.50~10

OS~

K' '(10 W )

-1.25~10

"3"2.500tl 0
~ see

~ el+

K
13 '(10 W')

0.250

- 0 ~ 1 25
K

' '
(100W )

-0.250

0.1 25 K
' ' (10,W )

K 3 3 3(100W')
k

~ ~I~
%la

K3' ' (10,W )

0.250-

0.1 25

-0.125-

-0.250-

K ' ' (100W )

K
' '

(10,W')

&.'"i)o,w')

K3"'(1O,W
'
)0

Ss

FIG. 3.. The iterne)s ffs~2J', 21' rl'(W W') for 1=g, -', for Gxed W = 10
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TABLE L Estimate of the different contributions (up to 7= ss) to the inhomogeneous term P&„; s(W) at
W= Ws=8. 73 according to the respresentation (2.12).

21' 2J' 2~' p/ gL'
E),s'(8.73, gs'&),s'/»(8 73)p La.

SI
Sa
Pll
pl1

PI3

DIO

1 1
3 1
1
3 1

3 3
3 3
1 3
1 3
1 3
1 3
3 3
3 3

—1—1
+1
+1

—1—1—1—1
+1
+1
+1
+1

2.0
6.1
4.1

1.60—6.25—1.3X10 '
—30X10 ~

0.0
2.7—22X10 9

1.8X10 '

1.0X10-&
43X10 '1

1.1X10 '
1.1+10 '
9.1X10 4

—1~ 1X10 2

—2.0X10-4
3.7X10 3

10.23
10.23
10.23
10.23

8.73
8.73

10.23
10.23
10.73
10.73
10.23
10.23

10.73
10.73
10.73
10.73
10.73
10.73
10.73
10.73

0.0002
0.0001
0.0014
0.0007

O.ii—0.12
0.19—0.02—0.01—0.01—0.06
0.00

3.9—0.5
18.4—1.0—0.8
0.0
1t3
0.0

—0.0046—0.0023-0.0046—0.0023

—0.08
0.02—0.26
0.02—0.10
0.02—0.04—0.04

—5.4
0.9

-2.7
10.4—1.4
0.4—0.7—0.4

0.001
0.001
0.012—0.007

0.185
0.769—0.001
0.010
0.000
0.074
0.003

~10-4

0.011—0.006
0.057—0.003—0.002
0.001
0.00i

r 10-4

0.0024
0.0036
0.0049—0.0029

0.017
0.016~—10 4

0.002
0.000
0.015~—10 4

0.002

0.002
0.001
0.001—0.004

~5.10 '
0.001

~5.10 ~

~5.10 '

with
00

gL'+

31+1

dW' ImH~'+(W') . (2.13)

'2 J. Engels, W. Schmidt, and G. Schwiderski, External Report
No. 3/67-1, Gesellschaft fiir Kernforschung, Karlsruhe, 1967
(unpublished).

The advantage of the approximation (2.12) is that
details about the imaginary parts ImH~'(W) do not
necessarily have to be known. To determine the in-
Quence of ImH~'+ for J'&-,' on the solution of the
first resonance only some estimates of the "coupling
constants" g~'+ and the mean-value parameters JVq~'+

are needed. According to Fig. 3, the dependence on the
parameter 8 ),~'+, which also depends of course on 5',
should not be critical in the cases considered.

Because of the threshold factor (q'k')' in the kine-
matical factor (1.3), the high-energy region in (2.13)
is strongly suppressed for i'= (J'+-,'))0. The quantity
q'k' becomes 10 around the second resonance, exactly
at t/I/"=10. 75. Therefore, an estimate of the order of
magnitude of g~'+ should be possible using only the
low-energy data for ImII~'+.

In Table I, results for the contributions g~'+Eq~' to
&&q,;ah(W=Ws) are gathered One obse. rves, for A= st, a
strong inhuence of the a~8 resonance and of some of the
J= ~~final states, apart from the first resonance itself.
On the other hand, all J=~~ contributions seem to be
small, and partly cancel for the P waves. The coupling
constants g~'+, estimated as in Ref. 12, are to be con-
sidered only as very rough guesses apart from the first
and second resonance. The total result for Bq, t„h(W) is
shown in Fig. 4 with the J=-', coupling constants g~'

taken from Table I. The g~"s for the first resonance
correspond to the later solutions 2, 4, 5, 6, and 8 in Fig.

5; those of the second resonance are again taken from
Table I. All other couplings are neglected. Note that
according to (2.12), H&„;,a(W) becomes flat above the
second resonance. But at these energies one has to con-
sider the results in Fig. 4 with the utmost care, since
the partial-amplitude expansion (2.11) does not con-
verge above 8=500 MeV according to the postulates of
the Mandelstam representation. ~

1 (Ds/s(W) 1~
NE(W) I Xt/2(W)+/3/2(W) —

~, (3.1a)
2't/2 Dt/s(W) kv3

1 Ds/s(W) VSi
ll/sr(W) = — Et/s(W) —Xs/s(W) —I, (3.1b)

2t/2 Dt/s(W) k)'
so that

1Vs(W)
Z„(W)=qkC(W)

Ds/s(W)

1Vsr(W)
Mt+(W) =qkC(W)

Ds/s(W)
(3.2)

IIL RESULTS FOR THE MULTIPOLES
Mg+')'~ AND Eg 3I2

In the case of the first resonance it is more suitable
to discuss elnsericcl results in terms of the multipoles
Mt+s/s and Et+s/s (1.1) than in terms of helicity ampli-
tudes F),'" .The reason for this is that the enhancement
due to the resonance is very pronounced in M&+"2, and
is not so strong in E~+'12 because of a cancellation in the
pole-term contribution. E&+'" is therefore particularly
sensitive to some of the approximations. The S func-
tions corresponding to E~+ and M~+'"are
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Flo. 4. Hq, ;~(W) Recording to (2:12) for the so1tttions 2, 4, 5, 6, 8; ts, =tN, o.

~I+'"(W)ceLII =3f I+.,I"+~I+„sfs, (3.5a)
Dtis(W) =Des(W) ~ (3.3)

p, k 8' 8' SlIlo,'33

Ml+, „'I'————
g g

which is justi6etl (a) if one puts

Wt p= Ws p =max(WIis~Wsp) &
(3.4)

where lVgp, S3(2 are lower bounds for 8), foOowing
fl'0111 flic conslderatlons 111 Scc. II Rncl (b) lf 111 tllc
interval M+1&W&WI~I=Ws~s the Watson theorem

(1.41) 18 valBi, 80 tllat &ptp= psp=trss.
In the following we use as reference for the compari-

son of Mq+'" the old result of Chew, Goldberger, Low,

7tII~,.'"= sIefkge' » cosnssf sr(W), (3.5c)

IIe = s(gt +1 g~)e/2M ) (3.511)

3 I—v' j.—e 3f
Fsr(W) = 1+ ln

4g' 2e I+a W
(3.5C)

accortilng to (1.1), (1.2), anti (1.7). Wc 811R11 assume 111 ancl Nanlbll (CGLN)':
the following that

s=a/(I+V')'", (3.5f)
I I ImM)+ Qg)

l4
I

I RS(W) =EI+'"(W)/Mlp'"(W) . (3.6b)

e'= 1/137.0388, f'=0.080, gp'= 1.7928, (3.5g)

g~= —I.913j..
%e shall usually consider the ratios

Esr(W) =Mt+'"(W)/Mlp'"(W)00LN (3.6R)

A. Reslllts Followlllg Fl'0111 Nl" (W) LEtt. (1.21)3

From the approximate relation (1.24) follows the
relationship

&1(WS)—K, ' I (Wl). (3 7)

31sgy ) g Equation (3 7) ClemonstrateS 'tile clltlcR1 Clepentience'

I~@ 312(7I ) gz —9OI (TI=320 Mey) sttd N1 =ts,o. on the high-energy behavior Of Hq, ;„h(W), if one calcu-
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TABLE II. The parameters gq, Bq, ; h, gq/(W), —Wg), and IIq, ; h(W7, ) for the solutions 1, 2, , 9. Wq= 12.25, Wg ——9.17, and m, =1n 0.

Solution g1/2 BI /2, inh g1/2/(W1/2 W8) +I /2, inh (W1/2) g3/2 B3/2, inh g3/2/(W3/2 WB) +3/2, inh (W3/2)

1.59
1.50
1.41
1.67
1.58
1,49
1.75
1.66
1.58

0.53
0.50
0.47
0.55
0.52
0.49
0.58
0.55
0.52

0.52
0,49
0.46
0.54
0.51
0.48
0.57
0.54
0.51

0.49
0.49
0.49
0.50
0.50
0.50
0.52
0.52
0.52

—6.02—6.11—6.21—6.30—6.39—6.49—6.58—6.67—6.76

—1,99—2.03—2.06—2.09—2.12—2.16—2.18—2.22—2.25

—1.95—1.98—2.02—2.05—2.07—2.11—2.14
2 0 17—2.19

—2.36—2.37—2.37—2.37
2'I37—2.38—2.38—2.38—2.39

lates the E function E&, (W) in the region of the first
resonance. We mentioned at the end of Sec. III C that
the result (2.11) for H&, ; a(W) becomes doubtful for
energies 8" above the second resonance. In view of this
difFiculty we used therefore the following semiphenome-
nological ansatz for ¹"(W):
E~"(W)=H~, ;„,+ReD~(W)PH~. ;„a(W)—H~;„,]

H~, '.h(W') —H~ s(Wx)
dS"

&+1 5"'—8"

XImay(W') . (3.8)

Equation (3.8) is identical with (1.21a') on the physical
cut if Hq;„q=Hq;„q(W&). In (3.8) the difference

Hg;„g(W) —Hg, ;„s(Wg) (3.9)

appears only under the integral, which gives a small
contribution at our energies compared to that of

Hz, ;„I,and which is not very sensitive to the high-energy
behavior of Hg, j h(W).

We shall calculate the difference (3.9) up to the energy
Wq using the approximation (2.12) for Hq, ;„q(W). The
values for the coupling constants g~'+ are taken from
Table I apart from those of the first resonance. But the
dependence on the first group of constants is not
critical. To determine the coupling constants g33~' = g),.
of the 6rst resonance, one establishes a linear relation
between the constants H), , ;„h and g),. This relationship
is obtained by expressing in the definition (1.11b) for
g&, the integrand ImH&, (W) by means of (1.13), (1.17),
and (3.8). In Eq. (1.11b) we have chosen as cutoff the
energy W, = 11.0 (E,=800 MeV). The parameters
H&, ; h are then 6xed in such a way that at one point
Wr ——9.01 (Er——320 MeV), which is near to the reso-
nance, IrnM~+'"(Wr) and ImEq+' '(W~) lie within
certain limits (Fig. 5). These are given by the present
status of the phenomenological interpretation of the
m' photoproduction data. "

In Table II results for H), , ; h are shown and compared
with Hq, ;„s(W&,) for solutions 1-9 which correspond to
the points 1—9 indicated on the ImMq+' "(Wj)—
ImEq+'~'(Wr) plane (Fig. 5). In all cases the difference

4.4.
[ ,5,6

0.3- 1.3-

0.2

FIG. 6. Results for Rg,
R~ according to Sec.
III A; solutions 2, 4, 5,
6, 8; dashed line, solu-
tion 5 with 3II+,,8/2=—0;
dash-dot line, see Sec.
Ill 3, case (b); m =m.o.

0.1

-0.1-

E[MeV]

0.9.

0,8

600
E[MeV]

i400 500

3lz
M1+,e~O

-0.3- 0.7.

"J.Engels, A. Mullensiefen, and W. Schmidt (to be published).
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TAsxa IV. Eifect of the variation of the zero Wq for Sz" and Ã~" calculated with f'ilr, r(W) = (W—W~) (W—W~)
and Pff12, &(W) =W—W)„W),=12.25 and m =m o.

MeV)
300

0.98
0.98
0.98

0.93
0.95
0.96

0.80
0.87
0.89

MeV)
300

1.28
1.20
1.16

14.39
9.65
7.43

-1.82—0.56—0.07

contribution should be more justi6ed. We have checked
that variations of W~= Wq of the order 8'q —t/V), =&1
lead only to insignificant changes (1%%uo) in the region of
the resonance.

Case (b). It is notable in this case that changes
already appear in the region of the first resonance,
particularly in the ratio Zr+'"/Mr+'", if one compares
again solutions with the same coupling constants gq

(see, e.g., curve 5 in Fig. 6).This emphasizes again that
the prediction of E&+'" needs a particularly careful
treatment of the high-energy contributions. We also
found that the results are more sensitive to small
changes in the zero Wz of Pr~z, z than in case (a) (see
Table IV). Partly this may be due to the approxi-
mation (1.37). But this has to be used as long as it is
impossible to improve the result (1.34) for gq, r or as
long as g~, ~ is not treated as a further free parameter.
Finally, we mention that the type 5' of solution for
E&+'~'/M&+'" in Fig. 6 is more favored by present
experimental data. "

IV. CONCLUSION

Different types of E/D representations have been
derived for the partial amplitudes of the Grst resonance.

The results are suitable for a phenomenological treat-
ment of the first resonance in pion photoproduction.
Parameters are introduced which characterize uncertain
or unknown high-energy contributions in the basic
equations of the theory. With the help of these parame-
ters, the asymptotic behavior of the approximations is
also controlled.

A systematic treatment of the inQuence of the phe-
nomenological parameters revealed their importance
for a correct prediction of the resonant multipoles. It
follows with respect to the large magnetic dipole exci-
tation M~+.'" that a prediction of the height of the
resonance LImM&~'"(Ws)] is only possible with a
presumable error of 10%%uo. For the small electric quadru-
pole excitation E~+.' ' the situation is worse; even the
sign of ImR+'Iz(Ws) cannot be predicted, and this
quantity has to be considered as a completely free
parameter. But also with respect to functional behavior,
high-energy contributions are more important for E&+' '
than for M~+'" in the region of the resonance. Their
uncertainty could make it necessary to introduce
further parameters, primarily in E&~'"(W) to get the
right energy dependence.


