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We show that a new class of sum rules can be obtained by comparing, for example, fixed4 and fixed-u
dispersion relations. In particular, if an amplitude obeys both fixed-t and fixed-u dispersion relations at t
and u*, respectively, we obtain a sum rule by equating the two dispersion relations for the amplitude evalu-
ated at t* and u*. Under special circumstances the no-subtraction requirement can be lifted. We apply our
procedure to the A( ) and 8& & mN amplitudes to derive new sum rules, and we show that these sum rules
are reasonably well satis6ed with only p, N, and N* contributions for the choice t*=u*=0.

s+t+u=Z,

where Z is the sum of the squares of the external masses
of the reacting particles, we have

1 a, (s', t*)ds' 1 a„(u',t*)du'
A (s*,ta,u*) =— +-

s —$ x' I —Q
(2)

1 a.(s',u*)ds' 1

s —s x'

u, (t',u*)dt'
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t' —t*

where s*=Z—t*—u* and e,(x',y*) is the x-channel

""Tis our purpose in this paper to discuss a new type
~ ~ of dispersion-theory sum rule and to apply such
sum rules to pion-nucleon scattering in the sharp-
resonance approximation with E, E*, and p states. Our
main point is that an interesting type of sum'rule can be
derived by, for example, comparing 6xed-t and 6xed-zc

dispersion relations for a given amplitude. Here, and in
the following, s, t, and I are the usual Mandelstam
variables for a two-body reaction. Let us consider an
amplitude A(s, t,u), and let us suppose that at fixed
t=t*, A(s, t*,u) obeys an unsubtracted dispersion rela-
tion and that at fixed u=u*, A(s, t,u*) obeys an un-

subtracted dispersion relation. Then, recalling that

absorptive part at fixed y=ye as a function of x'= (x-
channel c.m. energy)'. The sum rule is given by Eq. (2').

As is the case for superconvergence sum rules, ' a sum
rule of the type of Eq. (2') rests on very simple assump-
tions, the validity of dispersion relations and the
validity of the no-subtraction requirement. As we will

show later, under some circumstances we can lift the
no-subtraction requirement for the 6xed-variable dis-
persion relations. In general, we expect that if Eq. (2')
is valid for t= t* and I=I*, it will be valid for a range
of t and u values in the neighborhood of t* and I*, so
that Eq. (2') gives a family of sum rules. An interesting
feature of Eq. (2') is that it will relate parameters re-
ferring to different channels, as is also the case with
some superconvergence relations. ' When a sum rule of
the type of Eq. (2') is saturated with resonances in the
sharp-resonance approximation, we will obtain relations
among masses and coupling constants of the form
familiar from superconvergence relations. ' In the case
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the p couples universally to the conserved isovector,
vector current. ' Equation (4) yields

g' fp'(1+2M fv)

p'M*(E*+M)

(X*+M)' M*'
X =0, (6)

2

Using the relation between f, and F„the p~ ~s.
width, F,=(f,'/4+)q, '/12M, ' with q, '=M, '—4p', we
iind that Eq. (7) leads to

I"p/F'= (qp'/1 2Mfvq*')

X (M/M*)(M+M*)/(E*+M) =1.2, (8)

whereas the current experimental value is =1.1.' If we
combine Eqs. (6) and (7) we find, after putting in the
numbers,

fp'/4s =0 17g'/4s. =2. 3, .

with g'/4~= 14.7. This value of f, gives F,=120 MeV,
in reasonable agreement with experiment, ' and, with
Eq. (8), I'*=100 MeV, compared to the experimental
value of 120 MeV. ' It must be pointed out that if we
used values of t* and I*other than those used here and
then saturated with p, S, and Ã* the resulting relations
among f„g,and f* would not agree with Eqs. (6) and
(7).More analysis is necessary before we can understand
why p, X, and S*saturation at t*=I*=0 works as well
as it does. Assuming, however, that Eqs. (6) and (7)
are not fortuitous, it is interesting to look brieQy at a
possible interpretation of these equations. We note that
if we dropped the last term in Eq. (6) we would obtain

8 See, for example, J.J. Sakurai in Theoretical Physics: Lectures
Presented at the Seminar on Theoretical Physics, Trieste, 1962
(International Atomic Energy Agency, Vienna, 1963).

~ A. H. Rosenfeld et al. , Rev. Mod. Phys. 39, 1 (1967).

where M, and M* are the p and S*masses, respectively,
E*'=q*'+M', where q* is the c.m. momentum at
resonance, fr=3 69/2M. is the anomalous isovector
nucleon magnetic moment, f*'=p'F*/2q*', where I'* is
the S*width, and f, is the universal coupling constant.
Equation (5) yields

(f ') p'M* X*+M
f*'= —~2M r,

&4~) 4MM 2 M*+M

f '/4s. = (M '/M')(g'/47r)(1+2M fv) '=0 14g'/4~, and
we see that the p contribution dominates the Ã~ con-
tribution in Eq. (6). Now, the reciprocal 1V—X* boot-
strap" suggests that the E and X*are composite states
primarily generated by X and X* exchange, respec-
tively, while the p-exchange force in the X and Ã*
channels is of secondary importance. A naive applica-
tion of the reciprocal bootstrap point of view, then,
would lead us to expect that we should get reasonably
good results without the p when we attempt to relate
g'/4m to f*'; yet our two sum rules give g'/4s. =f*'=0
when they are saturated with only S and E*. Again
with the assumption that the quite good agreement of
Eqs. (6) and (7) with experiment is not fortuitous, we
are tempted to suggest that perhaps the p-exchange
force is more important for the dynamics of the X and
Ã* than has previously been realized. " We must
certainly note that such a suggestion is rather specu-
lative, inasmuch as we do not have any 6rm basis for a
dynamical interpretation of the results of an approxi-
mate evaluation of a sum rule. In any event, we have
found that the sum rules Eqs. (4) and (5) are quite well
satisfied with only S, E*, and p contributions.

In conclusion, we have shown that comparison of
fixed-t and fixed-I dispersion relations for a given ampli-
tude can lead to sum rules, and we have obtained new
sum rules for the x—X amplitudes A& & and 8&-&. An
important feature of the type of sum rule discussed here
is that such sum rules rest on very simple assumptions;
our sum rules are exact consequences of the assumption
of the validity of dispersion relations and assumptions,
about high-energy behavior. Finally, we have shown.
that our t*=l*=0 sum rules are reasonably well.
satisfied with only p, X, and S*contributions.
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