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Similarly, K(s,u) can be brought to the form

7'y ()T [e(0)+3 ]

Kg(s,u)=
2 (0)+1]
1 e+a(0)
[ 205
Thus
oy T OTO+]
- ITa(0)+1]

X{su*@®—32a(0)u®-1} ., (A6)
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Similarly,
1/2,.,7 0 0 2 1
Ks(s,u)=_’i_i(i(_)i{_ / dy(l_f)
2u 2ri /e, y
a a\u°T (a+3%)
e[ Grervrd IO
da y/ T(a+1) Hamaqo
T[a(0)+3
— %,’rlﬂal(o),y (0)72 [Ma(o)—l
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We show that a new class of sum rules can be obtained by comparing, for example, fixed-f and fixed-u
dispersion relations. In particular, if an amplitude obeys both fixed-t and fixed- dispersion relations at £*
and u*, respectively, we obtain a sum rule by equating the two dispersion relations for the amplitude evalu-
ated at #* and »*. Under special circumstances the no-subtraction requirement can be lifted. We apply our
procedure to the A< and B N amplitudes to derive new sum rules, and we show that these sum rules
are reasonably well satisfied with only p, V, and N* contributions for the choice t*=u*=0.

T is our purpose in this paper to discuss a new type
of dispersion-theory sum rule and to apply such
sum rules to pion-nucleon scattering in the sharp-
resonance approximation with N, N*, and p states. Our
main point is that an interesting type of sum'rule can be
derived by, for example, comparing fixed-¢ and fixed-«
dispersion relations for a given amplitude. Here, and in
the following, s, #, and # are the usual Mandelstam
variables for a two-body reaction. Let us consider an
amplitude A(s,t,%), and let us suppose that at fixed
t=t* A(s,t*,u) obeys an unsubtracted dispersion rela-
tion and that at fixed u=u* A(stu*) obeys an un-
subtracted dispersion relation. Then, recalling that

stitu=3, 1)

where 2 is the sum of the squares of the external masses
of the reacting particles, we have

1 ra.(s'#)ds’ 1 [a.(u t*)du'
A(s* ¢ u¥)=— } / (2)
w) §—s* T w —u*
1 fas(s'u®)ds’ 1 [a,t ,w*)dt
= + ) (2’)
T s'—s* T ¥—t*

where s*=2—F—u* and a.(x,y*) is the x-channel

absorptive part at fixed y=7y* as a function of &'= (x-
channel c.m. energy)?. The sum rule is given by Eq. (2).

As is the case for superconvergence sum rules,! a sum
rule of the type of Eq. (2') rests on very simple assump-
tions, the validity of dispersion relations and the
validity of the no-subtraction requirement. As we will
show later, under some circumstances we can lift the
no-subtraction requirement for the fixed-variable dis-
persion relations. In general, we expect that if Eq. (2')
is valid for ¢=#* and u=1u"*, it will be valid for a range
of ¢ and # values in the neighborhood of ¢* and #*, so
that Eq. (2’) gives a family of sum rules. An interesting
feature of Eq. (2) is that it will relate parameters re-
ferring to different channels, as is also the case with
some superconvergence relations.?2 When a sum rule of
the type of Eq. (2) is saturated with resonances in the
sharp-resonance approximation, we will obtain relations
among masses and coupling constants of the form
familiar from superconvergence relations.! In the case

*Work supported in part by the U. S. Atomic Energy
Commission.

1V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys.
Letters 21, 576 (1966); detailed discussion of applications is given
by F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).

2 See, for example, the fixed-» sum rules for =N scattering:
D. S. Beder and J. Finkelstein, Phys. Rev. 160, 1363 (1967%;

D. Griffiths and W. Palmer, ibid. 161, 1606 (1967); R. Ramachan-
dran, ibid. 166, 1528 (1968).
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of saturation with a finite number of resonances, we will
run into a problem well known from superconvergence,
namely, that such saturation cannot hold over the whole
range of validity of the sum rule. Attempting to
saturate Eq. (2) with a few resonances and in addition
the high-energy Regge-pole contributions over a range
of #* and #* may lead to useful information concerning
Regge-pole parameters?; we hope to return to this point
elsewhere.

As a concrete example, let us consider elastic pion-
nucleon scattering, with the standard CGLN (Chew-
Goldberger-Low-Nambu) notation for the invariant
amplitudes.* In particular, we have for the B©)
amplitude

— 2 1 > b,(‘)(s',t*)
. 4o / AN
w*—M? x (M+4p)? s'—s*
1 b, (' %)

+- du'

T (M+p)?
| b, (s w*) 1o b u*
=../ ot )+/ PRING ' ®
TS (Mip)? §'—s* TJ ap ¥ —t*
where gis the usualr—N coupling constant (g2/4m=215),
M and p are the nucleon, and pion masses, respectively,
st u*=3=2M 2+u2) and #* and #* are such that
unsubtracted fixed-¢ and fixed-x dispersion relations are
valid. We use a lower case letter to denote absorptive
part following the notation used in Eq. (2). We take the
point of view that the #-channel nucleon pole should
not be an explicit factor in the fixed-» dispersion rela-
tion, but rather that this pole would appear only after
the dispersion integrals are performed. If we accept the
Regge-pole description of high-energy behavior,® we
have for s —w, at least for small {, B — s®»® at
fixed 4, and, at least for small #, B& — saN @~} at
fixed u, where a, and ay are the p and nucleon trajec-
tories. A particularly simple and symmetrical con-
figuration is f*=u*=0, and s*=2. According to analysis
of experimental data ,(0)=20.5 ¢ and ax(0)=<—0.3, so
that our sum rule should be valid for #*=#*=0. Thus
we have

w —u*

1, b, (s, w*=0)
¢t/ Mr=— f d—
TJ (4m)* §'—2

1 5O, u*=0)
- —

TS 4u? ¢

0 —) (o #%—
1 / =0
TJ (M4p)?

s'=Z
1 bW, #=0)
_- / a2y
(M4p)?

ul

3 Information on Regge-pole parameters has been obtained from
finite-energy sum rules by R. Dolen, D, Horn, and C. Schmid,
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Before attempting an approximate evaluation of Eq.
(4), let us derive a sum rule for the 4 amplitude.

Under s—u crossing, A < (s,t,u) = — A (u,1,s), hence
A (s,8,5)=0, and A =(s—u)"A(s,f,u) is well
behaved at s=u. According to Regge-pole theory, as
s—00, A — 52 ® at fixed ¢, and 4 — s @1 gt
fixed #.5 Thus at *=u4%*=0, 4" will obey a sum rule
of the type of Eq. (2'):

1/‘” i a, (s, t*=0)
T e (25=2)(s'—2)
1 a, O, t¥=0)
- / a0 7
) @t (2w —Z)u’
1 e a, (s, u*=0)
= / P i
7 (4w s'(s'—Z)
1 a0, u*=0)
- . (5)
wJ 4 (-t

We note that in general we can derive an Eq. (2/)-type
sum rule when both fixed-variable dispersion relations
need a subtraction if the amplitude is odd under s—u
or s—t crossing; for the sum rule we use the amplitude
divided by (s—u) or (s—1) as the case requires.

With the assumption that the Regge description of
high-energy behavior is correct, the sum rules Egs. (4)
and (5) are exact, and they clearly relate quantities refer-
ring to the channels 74+N—7+N and m+7— N+N.
The two sum rules we have written down certainly do
not exhaust all the possibilities; Eq. (2")-type sum rules
for B& and A will exist for ranges of #* and #* such
that «,(#*)<1 and such that ax(#*)<3} for B and
an(u*) <% for A, Note that because the nucleon pole
does not contribute to A, Egs. (4) and (5) have a
slightly different structure. Equation (4) is a sum rule,
with more or less the traditional form, for the #—N
coupling constant, while Eq. (5) has the form of what
we may call a consistency sum rule, inasmuch as
Eq. (5) involves only integrals. A detailed analysis of
the B¢ and 4’ sum rules is in progress and will be
reported on elsewhere; here we will discuss an approxi-
mate evaluation of Egs. (4) and (5).

It is interesting to see what happens when we attempt
to saturate Egs. (4) and (5) with N, N* and p states.
We calculate the N* and the p contributions with the
sharp-resonance approximation, and we assume that

Phys. Rev. Letters 19, 402 (1967). See also A. Logunov, L. D.
Soloviev, and A. N. Tabkhehdze Phys. Letters 24B, 181 (1967);
K. Igl and S. Matsuda, Phys. Rev. Letters 18, 625 (’ 1967).

4G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, '1337 (1957).

® See, for example S. C. Frautschi, M. Gell-Mann, and F.
Zachariasen, Phys. Rev. 126, 2204 (1962) For a ]ustlﬁcatlon of
the Regge asymptotlc form at fixed =0 see D. Z. Freedman and
Jiunn-Ming Wang, ¢bid. 153, 1596 (1967).

1045 (1966).

6 F. Arbab and C. B. Chiu, Phys. Rev. 147
7C. B. Chiu and J. D. Stack, Phys. Rev. 1§3 1575 (1967).
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the p couples universally to the conserved isovector,
vector current.® Equation (4) yields

¢ fPUtMfy)  smf
M2 Mpz ' ,LL2M*(E*+M)
(E*+M)2 M*z
[ 3 2 g*2]=0’ ©

where M, and M* are the p and N* masses, respectively,
E*=g*-M? where ¢* is the c.m. momentum at
resonance, fy=3.69/2M is the anomalous isovector
nucleon magnetic moment, f*2=pu2I*/2¢*3 where I'* is
the N* width, and f, is the universal coupling constant.
Equation (5) yields

fp2 “2M* E*+M
f*“’=< )Zva—~———~————. (7
4MM 2 M*+M

47

Using the relation between f, and T,, the p~— mr
width, T,=(f,2/4m)q,*/12M 2 with ¢,2=M 2—4u?, we
find that Eq. (7) leads to

T,/T*=(g,*/12M fvg**)
X(M/M*)(M~+M¥*)/(E¥*+M)=~1.2, (8)

whereas the current experimental value is =~1.1.? If we
combine Egs. (6) and (7) we find, after putting in the
numbers,

fo/Ar=0.17g%/4r=~2.3,

with g2/4w=14.7. This value of f, gives I',~120 MeV,
in reasonable agreement with experiment,® and, with
Eq. (8), I"™*=100 MeV, compared to the experimental
value of 120 MeV.? It must be pointed out that if we
used values of #* and #* other than those used here and
then saturated with p, V, and NV* the resulting relations
among f,, g, and f* would not agree with Eqgs. (6) and
(7). More analysis is necessary before we can understand
why p, N, and N* saturation at *=u*=0 works as well
as it does. Assuming, however, that Egs. (6) and (7)
are not fortuitous, it is interesting to look briefly at a
possible interpretation of these equations. We note that
if we dropped the last term in Eq. (6) we would obtain

8 See, for example, J. J. Sakurai in Theoretical Physics: Lectures
Presented at the Seminar on Theoretical Physics, Trieste, 1962
(International Atomic Energy Agency, Vienna, 1963).

® A. H. Rosenfeld et al., Rev. Mod. Phys. 39, 1 (1967).
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foX/Ar=(M 2/ M?)(g*/4r)(1+2M fv)'~0.14g>/4x, and
we see that the p contribution dominates the N* con-
tribution in Eq. (6). Now, the reciprocal N—N* boot-
strap!® suggests that the N and N* are composite states
primarily generated by N and N* exchange, respec-
tively, while the p-exchange force in the N and N*
channels is of secondary importance. A naive applica-
tion of the reciprocal bootstrap point of view, then,
would lead us to expect that we should get reasonably
good results without the p when we attempt to relate
g¥/4m to f*2; yet our two sum rules give g?/4nr= f*?=0
when they are saturated with only N and N*. Again
with the assumption that the quite good agreement of
Egs. (6) and (7) with experiment is not fortuitous, we
are tempted to suggest that perhaps the p-exchange
force is more important for the dynamics of the N and
N* than has previously been realized.!! We must
certainly note that such a suggestion is rather specu-
lative, inasmuch as we do not have any firm basis for a
dynamical interpretation of the results of an approxi-
mate evaluation of a sum rule. In any event, we have
found that the sum rules Egs. (4) and (5) are quite well
satisfied with only N, N*, and p contributions.

In conclusion, we have shown that comparison of
fixed-£ and fixed-« dispersion relations for a given ampli-
tude can lead to sum rules, and we have obtained new
sum rules for the #—N amplitudes 4 and B™). An
important feature of the type of sum rule discussed here
is that such sum rules rest on very simple assumptions;
our sum rules are exact consequences of the assumption
of the validity of dispersion relations and assumptions
about high-energy behavior. Finally, we have shown
that our *=#*=0 sum rules are reasonably well
satisfied with only p, NV, and N* contributions.
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