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Ke construct a Regge amplitude for the backward unequal-mass scattering which satis6es the Mandel-
stam representation. This amplitude is analytic at s=0 for large N. It is shown that the leading term gives the
Regge behavior N~~'& at s= 0 and in its neighborhood, including the region in which the cosine of the back-
ward scattering angle is bounded. We also obtain nonleading terms such as I &'& ' and u ~'& 'lne. Vile con-
sider the possibility of writing these nonleading terms as a sum of 6xed and moving poles with a singular
coeKcient. A comparison with experiment is made.

I. INTRODUCTION

HERE has been considerable interest in establish-
ing the Regge asymptotic behavior e &0& for

backward unequal-mass scattering. ' 4 Since the Regge
amplitude has a singularity at s=O and since the cosine
of the backward scattering is bounded for large I in. the
region 0&s&re/I, where re= (stts —tcs)', the usual
asymptotic expansion cannot be applied for this un-
equal-mass case.

The asymptotic behavior of the backward Regge
amplitude depends on the order in which the two limits
I—& ~ ands~ Oare taken. If thee —+ ~ limitistaken
6rst, then the amplitude gives a I &'~ behavior but the
s ~ 0 limit cannot be taken without introducing poles
in the coeKcients of I ~'& ' u +& ' terms. If the
s ~ 0 limit is taken 6rst, then there is no I &0& behavior.

In order to remedy this situation Goldberger and
Jones' modi6ed the Regge amplitude in such a way that
the new amplitude will satisfy Mandelstam analyticity,
and then derived a I @& behavior. ' They observed that
the undesired I"' ~ ' term which persists for nonzero s
can be swept into the background term if cr{0)&-',.
Freedman et ul.4 later concluded that the coefFicient of
the I & ) ' term has a pole at s=0, and therefore this
must be canceled by a counteracting daughter pole.

* Supported in part by the National Science Foundation under
Grant No. NSF GP 6036.' J. D. Stack, Phys. Rev. Letters 16, 286 (1966); see also G. F.
Chew and J.D. Stack, University of California Laboratory Report
No. UCRL-16293 (unpublished).

~ M. L. Goldberger and C. E. Jones, Phys. Rev. Letters 17, 105
(1966); Phys. Rev. 150, 1.269 (1966).

3 D. Z. Freedman and J. M. Wang, Phys. Rev. Letters 17, 569
(1966); Phys. Rev. 153, 1645 (1967).

4 D. Z. Freedman, C. E. Jones, and J. M. Wang, Phys. Rev.
155, 1645 (1967).' In Ref. 2 Lphys. Rsv. 150, 1269 (1966)g, Eq. (3.5) is incorrect
and inadequate for making an analytic continuation in I from
e(0 to I&0, and Eq. (3.6) is therefore incorrect. One can see this
very easily by writing the integral of Eq. (3.5) as a contour inte-
gral which encloses all the singularities generated by ~ and those
of the Q function, and then by investigating the movements of
those singularities within the contour. Ke are aware of a typo-
graphical error in Eq. (3.5).

The main difIiculty in this program seems to be the
fact that the I egendre function cannot be expanded in
the conventional manner. ' %e shaH use in this paper a
mathematical method in which no such expansions are
necessary. %e shall 6rst construct an amplitude which
is analytic at s=0 and expand this amplitude in a
Laurent series. Since the evaluation of the I aurent-
series coeKcients does not require the conventional
expansion, we can completely avoid the main diBiculty.

As in aH previous papers on this subject, we shaH

speci6cally deal with the pion-nucleon backward
scattering.

In Sec. II, we 6rst construct a "modihed Regge
amphtude" satisfying Mandelstam analyticity. %e
then observe that this amplitude is analytic at s= 0, and
therefore can be expanded in a power series around this
point. The Mandelstam representation assures us that
the radius of convergence is independent of e. Therefore
the modi6ed amplitude is a weH-dedned quantity
independent of the order in which the limits I~ ~ and
s —+ 0 are taken. In Sec. III, we carry out the explicit
evaluation of the first two coefIicients in the Laurent-
series expansion around s=O. From this, we conclude
that the I ~'& behavior is maintained at s=O and in its
neighborhood. Ke 6nd the zP~" ' and N~"' ' lnl terms
which couM be a manifestation of violation of unitarity.
Ke then discuss the possibility of writing these non-
leading terms as a sum of fixed and moving poles with
singular coefBcients. Ke discuss this point in connection
with the support properties of the Mandelstam weight
function. Our leading term I ~'& comfortably gives a
shrinkage of the backward peak which has been ob-
served in pion-nucleon scattering.

In Sec. IV, we compare our results with available

6 In Ref. 4, the expansion in their Eq. (5) is not 3usti6ed be-
cause, in order to avoid the approaching pole at s'=s —+ 0, the
contour C (which does not enclose the pole s'=s) has to pass
through the region in which the argument of the Legendre function
is bounded. The subsequent arguments including their assertion
of the existence of the second Regge trajectory are therefore
jnvalid.
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ds
B(s,u)= [G(s'+is, u) G—(s' i—e, u)), (4)

2'"z gp s sII. CONSTRUCTION OF A REGGE AMPLITUDE
SATISFYING THE MANDELSTAM

REPRESENTATION G(s,u) = —42[2(r(s)+17P(s)

experimental data. For pion-nucleon scattering, our extending from rs/s to ~. In order to remove the section
leading term u (') comfortably confirms the shrinkage of the cut extending from rs/s to (m+p)s, we construct
of the backward peak. The effect of the nonleading the function H(s, u) by
terms I ( & ' and I (') ' lnl cannot be tested with the
experimental data available at present.

It is well known that a single Regge-pole term does
not have analyticity required for writing the Mandel-
stam representation. ' In this section we construct a
modified Regge amplitude satisfying the Mandelstam
representation by systematically removing undesired
singularities.

I.et us start from the backward Regge amplitude

I—r' s
r(z,m)= —wy(s)( —q') "p 1.)(

—1—,(1)
2g

where

re= (ms —ps)s and ps= [s—(m p()sg—[s (m—+p) $/4s,

with m and p the masses of the nucleon and pion, re-
spectively. a(s) and p(s) are the pole position and
residue, respectively. It is widely accepted that both
(r(s) and y(s) are analytic except along the physical s
cut. In spite of this analyticity, the Regge amplitude
of Kq. (1) has undesired singularities in both s and u
planes.

This amplitude has a singularity at s=o, and the
argument of the Legendre function is bounded for

0&s &r'/u.

u —rs/s
dx cosh@—1——

0 2g
cosh[(rr+-', )x$.

The upper limit & is determined by the u-charm. el
threshold [u()——(m+p)sj and is

1 "ds' ImR(s', u)E(s,u) =P(s,u)+—
s —s

(6)

Again, by construction,

1 "ImE (s',u)
E(s,u) =— ds'.

gp s —s

No —r' s
cosh ' 1+

2g

G(s,u) is a modification of the background contribution
originally derived by Khuri. '

Now, both G(s+ie, u) decrease like u '" uniformly
for large I in the region of the above integration.
Therefore we can borrow the H(s, u) function of Eq. (4)
from the background term and define a new function

1
{R( +—sic, u)+G(s'+ie, u)

2i
R(s' —is, u) ——G(s' —s, u)) . (8)1 "ds' ImR(s', u)

R'(s,u) =—
It was shown by Khuris that both [R(s+ie, u)
+G(s'Hie) j are analytic in the cut u plane with the cut
extending from u() to oo. Thus the amplitude E(s,u)
satisfies the Mandelstam representation

s —s

where s()——(m+p)' and where ImR(s, u) is the dis-
continuity function along the physical cut. By con-
struction, R'(s, u) is analytic except along the physical
cut and differs from R(s,u) by contributions from other
singularities. To our knowledge, the destiny of these
other cut contributions is not completely known and
warrants further investigation.

Let us next remove the unwanted singularities in the
u, plane. We first observe that ImR(s, u) has a cut

1 " " p(s', u')ds'du'
E(s,u) =-

„, (s'—s)(u' —u)

which enables us to continue E(s,u) analytica. lly to
arbitrary values of s and I, in particular to s=0 for
large N.

We emphasize that E(s,u) is analytic at s=0, and.
therefore can be expanded in a power series whose
radius of convergence is so and is independent of N. No

~ See, for instance, Refs. 2 and 9.
This is shown to be true in potential scattering by J.R. Taylor

/Phys. Rev. 127, 2257 (1962l].We thank Professor D. Z. Freed-
man, Professor M. L. Goldberger, and Professor C. E. Jones for
pointing out the importance of the role of the kinematical factor
(—) P

¹ N. Khuri, Phys. Rev. Uo, 429 (1963).

This makes it impossible to have a Regge behavior
( ) th hb h d f 0 It th f th The spectral function ImE(s', u) can be written as

paper to remove this difficulty by correcting the analy- ImE(si u) Im[R(s~ u)y~(s~ u)]
ticity of the Regge term.

In order to get rid of the unwanted singularities in the
s plane, we consider the amplitude R'(s,u) defined as
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1 ds' —r'y "& 2us')
+ I ~(o)

2p«i, s' —s 4s'i r' i
~(o)—&

Kp(s, u)=-', 7«r'y'(0)
~

~ (o) 1—
( 4s r2

attempts have been made to take into account the where
support property of the Mandelstam weight function —r' &p& 2us)
)p(s', u') given by the unitarity condition. We would E'(s~u) = p«'r(0)

4s r' i
therefore expect a symptom showing this violation of
unitarity at a later stage of this work and, further, that
the effect of this violation will become small as u —+ ~
because the support curve is asymptotic to the normal
threshold for large u. In the following section we shall
discuss these points in detail.

III. ASYMPTOTIC BEHAVIOR OF THE
MODIFIED REGGE AMPLITUDE

In the preceding section we have constructed a
modi6ed Regge amplitude satisfying the Mandelstam
representation. Since the H(s, u) function decreases as
u 'I' for large u, this term can be dropped from our
discussion. We have therefore

1 ds' —r' ( ) ' 2us'
~(o)

2nio. s' —s 4s' i r' i

Kp(s, u) = —m.n'(0)y(0)

8 —r') ( 2us)
X s-

()u 4s i & r' i I .(())

1 "ImR(s', u) ds'
K(s,u) =—

s —s
(10)

1 ds' 8 (—r' 2us-
s'—

i
I'. 1—,.)

Although the coeKcients a0, u~, ~ ~ ~ depend on the
variable u, the above series converges uniformly within
the circle of radius s0. Using the linear approximation
for n(s) and y(s),

a(s) =n(0)+n'(0)s,
y(s) =y(0)+y'(0)s, (12)

In this section we investigate the large-u behavior of the
above amplitude for small s, using known properties of
(p(s) and y (s).

First of all, we note that K(s,u) of Eq. (11) is analytic
at s=0, and therefore can be expanded in a power
series:

K(s,u) =ap(u)+a~(u)s+a, (u)s'+ ~ . (11)

These integrals are evaluated in the Appendix. From
the expressions for K((s,u), Ep(s,u), and Kp(s, u)
derived there, we finally obtain

~'('r[a(o)+-', ]
ap(u) =- (y(0)u "&

r[n(0)+1]
—-,'r'n(0)n'(0)y(0)un &'& ' inu

—-'«'L (0)v'(0)+ '(0)v(0)

+ (o) '(o) (0)J.]
~'"r[~(0)+p]

a((u) =- {[v'(0)+a'(0)v(0)L]u "'
r[~(0)+1]

+n'(0)y(0)u &" lnu}, (15)

where

r[~(s)+p]v(s)
E(s,u) = —m')' ue (s)

r[n(s)+17
'&'r' (o) '(o)~(0)r[ (0)+-',7

—r') ('& ( 2us)
K(s,u) = —~y(s)

~
~-(.) I

1—
4s i & r')

1 ds' r')) '"& — ( 2us'
+ ~(s')

I
~.(. )I 1—,(13)

2p«i a s'—s 4s' i '( r'
2r[~(o)+1] |

u (0) 'lnu L ua(0) —1X + + +
where the contour C encloses counterclockwise the cut n'(0)y(0) n(0)-
of the integrand running from 0 to r'/u Using Eq. .(12)
for n(s) and y(s), we write for sufFiciently small s.

We have derived above a small-s behavior of K(s,u)
E(s,u)= K~( ,su) +K (ps, u)+ E(p,su), (14) for large u. The leading term u~(') gives the desired

we shall compute ap(u) and aq(u) in this section.
We now evaluate the dispersion integral of Eq. (10)

by replacing it by the contour integrals enclosing
counterclockwise all the singularities of R(s', u)/(s' —s) According to the above ap(u) and a~(u), the K(s,u)
other than the physical cut. Then, for sufficiently small function takes the form
s [s(((myu)'7
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It is important to realize that the (1/s)b(s)N t'& ' term
does not come entirely from the correction term, nor
entirely from the original (unmodified) Regge ampli-
tude. (Note the nonexpansion restriction on the
Legendre function. ) It comes from the combined effect
of the original and correction terms and is therefore one
of the nonleading terms of the modified amplitude. It
does not come from the second Regge trajectory men-
tioned in Ref. 4.

According to Ref. 4, the nonleading term may be
written as

Er (s,u) = (1 /s) [b r( s)
N~'&' & b(0)—N""&-'j

where (1/s) bi(s) uli i'&, the daughter trajectory, is
inserted to cancel the singularity (1/s) b(0)I l'l '. Thus,
it is required only that bi(0) =b(0) and ni(0) =n(0) —1,
with bi(s) and ni(s) unknown for sg0. For this reason,
the coeflicients a, b, and c of Eq. (7) of Ref. 4, which
contain the first derivatives of bi(s) and ni(s) at s=0
in addition to bi(0) and ni(0), are left undetermined.

On the other hand, if we use our modified amplitude,
the coef6cients a, b, and c are uniquely determined as in
Eq. (15) and may be compared with experiment as is
done in the following section.

Let us finally add a few remarks on the unitarity and
the 6xed Regge pole. Our result in Eq. (16) indicates
the existence of a fixed Regge pole at J=Ln(0) —1$,
which implies a violation of unitarity. Since this value
of J is never physical, one cannot automatically rule out
such behavior. We note here that the support property
of the Mandelstam weight function imposed by uni-
tarity has not been properly taken into account. We
note also that the origin of the difference between
R(s,g) and X(s,N) remains undetermined. We have,
however, been unable to 6nd a general mechanism to
account for this violation (analogous to Mandelstam
cuts which permit fixed poles at integral wrong-signa-
ture nonsense points).

IV. COMPARISON WITH EXPERIMENT

According to Eq. (16), the leading term of the
modiiied amplitude E(s,g) is

zan'& = expt n(s) 1ng], (17)

Regge behavior for s= 0 and in its immediate neighbor-
hood, including the region 0&s&r'/I

Our result for nonleading terms of the modified
amplitude can also be written as

E„(s,N) = (1/s)Lb(s)u~l*& —b(0)N~~ & j (16)

for small s, where b(s) is uniquely determined by the
original Regge parameters n(s) and y(s):

I'L ()+-:3
b(s) = —m'"rsvp(s)n(s)

rLn(s)+ I]

and the next largest term contains

I (')—'lnl. (18)

(s/ss)/C ln(s/ss) = 35
i2

149
51

for zr
—

p
for zr+p

The scaling factor" ss is taken to be ss ——0.4 (BeV)', as
in Ref. 10.Thus the logarithm term could contribute as
much as 8% for ir+P scattering at pi,b=1.7 GeV/c.

"V.Barger and D. Cline, Phys. Rev. 1SS, 1792 (1967).
"H. Brody, R. Lanza, R. Marshall, J. Niederer, W. Selove,

M. Shochet, and R. Van Berg, Phys. Rev. Letters 16, 828 (1966);
16, 968(K) (1966). See especially Fig. 3 where data of previous
authors have been included.

~~ W. R. Frisken, A. L. Read, H. Ruderman, A. D. Krisch,
J.Orear, H. Rubenstein, D. B.Scarl, and D. H. White, Phys. Rev.
Letters 15, 313 (1965).

n Results at 10 GeV/c further corroborate this shrinkage
phenomenon. See R. Lanza, Ph.D. dissertation, University of
Pennsylvania, 1966 (unpublished). We thank Professor W. Selove
for helpful comments on these points.

'4 J. Orear, R. Rubinstein, D. B. Scarl, D. H. White, A. D.
Krisch, W. R. Frisken, A. L. Read, and H. Ruderman, Phys. Rev.
152, 1162 (1966).See Fig. 9."A. Ashmore, C. J. S. Damerell, W. R. Frisken, R. Rubinstein,
J. Orear, D. P. Owen, F. C. Peterson, A. L. Read, D. G. Ryan,
and D. H. White, Phys. Rev. Letters 19, 460 (1967).

~ON trajectory exchange is dominant for ~p scattering and
accounts for this phenomenon. See C. B. Chiu and J. D. Stack,
Phys. Rev. 153, 1575 (1967).

"There will be a small error in taking over this number from
Ref. 10 due to the fact that we assume s~ behavior whereas Ref.
10 assumes P (z) goes to z and to t's —(m'+yz)'J . In the region
of investigation, 0&ac(r'/s, z is bounded between ~1 and the
expansion in z is unjusti6ed.

The coefBcient of this nonleading term is completely
determined by the parameters n(0), n'(0), y(0), y'(0),
and r'. p (s) is approximately constant. 's

We now exchange the variables s and I for con-
venience. Then Eq. (17) implies shrinkage of the back-
ward peak. It is important to mention here that this
s ' ) behavior has not been established in previous
works on backward scattering.

This shrinkage has been observed experimentally for
both zr+p and rr p scattering by Brody et u/. "for beam
momenta 4 to 8 GeV/c, when their data are combined
with those of Frisken et ul.~ "This e6ect is also seen by
Orear et u/. ,

'4 and more recently, at higher beam mo-
menta, from 6 to 17 GeV/c, by Ashmore et ul. 's This
phenomenon is more pronounced for zr P scattering,
though the zr p backward peak is much smaller than the
s+P peak. "We interpret this experimental evidence as
a justification of our basic assumption —that the Regge
amplitude satisles the Mandelstam representation.

For N=O, the term next largest in order of magnitude
is Cs ( ) ' lns, and not s (') ' as is commonly believed.
The coeKcient C of this term is explicitly determined,
C= —zrrzn(0)n'(0)/ss, in dimensionless units. Note that
for m= p, r' —+ 0, and this term vanishes; it is a mani-
festation of the unequal-mass case. If we compare the
ratio of the leading term to this logarithm term at the
beam momenta of 1.7 and 17 GeV/c, we have

1.7 GeV/c 17 GeV/c
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Unfortunately the experimental error is still too large
to measure this eRect, and the theory is not sufBciently
re6ned to consider low laboratory momenta. The
logarithm term remains an interesting possibility.
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where the contour C' encloses the cut of the integrand
running from y=0 to y=2. The integrand also has a
pole at y= —c outside the contour C'. It has no other
singularities. Therefore the contour C' can be replaced

by a circular counterclockwise contour with in6nite
radius (we call this C) and a clockwise contour around
the pole at y= —~. See Fig. 1.But this pole term cancels
the first term in the curly bracket, and Ei(s,g) is simply

Ei(s,l) = —pry(0) (-'I) a(P)

1 dy 1)
X P-(p) (1—y) (A3)

l2 i,.y+. y)

Along this circular contour,

APPENDIX 1)~(P)

P (p)(&-p) =
In this Appendix we evaluate the contour integrals

of Eq. (14).Let us first evaluate Ei(s,g). By changing
the variables by

and

2 "' I'L~(0)+p j ~(0)i

(pr)'I' I'Ln(0)+1) y I

we write

p= 2ls/r' y= —2gs'/r' (A1)
1/(y+ p) = (1/y) (1—p/y) . (A4)

Ei(s,l)= —prp(0)(&N) (1/p) P (p)(1+p)

dy
P (p) (1 y), (A2)

2pri c.y+p y&

Thus the contour integral can be trivially performed,
and

~»irg~(0)+-,']
E,(s,l)=- y(0)N ' .

re(O)+1]

FIG. j.. Contours in the
complex y plane.
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Similarly, Es(s,u) can be brought to the form

'I"'y (0)1 L (o)+-,']
Es(s,u) =

21't n(0)+1j

Similarly,

2%1

pr'"n'(0)y(0)r' 1
Ks(s,u) =-

2N

e)
dy 1——

Thus

1 s+n(0) )
2' z y )

~'"~'(0)1'Ln(0)+ l3
Zs(s,u) =—

I Ln(0)+1j

X(su ' ——',r'n(0)u iP&—'} (A6)

8 t' n)u I'(n+-', )-
X—I1—-/

an l y) I'(n+I) . .(p)

I L-(0)+lj
=-'s'"n'(0)y(0)r' Q (0)—1

I'Ln (0)+13

2s- 8 — I'(n+-,')-
+ n(0)u '———u~

r r)n — I (n+ 1) (pl

(A7)
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New Type of Dispersion-Theory Sum Rule*

R. ATKmsoN III
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(Received 5 December 1967)

We show that a new class of sum rules can be obtained by comparing, for example, fixed4 and fixed-u
dispersion relations. In particular, if an amplitude obeys both fixed-t and fixed-u dispersion relations at t
and u*, respectively, we obtain a sum rule by equating the two dispersion relations for the amplitude evalu-
ated at t* and u*. Under special circumstances the no-subtraction requirement can be lifted. We apply our
procedure to the A( ) and 8& & mN amplitudes to derive new sum rules, and we show that these sum rules
are reasonably well satis6ed with only p, N, and N* contributions for the choice t*=u*=0.

s+t+u=Z,

where Z is the sum of the squares of the external masses
of the reacting particles, we have

1 a, (s', t*)ds' 1 a„(u', t*)du'
A (s*,ta,u*) =— +-

s —$ x' I —Q
(2)

1 a.(s',u*)ds' 1

s —s x'

u, (t',u*)dt'
(2')

t' —t*

where s*=Z—t*—u* and e,(x',y*) is the x-channel

""Tis our purpose in this paper to discuss a new type
~ ~ of dispersion-theory sum rule and to apply such
sum rules to pion-nucleon scattering in the sharp-
resonance approximation with E, E*, and p states. Our
main point is that an interesting type of sum'rule can be
derived by, for example, comparing 6xed-t and 6xed-zc

dispersion relations for a given amplitude. Here, and in
the following, s, t, and I are the usual Mandelstam
variables for a two-body reaction. Let us consider an
amplitude A(s, t,u), and let us suppose that at fixed
t=t*, A(s, t*,u) obeys an unsubtracted dispersion rela-
tion and that at fixed u=u*, A(s, t,u*) obeys an un-

subtracted dispersion relation. Then, recalling that

absorptive part at fixed y=ye as a function of x'= (x-
channel c.m. energy)'. The sum rule is given by Eq. (2').

As is the case for superconvergence sum rules, ' a sum
rule of the type of Eq. (2') rests on very simple assump-
tions, the validity of dispersion relations and the
validity of the no-subtraction requirement. As we will

show later, under some circumstances we can lift the
no-subtraction requirement for the 6xed-variable dis-
persion relations. In general, we expect that if Eq. (2')
is valid for t= t* and I=I*, it will be valid for a range
of t and u values in the neighborhood of t* and I*, so
that Eq. (2') gives a family of sum rules. An interesting
feature of Eq. (2') is that it will relate parameters re-
ferring to different channels, as is also the case with
some superconvergence relations. ' When a sum rule of
the type of Eq. (2') is saturated with resonances in the
sharp-resonance approximation, we will obtain relations
among masses and coupling constants of the form
familiar from superconvergence relations. ' In the case

*Work supported in part by the U. S. Atomic Energy
Commission.

'V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys.
Letters 21, 576 (1966); detailed discussion of applications is given
by F. J. Gilman and H. Harari, Phys. Rev. 165, 1803 (1968).

See, for example, the fixed-u sum rules for x-N scattering:
D. S. Seder and J. Finkelstein, Phys. Rev. 160, 1363 (1967);
D. GriKths and W. Palmer, ibid. 161, 1606 (1967);R. Ramachan-
dran, ibid 166, 1528 (19.68).


