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Motion of a Dipole-Quadrupole System*
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Niels Bohr showed that the magnetic moment of an electron cannot be determined by a Stern-Gerlach
experiment. His argument is extended to other moments, and general conditions are stated as to when a
moment determination is feasible by such an experiment. In addition, the expectation-value equations are
given for a stationary, gyrating, nonrelativistic, spin-1 particle in arbitrary, but classical, external electro-
magnetic fields. For such a dipole-quadrupole system there is no distinction between the classical and
quantal descriptions. Of interest is the fact that SU(3) is the invariance group of the motion. The theory
is extended to the relativistic domain by Lorents transformation. The group 8U(3,1) appears as the in-
variance group of the internal motion.

I. DI'TRODUCTION

''N recent times and in diverse circumstances, thc
lntI'lnslc pI'opcI'tlcs of elementary paltlclcs and thclr

stable or relatively sta,ble composites have come under
increasing analysis. By intrinsic, we mean those prop-
erties of a system other than space-time trajectory,
such as spin, isospin, quadrupole moment, etc.

Over the years, two differing views have arisen con-
cerning these internal parameters and their relation to
classical physics. In the late 1920's, Bohr' denied the
validity of spin as a classica, lly describable quality of
the electron, and thus by implication nullified a classical
view of any other intrinsic property of elementary
particles. On the other hand, Bloch' showed, in his
fundamental work. on magnetic resonance, that if gyro-
scopic frequencies were of concern, then the spin
motion could be analyzed by solving either the Schrod-
inger equation or a well-known classical gyroscopic
equation which at a later date was derivede for the
expection value of the spin operator. Without addi-
tional assumptions, thc classical equation could not
yield a discrete spin spectrum or the magnitude of the
angular momentum, as does the quantum theory, but
the predicted gyroscopic frequencies were the same in
both theories. Moreover, a classical theory writ. tcn in
terms of spinor variables was indistinguishable from the
quantal description of the internal motion, provided
only that the external magnetic Geld was free of spatial
dependence.

Bohr, in his early statement, reasoned. that since no
Stern-Gerlach experiment could yield the value of an
electron's magnetic moment, the spin of the electron,
which is proportional to the magnetic moment, falls
outside the fold of classical description. While his
denial represented an extreme empiricist view which
was proved faulty in other circumstances by Bloch's
analysis, there is nevertheless a significant truth con-
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tained in Bohr's original statement. It seems that Bohr
has given the simplest example of a class of experiments
in which the uncertainty principle prevents us from
determining the values of the intrinsic Inoments of
elementary systems. The experimental arrangement re-
quires the simultaneous use of a confined beam of
particles and a Geld-intensity measurement or particle-
intensity measurement transverse to the beam. These
experiments in no way rule out other procedures for the
determination of the moment values, but they do extend
the range of application of the uncertainty principle to
an area of interplay of relativity, wave theory, and thc
dynamics of thc system. Bohr's contention seems to
have a wide applicability for deformations beyond the
magnetic moment.

Thc measurement dif6cultics emphasized by Bohr do
not limit the use of classical pa, rticle concepts and equa-
tions whenever the conditions of Bloch's theorem are
satlsGcd. Thcsc coIldltlons arc ccl talnly mct by sys-
tems which can be considered both at rest and localized
in space, and which couple linearly to classical internal
and, external Gelds. Such systems are describable by
nonrelativistic classical dynamics in the Bloch sense, '
irrespective of their internal complexity.

Furthermore, the conditions given above cannot be
unique, since a system whose internal motions are al-
ways decoupled from its spatial trajectory is in coldIict
with the principles of relativity. Onc must then antici-
pate some minimal coupling between a system's in-
ternal dynamics and its spatial trajectory which will
permit a reasonably precise classical description of a
system s gyrations. Indeed, the relativistic extension of
Bloch's theorem has been given by Bargmann, Michel,
and Telegdi' (BMT} for leptons in constant, uniform
fmlds, and the predicted motions have been confirmed
by numerous experiments.

For higher-spin systems thc BMT equations remain
valid as long as the external Gclds arc uniform and
constant. However, for nonuniform Gelds the motion of
higher multipole moments becomes significant. This
may be seen in an explicit analysis of a spin-j, syst, em

' U. Fano, Phys. Rev. 183, 3828 (1964).
~ ' V. Sargmann, L, Michel, and V. L.Telegdi, Phys. Rev. Letters
2, 485 (1989).
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which possesses both a magnetic-dipole moment and
electric-quadrupole moment. The classical equations of
such a system are derived from the density matrix of
the Schrodinger equation and then immediately ex-
tended to relativistic motions by Lorentz transforma-
tion. The resulting equations are a generalization of the
equations of BMT. The internal motions of the non-
relativistic system are best described by means of
spinors associated with the group SU(3), and the rela-
tivistic internal motions in terms of the group SU(3,1).

This last implies that

G~&aG.'. (2.9)

Q~)(r/ar) (h/mc)Q. &. (2.10)

On the other hand, if

will induce a field uncertainty (electric or magnetic)
of magnitude
AG„'= eQ qd p/crier"+'= (eh/mc) (Q„q)/(Ar)r" +'. (2.8)

If the Geld G„ is to be measured, we must have

II. MEASUREMENT OF MOMENTS
(h/mc) Q g= Q„, (2.»)

In his classic analysis, Bohr' discussed a beam of
independent particles, each carrying a charge e, mass

m, and magnetic moment p=eh/mc. He showed that
because of beam diGraction, no measurement could be
made of p by field-intensity measurements or particle-
intensity measurements transverse to the beam.

Let us, for example, choose to measure the magnetic
moment p of a charged dipole in the beam. The magni-
tude of the magnetic Geld at the position r of the
magnetometer is

B=p/r' (2.1)

On the other hand, a moving charge has an accompany-
ing magnetic Geld of magnitude

B'= ev/cr2 (2.2)

Since we are using a beam, the uncertainty in 8' in the
direction of 8 is

AB'= ehp/mcr'=eh/reer'Ar. (2.3)

A reasonable Geld measurement then requires that

the measurement must fail.
Little more of a general nature can be said concerning

the possible validity of Kq. (2.11), since much depends
on the moment in question and beyond that, the details
of the dynamics of the system. For example, for a
hypothetical massive spin-1 particle with anomalous
electric-quadrupole moment and no anomalous mag-
netic-dipole moment, Kq. (2.10) is satisfied, so that both
Geld measurements and Stern-Gerlach-type experiments
are available for the determination of the quadrupole
moment. A major contributing factor in making this
particular measurement possible is the Thomas pre-
cession, an ever-present relativistic kinematic eBect.

In a similar manner, consider the Bohr argument for
the conditions for breakdown of a generalized Stern-
Gerlach experiment. Assume that we have a beam of
quadrupoles moving in the s direction and entering an
inhomogeneous electric Geld. Further, to simplify the
mathematical argument, arrange the external electric-
quadrupole Geld so that its gradient has only terms

M'&(J3, (2.4) BE./Bx = BE„/By, — (2.12)

(eh/cm)«y. (2.6)

Equation (2.6) is true for systems with vanishing charge,
but fails for charged systems, since, generally, p= eh/mc.
In this last case, no magnetometer measurement is
feasible.

Bohr's ideas are easily extended to arbitrary mo-
ments. We assume a moment Q„giving rise to a field
(electric or magnetic) of magnitude

G =eQ„/r"+v, m=0, 1, 2, ~, (2.7)

We further assume that even values of n refer to electric
moments and Gelds, while odd values of n refer to their
magnetic counterparts. For convenience alone, our
enumeration ignores the possible existence of magnetic
charges, intrinsic electric-dipole moments, etc. If the
system-. has a lower moment of opposite character
(magnetic or electric), the indeterminacy in the motion

which results in
nr))r(eh/mc) p,-'. (2.5)

If the beam is not to overwhelm the apparatus, Eq.
(2.5) gives

F„=Q»(B'E„/By') . (2.14)

Assume that the particle moving with velocity v has,
in addition, a magnetic-dipole moment p, and thus a
motion-induced electric-dipole moment coupling to the
external electric field with potential V= (y)& v) (E/c).
If y, has its major component in the y direction, the
magnitude of the force in the same direction becomes

(2.15)

For a particle slightly oG the center of the beam and
orthogonal to the force direction, we Gnd

M„'=y„(B'E,/BxBy) hx(v, /c)
=p,„(B'E„/By') (h/roc) (v,/hv, ). (2.16)

which satisGes the Maxwell equation, V E=O, The
electric force on the quadrupoles in the beam is

P=-,'v(Q: vm),

where Q is the diagonal quadrupole tensor Q„=—Q».
The magnitude of the force in the y direction is



RALPH SCH I LLER

We have used the uncertainty principle and (2.12) to
arrive at the last term in (2.16).

If the Stern-Gerlach experiment is to be feasible,

Should

I „&&aF„'

Av~)v, (h/mc) tz„/Q„„

(h/mc)tzv =Qvv

(2.17)

(2.18)

(2.19)

no Stern-Gerlach experiment is possible, since, instead
of a beam, we have a cylindrical wave.

Note that the condition (2.19) is a particular ex-
ample of (2.11) which prevented us from making a
transverse (to the beam) Geld measurement. Similar but
lengthier arguments are clearly possible for Stern-
Gerlach-type experiments involving higher moments.
In general, the pattern of failure of this type of experi-
ment is clear: We must have a moment Q„and a
"dual" moment of lower order Q„r, with

Q„= (h/mc)Q (2.11)

In addition, failure may occur for lower moments with

Q =(h/mc)Q, r' 'a=1,-2, 3, . (2.20)

III. NONRELATIVISTIC QUADRUPOLE MOTION

Assume that we have a system with intrinsic angular
momentum j and magnetic moment represented by the
vector matrix

(3.1)

with e the spin matrices for spin j. If the system is
exposed to a time-dependent magnetic Geld B, then in
the nonrelativistic limit the Schrodinger equation for
the internal motion is

(A) =p „A„„—=Tr(pA) . (3 5)

p may be decomposed in terms of spin matrices as
follows:

p =xb +zSaoma

+4gaz(otna oea +&me &ea e &aeshma) & (3.6)

6rst given by Fano, provides a valid, although approxi-
mate, quantal description of an arbitrary system sub-
jected to arbitrary classical 6elds. Fano's equation' is
of the form (3.3), but is expressed in the language of
irreducible tensorial sets, a natural generalization of
the density matrix for systems with arbitrary spin. As
such, it simultaneously includes a wave-function de-
scription, (3.2), and an expectation-value description,
(3.3).

In this paper, we are interested, in particular, in
Fano's results for massive spin-1 particles in external
gradient helds. The analysis of this relatively primitive
system is readily extended to relativistic particle mo-
tions, and the resulting equations for such systems form
the natural generalization of the equations of Sarg-
mann, Michel, and Telegdi. In addition, the theory is
related to recent speculations in elementary-particle
physics and nuclear physics.

Since a spin-1 system is comparatively simple and
another form of Fano's equation is desirable, we shall
derive the classical equations in usual tensor form
directly from the ordinary density matrix.

The density matrix p for a spin-1 particle is a 3&(3
matrix. In common with all density matrices describ-
ing pure states, p is a constant of the motion,

8p/itt+ (zh)-'(p, H) =0. (3.4)

The expectation value of a given matrix operator
A „is

W/at=znB re. (3 2)
where

Since the equation is independent of Planck's constant,
it must describe a classical system. In classical terms,
we have a charged spherical top with angular mo-
mentum S, gyrating according to

S (oa) Q & Q& (oaoz+o&oa —a/ y),

and Q„=O.
If we choose as a representation for the spin matrices

0~„~=—ie,m» we 6nd

dS/dt=nSXB. (3.3) I -»' 1p„„—,8„a——,zS„a—,Q~a, (3 7)

Equation (3.3) is the classical spinor form of (3.2).
In fact, if we identify S~fzrr% and use (3.2), the ex-
pectation value of the spin operator zr obeys (3.3).

The spin describes the orientation of the system. If
the spin is &1, higher moments will be needed to com-
plete the description of the system's internal dynamics.
If more complex external ields are introduced, the
description and the motion become correspondingly
more complex. Nevertheless, if the internal motions
can be decoupled from the system's spatial motion, as
occurs, for example, for a nucleus in a crystal, then no
matter how complex the internal dynamics, the result-
ing Schrodinger equation describes a classical system.

This nonrelativistic classical Schrodinger equation,

with S „=5;e;~„.
In addition to (3.4), the density matrix satisfies

p~~p~~=1, p~~p~~pi~=1, (3.8)

for pure states.
As a result of (3.8), the following are the only two

independent invariants for the expectation values:

I =S~zS' +Q' Q', (3.9a)

Iz=3S.aSa~gg —QegI zg.v (3.9b)

I» and I~ must be dynamical constants of the motion
for a spin-1 system for arbitrary external fields. They

a Reference 4, Ecf. (7).
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H;k=ihnB;k+hpE;k, (3.11)

and IIik= eikeae
The dynamical equations are then easily found. from

(3 4):

8'.=--(s'.~: II;.s")+-~(e;.E" Q..E.;)-, (3.12.)
Q'k= n(Q .&.k+—Qk.&. ) P(S'.Eek+—Sk@.~) (3.12b)

These classical expectation-value equations maintain
in time the eonstaney of the invariants Ij and I~ of
(3.9).

The same Eqs. (3.12) may be derived in another
fashion from classical dynamics. I.et us assume that the
spin and quadrupole tensors may be represented in
terms of coordinates and conjugate momenta associated
with the internal state of rotation and deformation of
the system. Further, choose the Poisson-bracket rela-
tions among the dynamical variables to be

p'ik, S J=&'Ak.—B'Da +B kS-—& kS ', (3 13a)

Le'.,s-j=B;.Q-.-B;.e..+B..e.;-B Q;., (3.13b)

)Q „,Q;kj=S„;Bk„+Skb;„+S„kb;„+S„;8k„. (3.13c)

This choice follows the usual rule that in the transition
from the quantum theory to classical mechanics, com-
mutators are to be replaced by Poisson brackets. The
corresponding spin and. quadrupole operators Z;~= ~;I„a
and E „=oo "+o"o —ekB „have for —their commutator
values the same right-hand sides as appear for S „and

are the two invariants associated with the group SU(3).
For systems with more complex structure, there are the
additional inval'iants of SU(N). While Il and its gen-
eralizations to SU(E) have been noted by Fano, ' he
apparently has overlooked these other invariants, al-
though he has stressed the really significant fact that,
in general, terms of the form S;kS;k, Q;kQ;k, etc., are not
constants of the motion.

This fact distinguishes general spin systems from
spin-»2 particles. In the ease of spin-~» systems, the
expectation values of the square of the spin operator,
)I/t~, and the square of the expectation value of the
spin operator, (/to)h()', are both constants of the motion
for unit spinor wave functions, f f= 1.For higher spins,
(/twas)' is no longer constant, so that in discussing the
average properties of such systems, the rotation group
and its generators no longer play the same role as in the
case spin 2.

The classical dynamics of a spin-1 system is given

by the differential equations for the expectation values
of relevant operators. These are found directly from
(3.4). Clloose as Hallllltolllall

II= —n/)/o~„—-,'hPE (o o +o o —-,'B ), (3.10)

with II the magnetic Geld and E „=BE/Bx„+BE„/
8x the gradient tensor of the electric Geld. Again, if we
choose r;q =—i~;;, the matrix H above becomes

Q „in (3.13). Thus, for example, we have

(&'k,&. )=i(&' &k.+Bk&'.+~.P* +&-&k ) {314)

If we make use of the Hamiltonian

II= 'n—S'-kIIik gP—Q A (3.15)

and the Poisson-bracket relation (3.13), we recover the
dynamical equations (3.12).

%e have assumed the existence of canonically conju-
gate dynamical variables describing the internal state
of a system. Such variables may be introduced as
foHows:

The classical Hermitian tensor representation of
SU(3) is given by the form A =A t, A „=0,with
Poisson-bracket relations

LA,A;kj= i (B„—kA; B„;A—„k). (3.16)

The group SU(3) enters the analysis, since the Poisson-
bracket relations (3.13) def(ne the classical three-
dimensional unitary group, i.e., the Poisson-bracket
analog of the group SU(3).

In terms of the A „, the spin and quadrupole tensors
may be written

{3.17a)

(3.1Vb)

S;k——i(A;k —Ak;),

Qik = (A ik+A ki) ~

All= r+$—
AC, Akk ——r $ AC, A kg

——ek—C —2r, —
Alk=o '&(r' —p)'/', Alk=L(2C —2r)(r+p)]-I/k

Xo '(4'+&)/' (3.18)
Akk= —kL(2C—2r) (7 —$)jl/ko-'(o»/',

where r and $ are momenta conjugate to the coordinates

@and )I. They satisfy the usual Poisson-bracket relation

(3.19)

with all other relations vanishing.
r and $ are classical variables: f is the analog of the

2 component of the isotopic spin, while v corresponds to
the hypercharge I = 2r—~4C. C is an arbitrary constant
related to the invariant Il of (3.9a); xIII=—A;kAk;
= (8/9)C'. This classical representation of the group
SU(3) is closely related to the usual representation in
its identi6cation of moment components. The appear-
ance of half-angles in (3.18) is a peculiarity of the theory
attributable to the character of the internal con6gura-
tion space. This eon6guration space may be char-
acterized by Gve generalized Euler angles for rotations
and deformations of our particle. If we introduce three
complex spinor variables )I/I, )I/k, and p(), with

g I—(r+ ])I/&Oi(4+r+0)/2

P —(r ()1/k&i(o-e+f)/2

|t/k
——

I 2 (C—r) J/'o'&/'

(3.20)

From (3.16) and (3.17) we easily recover (3.13).
A particular representation of the dassical tensor

3 „in terms of canonical variables is
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ih (8$,/Bt) = Ego. (3.23)

The exact eigenvalues associated with SU (3) spinors
are given by (3.23) ~ Alternatively, other SU(3) repre-
sentatives (tensors) might have been chosen as geo-
metrical candidates satisfying (3.21) and (3.23). In the
classical theory the choice is arbitrary, since (3.23) is
invalid, and only expectation values of the form (3.22)
have signiGcance.

The set of dynamical equations derived from the
classical Hamiltonian

a= C „A (3.24)

with C =PE„inB„,A =—,' (Q„„+—i—S„„),is iden-
tical with (3.12) and equal in content to (3.21)~ In
(3.24) the C „give the external fields, while the A„„
are classical dynamical variables. If we make use of B
and the Poisson-bracket relations (3.16), we may re-
derive the equations of motion (3.12)~

The theory contained in (3.21) is for massive boson
particles. It is a classical theory of a dipole-quadrupole
moment and is the logical extension of the ideas of
Klein, ~ who made use of spinors in his analysis of the
rotating top. If we permit the simplest deformation of
a spherical top, we are led to the group SU(3) ~

One of the earliest and one of the most incisive discussions
of the use of spinors in the classical top problem appears in F.
Klein, The Mathematk a/ Theory of the Top {Scribner and Sons,
New York, 1897).

where $= C cos8i cos82 and r= C cos82, then the
provide a representation of "quarks" in terms of these
Gve angles.

The nonrelativistic gyroscopic motion of (3.12) may
be described in SU(3) terms by a simple Schrodinger
equation of the form (3.2). We 6rst de6ne the general-
ized field C „=PE „inB—„,with space components m
and e. Introduce the SU(3) spinor P, of (3.20) which
satisfies the equation

' (8P./8~) =C.~.&-y, . (3.»)
Here the nine SU(3) matrices are

(g~~), i (E +zz )„
and p are matrices given in the text above (3.14).

For our present limited purposes, raised indices are for
convenience in writing and are indistinguishable from
lowered ones. All indices run from 1 to 3.

If we define the spin and the quadrupole moments in
terms of expectation values,

S "=P, Z.@gal, (3.22a)

Qme f 'tE' &mefb (3.22b)

then (3.21) and (3.22) lead to (3.12), while (3.20)
and (3.22) lead to (3.18).

The gyration frequencies of (3.21) are the same as
those of (3.12)~ For stationary motions the quantal
eigenstates will be given by the equation

IV. RELATIVISTIC MOTION

The relativistic generalization of Eqs. (3.12) may be
achieved in several ways. The dynamical equations
corresponding to (3.12) may be found as the WEB
limit of a speciGc one-particle relativistic Geld theory,
or from the density matrix of that same Geld theory. A
third possibility is to postulate the dynamical equa-
tions in the instantaneous rest frame of the particle
and then Lorentz-transform the equations so that they
are valid for any observer moving with arbitrary but
constant velocity. This latter method was adopted by
3argmann, Michel, and Telegdi in their work on uni-
form Gelds, and I shall follow the same approach. In
addition to the equations of motion in the rest frame,
some further assumptions are needed concerning the
moments themselves. We represent the spin moment
by an antisymmetric tensor S„„=—S„„and the quadru-
pole moment by a symmetric tensor Q„„=Q„„, p, , )
= 1, 2, 3, 4. Since experiment and theory indicate the
presence of only motion-induced electric-dipole mo-
ments and magnetic-quadrupole moments, we restrict
S„„and Q„„as follows:

S„.V„=Q„,V„=0, V„V„=—1,
Q»= 0, S„.S„.+Q„„Q„,=const,

3s„ps,g„. Q»Qp„Q„—„=const,

(4.1)

with V„ the usual four-velocity of the particle. The
above relations must be maintained in the course of
time.

We assume the following equations to hold in the
instantaneous rest frame of the particle:

mv; =eE;+qaS „B
8;y = —n (S;Q,a—S),B„)+P (Q;,E,p

—Qg,E„,),
Q;a = n(Q;,B,);+Q)„—B„) P(S;,E,),+S)„—E„).

(4.2a)

(4.2b)

(4.2c)

In postulating (4.2), we have deliberately neglected
terms involving second derivatives in the external elec-
tric Geld. We consider such terms small in comparison
to the terms included.

The relativistic theory of (4.2) is easily found by
Lorentz transformation:

(4.3a)

where

h„„=8„„+V„V„,B„,V„=O,
E„,= (F„,„+F„,„)V, X =Sp,Fp„,

and the symbols Fp ~,Sp] Fp Sp FppS and Ep ( S„)—=FpwSp +F»Sr r is the proper time. The constants

N(dV„/dr= eF„„V„+,'ah,„X„-
dS„„/dr= nFp(„S„)p+ (e/m n) V(—„S„)pFp, V, —

+ (u/2m) V(„S»,X,+PA, („Q»,E„, (4.3b)

dQ„„/dr = m, („Q„),+ (e/)I —
«)«) V(.Qu) gp„V, —

+ (a/2') V«,Q» X —Ph, (,S„),E„, (4.3c)



I69 DIPOLE —QUADRUPOLE SYSTEM |.287

e, a, a, and P characterize the charge distribution. m is
the rest mass of the particle.

Equations (4.3) describe the four-dimensional gyra-
tions of a relativistic dipole quadrupole. These classical
relativistic equations diGer from others proposed for
such a system, "in that the quadrupole moment is
treated as a true deformation, and not as a compounded
rotation. The quadrupole moment is independent of the
dipole moment, and as a consequence, the homogeneous
Lorentz group no longer plays its former crucial role in
describing the intrinsic electrodynamic properties of the
particle. In other treatments of the problem the as-
sumption has generally been that a classical quadrupole
moment is of the form

Q„.'= S„S,—-', (5„,+V„V.)S,.S, , (4.4)

so that deformations per se are not a measurable attri-
bute of the classical system and presumably fail to
appear in the correspondence-principle limit of its
quantal counterpart. As is clear from Fano's nonrela-
tivistic analysis, the assumption (4.4) as the unique
quadrupole moment is too restrictive. On the other
hand, an induced quadrupole moment of the form Q„„'
may always be added to Q„„ in (4.3) without further
change in the equations. If, however, the quadrupole
moment arises solely as an induced effect, then (4.3c)
is unnecessary, and the Casimir invariant of the theory
becomes S„S„.Under these conditions our equations
would become identical with Good's. '

The classical set of Eqs. (4.3) should provide us with

' P. Havas, Phys. Rev. 116, 202 (1959). This paper contains
references to earlier work and includes a detailed analysis of self-
interactions for higher multipoles generated by the spin tensor.

9 R. H. Good, Phys. Rev. 125, 21.12 (1962).

respectable gyrofrequencies for a moving spin-i system
or higher-spin systems where octupole-moment coupling
and still greater moment coupling are insigni6cant.
These same frequencies must be derivable from the
quantum theory, but I defer this question to a future
work. On the other hand, space-time trajectories de-
duced from (4.3) are as significant as they usually
are in the quantum theory: Calculated orbits may have
approximate validity if in our experimental arrangement
we have not trifled with the uncertainty principle.
However, such calculated trajectories, even when they
do violence to the uncertainty principle, may still be
useful in constructing solutions to the Schrodinger
equation.

Equations (4.3) transform covariantly under Lorentz
transformation. However, the universal constants of
the motion for the internal variables S„„and Q„, are
the invariants of the group SU(3,1).The same group's
has appeared in an approach to the problems of ele-
mentary particles via an analysis of Maxwell's matter-
free equations. The group SU(3,1) appearing in our

paper and in Ref. j.o is closely tied to the Lorentz
group. This lack of independence does not conform to
the general views concerning the relation of the Lorentz
group to the internal symmetry groups of elementary
particles. The theory presented here is not intended to
serve as a theory of elementary particles. However,
beyond its utility in calculating gyroscopic frequencies,
the theory may prove helpful in a phenomenological
analysis of nuclear structure. In addition, the techniques
employed in this paper seem readily applicable to
higher-spin systems and other forms of interaction.
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