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The quark model predicts that certain combinations of total cross sections should be equal at in6nite
energy. One such prediction is that o, (~)= -',ou(~), where o (v) =i(o +v(v)+o, -v(v) g and o1r(v) = it a„v(v)
+av (v)+a~(v)+o„(v)j-are the average pion-nucleon and nucleon-nucleon cross sections, respectively,
and u is the laboratory beam energy. We have tested this prediction by using the implied superconvergence
of the forward scattering amplitude F (~)—~31~(g), where E (v) and Pg(~) are de6ned in an analogous
way. We 6nd that the sum rule is badly violated in the laboratory frame with pions as the beam but satis6ed
in the "antilaboratory frame" with protons as the beam. We conclude that the quark-model prediction is
correct so long as it is interpreted in the antilaboratory frame.

where the integers g„are simply related to the number of
quarks and antiquarks participating in the reactions.

Unfortunately, the straightforward experimental
tests of such relations are inconclusive because it is
not known at what energy the asymptotic region
begins. However, if we define a function T(v) as the
weighted sum of forward scattering amplitudes T„of
reaction r,

T(v) =g rt, T,(v), (2)

and assume that its high-energy behavior is determined

by (1), then we should be able to write down a super-
convergent dispersion relation for T(v).

A similar technique has been tried in photon-hadron
scattering but our application has the advantage that
the strong-interaction cross sections are much better
known than the corresponding electromagnetic ones.

*This work was supported by the Atomic Energy Commission.' E. M. Levin and L. I. Frankfort, Zh, Eksperim. i Teor. Fiz.
Pis'ma v Redaktsiyu 2, 105 (1965) /English transl. :Soviet Phys.—JETP Letters 2, 65 (l.965)g.' J. J. . Kokkedee and L. Van Hove, Nuovo Cimento 42k,
711 (1966 .' H. J. Lipkin and F. Scheck, Phys. Rev. Letters 16, 71 (1966).' H. Pagels, Phys, Rev. Letters 18, 316 (1967);H. Harari, ibid.
18, 519~!(1967).

I. INTRODUCTION

INURING recent years there has been much dis-
cussion of the quark model. It has been applied in.

many calculations of high-energy hadron scattering
with considerable success. The original idea is due to
Frankfort and Levin, ' who used the simple idea that
nucleons are made of three quarks and mesons of two.
They concluded that the ratio between the pion-nucleon
and nucleon-nucleon in6nite-energy total cross sections
shouM be exactly ~~. This idea was later extended by
Kokkedee and Van Hove~ and independently by Lipkin
and Scheck, ' who deduced many other relations between
111fiI11tc-cllel'gy total cl'oss scctloIls o „(oo) of tllc for111

Therefore, if our dispersion relation is well satis6ed,
it will serve as a test of the quark-model predictions.
As an example we shall look at the following sum rule:

We choose this example for several reasons. (I) Its
derivation does not depend on SU(3} symmetrys but
simply on the assumption that pions are made from two
quarks and nucleons from three. (2) There are good
experimental data available on all the cross sections.
(3) We cannot only tell that this combination goes to
zero but we can also predict how fast it goes to zero.

Besides the simple quart-model derivation of (3)
there is also an equivalent Regge-theory derivation.
The most sophisticated version of this is due to Cabibbo,
Horwitz, and Ne'eman. ' They show that under certain
assumptions, by taking the combination in (3) we can
cancel all the leading singularities for which tr(0)&0,
where n(0) is the intercept of the Regge trajectory at
t=o. The possible Regge exchanges are the scalar type
(P,Pl,f,f') and. the vector type (qo,to,ta). The vector
exchanges are cancelled in the pion-nucleon cross-
section sum and the nucleon-nucleon sum separately
and the scalar exchanges are cancelled when we com-
bine both types of scattering.

There remains the question of which frame we shouM

use to evaluate the sum rule. James and Watson" have
shown that Zq. (3) actually becomes true for v&20
BeV if we use the so-called antilaboratory system. In
this frame the beam always consists of nucleons. The
target is then either pions or nucleons, depending on
which reaction is being considered. Ke have investigated
both the laboratory-system and antilaboratory-system
formulations of the sum rule and Gnd it to be violated
in. the laboratory frame but satis6ed in the antilabora-

tory frame.

5 C. H. Chan, Phys, Rev. 152, 1244 (1966).
8 N. Cabibbo, L. Horwitz, and Y. Ne'eman, Phys. Letters 22,

336 (1966); N. Cabibbo, L. Horwitz, J. J. J. Kokkedee, and Y.
Ne'eman, Nuovo Cimento 45, 275 (1966).

~ P. 3. James and H. D. D. Watson, Phys. Rev. Letters 18,
179 (1967).
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II. FORMULATION IN THE
LABORATORY FRAME

Therefore (8) becomes

3Mv+ 3M "vdv
To derive the superconvergent dispersion relation we sM ReT (1s)+ — [o,+v(v)+o -„(v)]

6rst normalize our forward scattering amplitude by
writing the optical theorem in the form

3%v R
ImT. (v) =[(.s—ps)'is/8~][o. +v(v)+o. -„(v)],
ImT„(v) = [M (v' —M')'"/1&a) [o„(v)+o'vv(v)], (4)

ImT„(v) = [M(v' —M')'"/16rr][o»(v)+o»(v)),

where v is the beam laboratory energy, M is the mass
of the nucleon, y is the mass of the pion, and the o (v)
are total cross sections.

Next we deine

F(v) = (3Mv/2k ') T (v) —(v/kN') [Tv(v)+T„(v)], (5)

where k =v2 —y and kN2= v —M SO that at large
energies

ImF(v)-3[o.+v(v)+o. -„(v))—o „„(v)
ov (v) —o,v(v) —ov„. (v) —(6)

~„—i+a(0)

where the leading trajectory n(0)(0. Hence F(v) is
superconvergent or

=ReTv(M)+ReT„(M)+
48(1—sr,) v '—M'

2 ~ vdv
[ImT„(v)+ImT (v)]

„, kN'

M "vdv
[o:(v) +~:( v) +~ v;( v)+ o..(v)],-(9)

3f kN

where

R„=4R = (g'/4rr) (ys/4M') .

In (9) the deuteron pole parameters are ss=M8,
8=binding energy, and r&

——triplet effective range.
The unphysical threshold vo corresponds to the reaction1'-+ 2a.. Equation (9) is exact under the assumption
of superconvergence. Details of the pole-term deriva-
tions can be found elsewhere. '

%e now approximate the unphysical cut by a series
of poles corresponding to p, 0, oP, and p. Then we may
write

ImF(v)dv=0.
2 ~ vdv

ImTv(v) =P
s „, kit'

BEE;v;
i= g,o,, p

(10)
Note also that ImF (v) has the crossing property

ImF( —v) = ImF(v),
which yields

2 ~ vdv 2MvpR p

ImT. (v) =
kN' v '—3P

where for particle i with mass m;

-'M
2 dv Im(v/k, ')T.(v)

d»m(v/k&)[Tv(v)+T-(v)] (8)

v;—= (mP —2M')/2M.

The residues are given by'

g
' M ' g.'(nr, s 4M'—

41630 . 4 i 16M' )
There are a number of pole terms in (8). The left-hand
side has a pole at threshold v=p and at the proto'
intermediate state v= vv= —ps/2M. The right-hand
side has poles at threshold v=3f, at the pion inter-
mediate states (in PP and Pn) v=v =(ys —2Ms)/2M,
and at the deuteron intermediate state (in pcs) v=vs.

1 m2

gt'M+[gtgs+(gt+gs) ]
4g 435 2M

(12)

where gi and g2 are the vector and tensor couplings,
respectively. Equation (9) becomes

3f "vdv M "vdv
[ovv(v)+o v.(v)+o „;(v)+o„-.(v)]— [o~,(v)+o;, (v)) =-', [ReT„(M)+ReT„(M)]

K vvRv v~R~ vvRv vsRs v,E vg)E——',M ReT (is)+ —M + + + + ' + . (13)
48(1—Krg) v —ps v —M v M3(v„s—M ) 3—(v, —M ) 3(v„—M )

' P. Soding, Phys. Letters 8, 285 (1964);A. A. Carter and D. V. Bugg, sbK 20, 203 (1966); A. A. Carter, Nnovo Cimento 48A, 15
(&9t 7).
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FIG. 1. The values of f~(v) and
f {v) dehned in Eq. (18) as a function
of the laboratory beam energy v. Note
that the ~ scale is logarithmic.
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s ReTv(M) =p~Mapv= 7.00+1.6. (14c)

In (14b) and (14c) we have enlarged the experimental
errors to include the pp and pn scattering lengths. These
are not known but can be shown to be less than 1 fm,
yielding the uncertainty quoted.

The deuteron pole parameters are'

8=2.22 MeV, «=45.7 MeV, r~ 1.7 fm, ——(15)

and the coupling constants are

g '/4s = 14.5, g„'/4z =10, g, rs/4m= 0.6,
g„ss/4r= 2.82, g„P/4z. =1.5, and g„ss/4n =0. (16)

Although these coupling constants are not very well
known, their contributions to the sum rule are not
large. The paremeters of the cr resonance, if one exists,
are not known. If we take the usual estimates m, =~3f
and g,'=2, we get a contribution of

Mv,R,/3 (v,s—Ms) = —1.3. (17)

With these values we have calculated the contributions
of the various terms and the results are listed in Table I.
In the terms where the coupling constants are not well
known, we have included a 100jo uncertainty. The
errors are then combined as standard deviations.

We now turn to the numerical evaluation of the
right-hand side of Eq. (13). We found that the only
large contributions come from the nucleon-nucleon
scattering lengths and the deuteron pole. Fortunately
these quantities are well determined.

The scattering length contributions are

—,'M ReT (p) =)M(ar(pv+2azjs ')
X (1+1«/M) =0.067+0.27, (14a,)

-', ReT„(M)= (1/24)M(a, v"+a@")
= 1.49+0.5, (14b)

We now define

h(A) = f (v)dvv f.—(v)dv,

where

so that we can express Eq. (13) as

A(eo) =16.5+2.2. (19)

We have calculated A(A) for various cutoffs A by using
the experimental data. ~" The functions fv(v) and

f (v) are plotted in Fig. 1. We Gnd that for values of

~ A. Citron, Vil. Galbraith, T. F. Kycia, B. A. Leontie, R. H.
Philli s, A. Rousett, and R. H. Sharp, Phys. Rev. 144, 1101
(1966; T. J. Devlin, J. Solomon, and G. Bertsch, Phys. Rev.
Letters 14, 10 (1965); A. ¹ Diddens, E. W. Jenkins, T. F.
Kycia, and K. F. Riley, ibid. 10, 262 (1963);V. S. Sarashenkov
and V. M. Maltsev, Fortschr. Physik 9, 549 (1961);K. J. Foley,
R. S. Jones, S. J. Lindenbaum, W. A. Love, S. Ozakie, E. D.
Planter, C. A. Quarles, and E. H. Willin, Phys. Rev. Letters 19,
330 (196'/).

'0 D. V. Bugg, D. C. Slater, G. H. Sta6ord, R. F. George, K. F.
Riley, and R. J. Tapper, Phys. Rev. 146, 980 (1966); C. A.
Coombes, B. Cork, %. Galbriaith, G. R. Lambertson, and W. A.
Wenzel, iMd. 112, 1303 (1938);T. Eliot, L. Agnew, O. Chamber-
lain, H. M. Steiner, C. Weigand, and T. Ypsilantis, ibid. 128,
869 {1962);U. Amaldi, Jr., B. Conforto, G. Fsdecaro, H. Steiner,
G. Baroni, R. Sizzari, P. Guidoni, V. Rossi, G. Brautti, K. Gastelli,
M. Ceschia, L. Chersovani, and M. Sessa, Nuovo Cimento 46,
171 (1966);U. Amaldi, Jr., T. Fazzini, G. Fidecaro, C. Chesquiere,
M. Legros, and H. Steiner, ibid'. B4, 825 (1964); B. Cork, O. I.
Cahl, D. H. Miller, A. G. Tenner, and Ching Lin Wang, ibid. 25,
497 (1962); F. Bartholin, B. Tinland, A. Sernheim, B. Brami-
Ddpaux, J. Bermond, and V. Perez, Compt. Rend. 258, 1219
(1964).

» W. Galbraith, K. %. Jenkins, T. F. Kycia, B. A. Leontie,
R. H. Phillips, A. L. Read, and A. Rubenstein, Phys. Rev. 138,
3913 (1965}.

fv(v) = (M/24z') (v/k~)
XLo'„(v)+~,.(v)+~v„-(v)+~;„(v)g,

and
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TABLE I. The contributions of the various terms
to the right-hand side of Eci. (13).

Term

s ReT„(M)
—;Rer, (M)
—ssM ReT (v)
«/4B (1—ffrg)
—Mv~R~/(v~' —p')
—Mv ff /(v ' —M')
—Mv+, /(v '—M')
—Mv„R„/3 (v„'—M')
—Mv R /3(v '—M')
—M,Z./3(v. ~—M2)

Total

Contribution

149 +0.5
7.00 +1.e

—0.067 +0.27
8.78 +0.008

—0.0407+0.011
—0.901 +0.25
—0.645 +0.65
—0.189 +0.19
—0.191 +0.19

1.3 +1.3
16.5 +2.2

l2-

IO .

A. of 16 and 18 BeV

h(16 BeV) =22.3+3,
6(18 BeV) = 23.9&3.5.

(2o)
lO

Referring to Fig. 1, we can see that fv(v) f (v) &—0
and so h(A) is increasing with h. away from the sum-
rule prediction. If fv(v) f (v) re—mains at about'0. 5
BeV ' for only a further 10 BeV, we can estimate
6(30 BeV) =28. It can be seen that the sum rule is
badly violated unless there are negative contributions
to h(A). This would imply a crossing of f„(v) and
f (v) at some energy. This, however, we do not con-
sider likely, as no other theory predicts such a crossing.

III. FORMULATION IN THE ANTILABORATORY
FRAME

The nucleon-nucleon part of the sum rule is, of course,
unchanged by transforming to the antilaboratory frame.
In the pion-nucleon part the variables k and v become'

v= (M/Is) v,

jj= (vs —M')'"= (M/Is)k.

The Pole term 3Mv+v/(v '—Ps) becomes

3M vvBv/(v„' M'), —
where

vv = —-'sjs, Bv= srgs/4n .
The new value of the term is

3MvvBv/(v s—Ms) = —0.269+0.093,

so that the sum rule becomes

Z(co )= 16.3&2.2,

in BeV

Pro. 2. The values of fv(v) and f, (v) as a function
of the antilaboratory beam energy v.

where now

~(~)= Lf.(v) f.(v)3~—v

and fv(v) and f (v) are defined as in Eq. (18). These
functions are plotted in Fig. 2.

It can be seen from Fig. 2 that fv(v)= f (v) for
v&18 BeV, so that Z(18 BeV) may correspond to
Z(eo). This is not certain, of course, because they may
diverge at higher energies yet unstudied. However, we
GIll

E(18 BeV) = 14.2&2.9,
which agrees with the sum-rule prediction within
experimental limits.

IV. CONCLUSION

The quark model and dispersion theory give us a sum
rule for a certain cross-section combination of total
cross sections. This sum rule is found to be violated in
the laboratory system at presently available energies
and shows no sign of being satis6ed at higher energies.
In the antilaboratory frame, however, it is satis6ed
within experimental errors and appears to remain
satis6ed as the energy increases.


