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may have attractive eGects, and ghosts may appear.
Both of these unpleasant features are removed for a
wide range of potential strengths, including those which
are likely to be encountered in particle physics, if the
third Born approximation is used.

It is expected that this demonstration of how the
solutions go awry will enable us to recognize the break-
down of these approximation schemes more readily in
the future.

Also, it is believed that there is good reason to hope
that in calculations of strong-interaction dynamics,
such as, for example, those based on the strip approxi-
mation, it will also be the case that an approximation
to the left-hand cut involving just a few iterations of
the "potential" provides a satisfactory input to the
X/D equations. It may be, of course, that the sort of
"equivalent potential" obtained from the Mandelstam
representation can never be made to give a satisfactory
account of strong-interaction dynamics, and that
arbitrary parameters specifying the more important

features of trajectories are required as input. ~ However,
we shall not be able to arrive at a clear decision on
such matters until the current-calculational schemes
have been explored fully, without the debilitating effects
of unnecessarily poor approximations. Calculations are
in hand to use this same sort of iteration of the potential
for x-m scattering in the strip approximation, and we

hope to present results shortly.
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Saturation of sum rules is tested in several strong-coupling static models, and the results are compared
with the known properties of the models. A meson current commutation relation is very poorly saturated
by low-lying states. Superconvergence relations are discussed in both s- and p-wave models. There are no
such relations in s-wave models, but there are two in the p-wave model, one of which is saturated, the
other not. It is also shown that certain truncated Chew-Low equations have no solutions.

INTRODUCTION

'HE purpose of this paper is to carry out several
tests of the saturation hypothesis' in soluble

field-theoretical models. Obviously, caution must be
exercised in generalizing from these, but they have the
advantage of being soluble. Usually' the only test of
saturation is the experimental data; this often leads to
little insight into the situation, and therefore in contrast
we shall ask our questions of a toy (but understood)
world.

All our examples will be in the strong-coupling limit
of static models. '4 Properties of these models are well

~ Supported by V. S. Atomic Energy Commission Contract
No. AT-30-1-2171.

~ Recent applications of the saturation scheme include: V. de
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576 (1966); B. Sakita and K. C. %'ali, Phys. Rev. Letters 18,
319 (1967); K. Bardakci and G. Segre, ibid. 159, 1263 (1967);
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known, and this makes it easy to test a few sum rules
within them. We shall erst try saturating a meson
current commutator and 6nd that it fails miserably.
We next consider some superconvergence relations,
which have been derived in the model. We 6nd con-
tradictions in the sum rules (some do not saturate) and
prove a related theorem on the existence of solutions
to a class of cutoff static models. The p-wave model is
seen to have one derivable sum rule which is valid and
another which fails.

SATURATION OF A CURRENT COMMUTATOR

We shall deal 6rst with the question of saturation
in charge-symmetric scalar theory, which may be
de6ned by the interaction Hamiltonian

IIr = gp d'r r. (Nr)y. (r),

C. Goebel, Midwest Research Conference, 1965 (unpublished);
T. Cook, C. Goebel, and B. Sakita, Phys. Rev. Letters 15, 35
{1965).
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where
7 =Pauli matrices, n=1, 2, 3;

N(r) =shape of extended source,

P (r) =meson Geld operator,

gp= bare Yukawa coupling.

We shall make use of the coupling operator g which
is dined on the discrete isobar states

8-"'—= &p'I go -Ip&

where s and s' are discrete physical states. In the
strong-coupling limit (go~ ~), the g satisfy the
coupling condition

hand side of Eq. (5) to be zero when the sum over
e is truncated at energies below the cutoff; whereas
the right-hand side of Eq. (5) is of order g', where g
is the renormalized coupling. (Note that in this model'
g'= stgss. ) We have found, then, that not only satura-
tion by the discrete states fails, but even inclusion of
the multiple-particle states fails if we again cut off
the energy sum over intermediate states. The reason
is clearly that the very top of the continuum conspires
to give a contribution which will match the order g'
quantity on the right-hand side. This last is sensible if,
for example, at very large ~ the scattering approaches
the "bare" Born approximation.

iB Bpj=0 (3) SUPERCONVERGENCE

Vile shall test saturation on a sum rule' which is an
identity satis6ed by Pauli matrices

-~ pl -pv v ~ (4)

Now if we multiply through by go' and insert a complete
set of physical intermediate states we obtain

is-,apl"'+2 &" I g«-IN&&" I g«pip&

—2 &"lgo pl~&&" lg«-lp&=g»e. p.B."',

where the In& are physical (in or out) states of more
than one particle. The matrix elements in the sum are
related to scattering and multiple meson-production
amplitudes. For example, the scattering amplitude

fp "'(co) is given by

u(k) (2cu)'I'
fp-"'(~) = &s',k,P igsr. is),

2'
(6)

where u(k) is the Fourier transform of u(r). In a
strong-coupling model, fp '"(&o) is given by'

s's

CO (7)

for co much less than the cutoff energy which is dered
by u(k), and Ap '" is a certain matrix satisfying'

QAprAr =Ap. (8)

' Sum rules like this date back at least to Ref. 11 and M. mini
and S. Fubini, Nuovo Cimento 3, 764 (1956).For a recent treat-
ment but in a slightly diferent model, cf. H. Miyazawa, Progr.
Theoret. Phys. (Kyoto) Suppl. 37 and 38, 315 (1966).

6 This result is probably in the literature, but I was made aware
of it by Professor C. Goebei (private communication).

Equation (8) is called the "mass condition. " Finally,
it is known' that below the cutoff all multiple meson-
production cross sections vanish for large enough
coupling. Now Eqs. (3) and (6)—(8), together with
the vanishing production amplitudes, give the left-

We now turn to the question of superconvergence
in s-wave static models. It has been claimed' that Eq.
(3) is the result of a superconvergence relation imposed

by the cuto6 in the Chew-Low equation. We shall 6rst
Gnd a contradiction in that derivation and in the next
section produce a theorem which helps to explain the
paradox.

The derivation consists of writing the Chew-Low
equation for the function hp "'(&u) = f(&u)/N—(k)'

1 N(k')'pp. "'(a')do&'
hp "'(~)=—

where the integral runs along the upper edge of the
left- and right-hand cuts and includes poles lying
between —p and p, the meson mass. As usual, pp„'"
is given by unitarity and crossing. Now Pande~ pointed
out that if e(k) —=0 for

I "I&0, it is easy to derive an
in6nite number of sum rules, viz. ,

da)(o" Imhp"'((v)=0, n=0 1, 2 ~ ~ . (10)

For n =0, the saturation by discrete states leads to the
coupling condition Eq. (3). Pande dismisses the cases
for e&1 because the isobars become degenerate and
each of the terms on the left-hand side would vanish
separately. Our point is that this is not so for v=1,
because the masses become degenerate only as 1/g'
and this leads to a contribution from the pole terms to
the left-hand side equal to

LBp i» 8-jj"'=2»p-"'—

where M'"=—M,8... is the mass operator for the isobar
states de6ned relative to the ground state. In Eq. (11),
Ap '" is the same asin Eqs. (7) and (8), and is of order

1, not zero. Equation (10) then is false for n= 1, when

we use the saturation hypothesis.
One might now try to explain the failure by pointing

out that, after all, with e= 1 we are weighting the higher-

' L. K. Pande, Phys. Letters 248, 243 (1967).
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energy states and therefore we might not expect satura-
tion by low-lying states to work as well in that case.
One actually has even more help in the n =0 case since
Imhp "'(a&) is nearly an odd function along the con-
tinuum of the integration path t cf. Eq. (7)j. This last
leads to cancellation of the continuum contributions in
the n =0 case, but constructive adding in, the m= 1
case. In the next section we shall prove that the
derivation of equations like Eq. (10) is probably suspect
in the static models.

(10) is also false in the case of the conventional ex-
tended-source (s-wave) model because the functions

f s"'(ru) which go to zero rapidly at in6nity (they are
proportional to the cutoff function) do not lead to
superconvergence relations because these functions
have singularities on the imaginary co axis. One may
eliminate these singularities by dividing them out (this
is usually done"), but the resulting quotient does not
go to zero rapidly enough at infinity to give
sup erconver gene e.

EXISTENCE OF SOLUTIONS

We may yet understand the failure of Eq. (10) by
consideration of the following theorem:

The truncated Chew-I ow equation

p-WAVE MODELS

Before concluding, we should mention the p-wave
static models" which are of phenomenological interest.
Here, the scattering amplitude is normalized such that

e2iblg

T'rz(~) =
2p'

(13)

mth Imt'= & If I', has no solutions for I')0.
The proof follows from examining the inverse func-

tion P(a&)=g'/cof —and observing that for suf6ciently
small g' it must have a zero to the right of m =Q. There-
fore, Eq. (12) must be amended by at least a pole to
the right of o)=Q if it is to have a solution at all.

The physical (or unphysical) signi6cance of the
theorem will now be explained. Equation (12) de6nes
the model which has a direct channel pole, a right-hand
cut, and no left-hand cut. This is the ordinary 3T—8
sector of the I.ee modep except that here we have trun-
cated the continuum integration. The spurious state
(pole) is just the ghost' which appears here to the right
of the continuum for small coupling and moves to
co=+~ as the coupling is raised to a critical value.
After this, the state moves in from co= —~ toward the
origin and is the Nsual ghost.

Now since the higher models do not have ghosts, we
must be careful that we are not just studying a peculi-
arity of the I.ee model. Fortunately, the analog of our
theorem may be checked in charged scalar theory where
crossing symmetry is still tractable. %e do not give
the argument here, ' but the result is a spurious pole
either to the right of cv=Q, or the left of ~= —Q. This
pole never comes near the ordinary bound-state region,
and so we are never troubled by a ghostlike state in
the theory.

The meaning of our theorem is that truncating the
Chew-I. ow equation does not correspond to a con-
ventional extended-source model. Equation (10) then
is probably false even without saturation. Equation

' T. D. Lee, Phys. Rev. 95, 1329 (1954).
G. Eall', in Bremde~s I.ectlres (%. A. Benjamin, Inc.,

New York, 1962), Vol. 2, p. 188.
"The relevant (but not cutoff) inverse Chew-Low equation is

given in C. J. Goebei, Phys. Rev. 109, 1846 (1958).

where br~ is the phase shift in the partial wave (IJ)
and p is the meson momentum. Now 2'rq(&u) goes to
zero as 1/ru' and &o —+ ~ aside from any damping due
to a cuto6 function. This does lead to a superconvergent
sum rule and the saturation hypothesis leads to Eq. (3),
the correct answel' ' according to strong-coupling
theory.

Froxn here the discussion is the same as in the s-wave
case. The only diBerence being that the superconver-
gence relations for as=0, 1, (0= ~) in Eq. (10) are
de6nitely valid for the p-wave case. In the p-wave case
then we have a clear-cut test of saturation. It works
$i.e., gives Eq. (3)j for +=0, and as in the s-wave case
it fails (i.e., leads to A.p

'"——0) for x=1.
The saturation hypothesis has now been tested in

several strong-coupling models and the results are seen
to coincide rarely with the known answers. Vfe con-
clude that it is extremely dificult to determine u
priori whether a given sum rule can be saturated by
discrete states or even continuum states which are
cut off in energy.
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