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evaluating, one easily sees that it differs from the pole
term by a factor

2s~(o) L($o—rtts)/A$&(&)

assuming n(t) to be linear in t. We cannot determine

this factor, since we do not know h., but for the g meson
this can be quite diBerent from unity. Both the behavior
of P(t) near t=0 and an estimate of h. can be obtained
from high-energy Compton-scattering data (Regge
region), for which we have no information so far.
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The N/D equations have been solved with the first, second, and third Born approximations to the left-
hand cut, for nonrelativistic, single-channel potential scattering, with potentials involving combinations
of attraction and repulsion of diferent ranges, and the results are compared with the exact solution of the
Schrodinger equation. It is found that for the sort of potential strengths which occur in strong-interaction
dynamics, the third Born approximation is satisfactory. It is known that the 6rst Born approximation,
which is commonly used, suGers from several defects in that long-range repulsions can produce attractive
e6'ects, and "ghosts" appear on the physical sheet, and we explore the way in which the approximation
breaks down. It is concluded that in dynamical calculations, such as those involving the strip approxima-
tion, much more satisfactory results are likely to be obtained if the left-hand cut is calculated from a few
iterations of the potential.

I. INTRODUCTION
' 'T has been known for some time that the forces which
~- generate strongly interacting particles are likely
to contain both attractive and repulsive components.
In particular, it is known that the exchange of a
Pomeranchon (E) trajectory gives rise to a long-range
repulsion. '

This has created severe dif6culties for the usual sort
of ftf/D calculations which are used to solve dynamical
problems. ' In such calculations it is usual to impose
unitarity on an amplitude whose left-hand cut is given
by just the first Born approximation; that is, the left-
hand cut of the amplitude is assumed to contain just
the cut of the potential. This is not, of course, the same
as taking the erst Born approximation to the amplitude,
in that exact unitarity (or at least exact within the
framework of the possibility multichannel calculation
which we wish to perform) is imposed on the right-hand
cut, but the eGects of the reaction to the potential on
the left-hand cut are ignored. It has been found that if
a repulsive force is combined with an attraction (the
two having different ranges), the effect of the repulsion
if often to give stronger binding, i.e., to act as an
attraction.

This fact was commented on by Kayser, ' and has
been noted since by many authors, ' "particularly in the

' G. F. Chew, Phys. Rev. 140, 81427 (1965).
2 P. D. B. Collins, Phys. Rev. 142, 1163 (1966).
3 B.Kayser, Berkeley Report, 1965 (unpublished).
s G. Auherson and G. Nanders, Nuovo Cimento 46, 78 (1966).' R. F. Sawyer, Phys. Rev. 142, 991 (1966).
~ B. Kayser, Phys. Rev. 165, 1760 (1968).
~ H. Banerjee, Nuovo Cimento 50, 993 (1967).

context of the Dashen-I'rautschi type of perturbation
calculation. '

What is worse, if the repulsion is really strong it is
possible for "ghosts, "by which is meant in this context
resonances with negative residues, to appear. ' These
violate causality and so must be due to the inadequacy
of our approximations.

In calculations involving the "new form of the strip
approximation" it was found necessary to remove the
I' repulsion by normalizing the potential, ' though it was
realized at the time that the validity of this procedure
was doubtful, and that the I' repulsion probably repre-
sents the physically important sects of the presence of
in6nitely many channels with thresholds above the
resonance region. '

It is to be expected that these defects of the strip
approximation would be removed if we were able to
use an exact expression for the left-hand cut, but in
general, this is prohibitively diKcult to calculate. The
question thus arises as to the order of the Born approxi-
mation to the left-hand cut which is needed to give
satisfactory accuracy in this sort of problem. The best
way of trying to assess this is to examine the situation
in single-channel potential scattering, where we can
compare the solution of the X/D equations, for various

types of potentials treated in various Born approxi-
mations, with the exact solution to the corresponding
Schrodinger equation. We know, of course, that if we

8 R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, B1190
(1964); 137, 1318 (1965).' R. F. Dashen, Phys. Rev. 135, 31196 (1964).
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had used the exact left-hand cut the X/D equations
would give the exact answer.

Luming' has examined the problem for a single
attractive potential in the first and second Born approxi-
mations, and in this paper we extend his work to include
the third Born approximation and also to consider
combinations of potentials of diferent signs and
ranges. It is anticipated that this will give us guidance
as to the likelihood of obtaining reasonable results with
similar approximations to the left-hand cut in strong
interactions.

In Sec. II we briefly review the difhculties which have
arisen in recent dynamical calculations and remind the
reader of the P-repulsion eGect. Succeeding sections
b'riefly review the X/D equations and explain how the
various approximations to the left-hand cut may be
calculated using the Mandelstam iteration method.
In Sec. V we present some numerical examples of our
solutions which demonstrate how the various approxi-
mations break down. Section VI discusses the same
phenomena in a simple model which can be solved
analytically; finally, in Sec. VII we present some
conclusions.

II. PROBLEMS IN RECENT DYNAMICAL
CALCULATIONS

Since the pioneering work of Chew and Mandel-
stam, ""many attempts have been made to perform
calculations of the dynamics of strong interactions,
bootstrap calculations, using methods which are closely
analogous to those used in potential scattering. "Much
recent work by various authors has been based on the
strip approximation, '4 and particularly on the so-called
"new form" of the strip approximation devised by
Chew and Jones" on the basis of work by Chew. "But
as a means of calculating the x-x scattering amplitude,
for example, this approximation was found to be
inadequate. ' '~" The p-exchange force was not strong
enough to produce the desired trajectories in the direct
channel, and the P repulsion gave rise to ghosts unless
it was assumed that the potential could be normalized, '~

that is, that there were other isotopic spin I=O con-
tributions (lower-lying trajectories) which cancelled

' M. Luming, Phys. Rev. 136, B1120 (1964).' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960)."G. F. Chew and S. Mandelstam, Nuovo Cimento 19, 752
(1961).

"For reviews of bootstrap calculations see F. Zachariasen,
Lectures given at the Pacific International Summer School in
Physics, Honolulu, Hawaii, 1965 (unpublished). B.M. Udgaonkar,
in ProceeCkngs of ~the Seraiaar ia High ENergy Physics amd E-le
merltary Particles, Trieste, 1965 (International Atomic Energy
Agency, Vienna, 1965); P. D. B. Collins and E. J. Squires,
Eegge Poles irl, Particle Physics (Springer-Verlag, Berlin, 1968).

'4 G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961).
'5 G. F. Chew and C. E. Jones, Phys. Rev. 135, B208 (1964).
~6 G. F. Chew, Phys. Rev. 129, 2363 (1963).
'~ P. D. B. Collins and V. L. Teplitz, Phys. Rev. 140, B663

(1965).
P. D. B.Collins, Phys. Rev. 157, 1432 (1967).

~9 G. F. Chew and V. L. Teplitz, Phys. Rev. 137, B139 (1965).

with

V&,(g)=q(g)(gP) 'e '~— ' gr '/De —n(g)], (2.2)

where

and
b(&) = ln(s, (g)+ LsP(&) —1]»s)

sr (g) = 1+sy/2gP, sr))1Ã ~

(2.3)

(2.4)

It is evident from (2.2) that if n(t), which is constrained
by the Froissart bound to be less than unity in the
s-channel physical region, is greater than a given value
of l&, then we can expect a repulsion from that partial
wave. The lowest allowed value of l~ is l~

——0 for an even-
signature trajectory, and l& ——1 for odd signature, and
the contribution of each succeeding (even or odd, respec-
tively) partial wave will be much reduced over the
preceding one by the exponential factor in (2.2). Thus
an even-signature trajectory with a(g) above zero can
be expected to give a repulsion, while an odd-signature
trajectory will give an attraction. We refer the reader
to Chew's paper for further details. The range of the
P repulsion for a given elastic process, as measured by
the inverse of its logarithmic derivative with respect to
t at t= 0, will be essentially the same as the width of the
high-energy di6raction peak for that process. This is a
considerably longer range than that of most of the
attractive particle-exchange forces.

This repulsion, which corresponds to the eBect of the
many high-threshold channels which open up above the
resonance region, is expected' (by analogy with the
situation in nuclear physics) to be important in produc-
ing narrow resonances, and also in keeping the trajec-
tories rising to higher values of angular momentum.
It was found that the trajectories calculated in the new
form of the strip approximation always turn over
almost as soon as the threshold is reached, ' "making it
very hard to produce a P-wave resonance corresponding
to the p, let alone a D-wave resonance on the P trajec-
tory. When resonances were produced they were much
too wide.

The inability of the new form of the strip approxi-
mation to cope with a strong repulsion is due simply

'OG. F. Chew, Progr. Theoret. Phys. (Kyoto), Suppl. Extra
No. 118 (1965).

"N. N. Khuri, Phys. Rev. 130, 429 (1963); C. E. Jones,
University of California Lawrence Radiation Laboratory Report
No. UCRL-10700, 1962 (unpublished).

the repulsion, and turned the total I=0 exchange force
into an attraction. The arguments for and against this
are discussed in Sec. IV of Ref. 2.

The reason why the P gives a repulsion has been
explained by Chew' " on the basis of the Khuri-Jones
representation" for a Regge pole. The force in the
s channel due to the exchange of a t-channel Regge
trajectory n can be approximated by a t-channel
partial-wave series

V(s, t) =P (2l&+1)V«(i)P«(1+s/2qP), (2.1)
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to the fact that it employs only the Born approximation
to the left-hand cuts of the partial-wave amplitude.
The presence of the repulsion has caused a renewal of
interest in the old form of the strip approximation 2'2'

in which elastic unitarity is used to calculate the com-
plete double spectral function in the strip region by
iterating the potential out to asymptotic values of t,
and then identifying the s-channel poles from the
asymptotic behavior of the amplitude, t ~'). The
numerical accuracy required to calculate the trajec-
tories in this way is very great, however, particularly
in situations where several trajectories occur one below
the other.

Our alternative proposal is to use the iterative method
simply to calculate the 6rst few Born approximations
to the left-hand cut, and then to impose unitarity by
means of the 1V/D equations in the usual way. This will

be advantageous if, in the expected situation that the
forces are combinations of attractions and repulsions
with diferent ranges, only a few iterations are needed
to get a satisfactory approximation to the potential.
In the following sections we shall try to obtain guidance
in this matter by examining the same problem in non-
relativistic potential scattering.

IIL N/D EQUATIONS

The numerical calculations are made for the non-
relativistic scattering of equal-mass scalar particles due
to a superposition of E simple Yukawa potentials.
We choose units such that A=c=1, and the external
mass m= i. Then in the c.m. system the radial
Schrodinger equation is

g"(r)+{q,'—V(r) —l(l+1)r 'g (r) =0, (3.1)

where q, is the magnitude of the momentum of the
particles. The potential is taken to be

(3.2)

where

relation'6
1 "D,(s,t')

A (s,l) =— dt',
t' —t

(3 6)

A (s,l) =g (2l+1)A ~(s)Ei(cosg),
L=-0

(3.8)

and we define the "reduced" partial-wave amplitudes

Bi(s)=q. "Ai(s) (3.9)

so as to enforce the correct threshold behavior upon
A~(s) and remove the kinematical branch point at
threshold for nonintegral l.

Physical partial-wave amplitudes are uniquely inter-

polated in l by the Froissart-Gribov projection"

B~(~)=
2~q 2l+2

Qi(cos8)D&(s, t)dt, (3.10)

and no problem of signature arises because we do not
consider exchange forces.

In the s plane, B&(s) is real analytic, with possible
bound-state poles, with a right-hand branch point
determined by unitarity at s=4, and with a series of
left-hand branch points stemming from the t sin-

gularities of A (s,l). As usual, we write

where the necessary limiting process to approach the
cut is understood. Separating out the poles, we may
express the cut discontinuity D, (s,t) in terms of the
Mandelstam double spectral function p(s, t);

1 " p(s', t)
D, (.s, t) = sr g g,b(ns, s—t)+— ds', (3.7)

~0(&)

where se(t) is the boundary of p(s, t) in the s lplan-e. In
Sec. IV we describe how p(s, l) can be calculated from
the pole parameters g; and sss;, i.e., from V (r)

The partial-wave series for the scattering amplitude

may be written

(3.3) Bi(s)=Ng(s)/D((s), (3.11)

De6ning the cms scattering angle to be 0, we intro-
duce the variables (corresponding to the usual rela-
tivistic invariants)

where the E and D functions are real analytic in s
with only left-hand, and only right-hand, cuts, respec-

tively. We can normalize these functions so that

s= 4(1+q,s),
l= —(c.m. momentum transfer)s

=2q,s(1—cos()) .

(3.4)

(3 5)

cV)(s)

D, (s)

-0, (3.12)

(3.13)

The scattering amplitude has a Mandelstam repre-
sentation, '4 and it has Regge asymptotic behavior
in t." We can thus write a fixed-energy dispersion"¹Bali, G. F. Chew, and S.-Y. Chu, Phys. Rev. 150, 1352
(1966).

"N. Bali, Phys. Rev. 150, 1358 (1966).
'4 S. Mandelstam, Phys. Rev. 112, 1944 (1958)."T.Regge, Nuovo Cimento 14, 951 (1959);18, 947 (1966).

26 V. De Alfaro and R. Regge, Poterltial Scattering (North-
Holland Publishing Co., Amsterdam, 1965);A. Martin, in Progress
irl, E/ementary Particle and Cosmic Ray Physics, edited by J. G.
Wilson and S. A. W'outhuysen (North-Holland Publishing Co.,
Amsterdam, 1965).

"M. Froisart, Report to the La Jolla Conference on High-
Energy Physics, 1961 (unpublished); V. Gribov, Zh. Eksperim. i
Teor. Fiz. 41, 667 (1961); 41, 1962 (1961) )English transls. :
Soviet Phys. —JETP 14, 478 (1962); 14, 1595 (1962)g.
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On the right-hand cut, unitarity requires

ImDi(s) = —pr(s)N/(s),

where the phase-space factor is

p/(s) = q."+'.

(3.14)

(3.15)

We introduce the potential function Br(s), defined to
have the same left-hand cut as B/(s), viz. ,

1 "ImBi(s')
B/r(s) =Bi(s)—— ds'.

7l 4 S —S
(3.16)

and Di(s) is determined by

1 "p/(s')N/(s')
D/(s) = 1—— ds'.

s —s1
(3.18)

To derive an expression for B/v(s) more useful than
(3.16) we substitute (3.7) into (3.10). The imaginary
part of B/(s) on the right-hand cut (RHC) is

I dt
ImB/(s) lan. =- p(V)Q/I 1+, (3»)

2q 2 2q 2/+2

and so (3.16) gives"

N m'2
B/'(s)= ——2 g'Qi 1+ +-

2( 2l+2;=g

p(s', t)

s —s

Q&(1+t/q2 s) Qi(1+t/2q. ')
X ds'dh. (3.20)

2g 2l+2 2q, 2l+2

Provided that all the in6nite integrals converge, it
is easy to solve the N/D equations (3.17) and (3.18);
if B&v(s) were known exactly, the results would be just
those obtained by solving the Schrodinger equation
(3 1) 30

We shall see in Sec. IV that for our approximations to
p(s, t) the integrals of (3.20) present no difIiculty, and

B/v (s) lns/s'+' (3.21)

that is, the potential approaches its 6rst Born
approximation.

's J. L. Uretsky, Phys. Rev. 123, 1459 (1961);S. Mandelstam,
Ann. Phys. (N. Y.) 21, 302 (1963).

~9 P. D. B. Collins, Phys. Rev. 139, B69b (1965).
'0 R. Blankenbecler, M. I . Goldberger, N. ¹ Khuri, and S. B.

Treiman, Ann. Phys. (¹Y.) 10, 62 (1960).

Ke can then deduce the usual integral equation'8 for
Ni(s):

Nr(s) =Biv(s)

1 "B/v(s') —B/v(s)
p/(s')N/(s') ds', (3.17)

s —s

From (3.17)
Ni(s) 1/s, (3.22)

where we now neglect possible logarithmic factors
Lcf. (3.12)].Therefore the integral equation for N&(s)
is well de6ned for / in the range —1&1(—,'.

In practice, we shall replace all the infinite upper
limits by a cutoB s& for the purpose of numerical
calculation. This introduces a logarithmic singularity
in Brr(s) at s=si, and correspondingly renders (3.17)
non-Fredholm; but it has been shown" that despite
this, the equation can be uniquely solved for Nr(s).
In fact, the solution is essentially independent of s~
if it is taken sufBciently large.

In Sec. IV we describe the calculation of B/v(s) from
l'(r).

p(s, i) =
2Ãgg

where

D;(s,t') D, (s, /,")e(K)dh'd/"

K'/'(q. s,&,1',&")
(4 1)

I:= f +~'+P' 2(a'+1%'+ f'1)—(If8/q, '). (4—.2)

The II function in (4.1) defines a region of integration
in the t' t" plane whic—h (4.2) gives as

$1/2) $~1/2+ $~11/s (4.3)

at s= ~, and as a smaller region with a curved boundary
for 6nite s." Therefore, an iterative procedure for
calculating p(s, t) using (4.1) and (3.7), emerges. For
(4.3) tells us that to find p(s, i) exactly at t,= f, we need
to know D&(s,t) only for t&~f,. It is thus possible to
calculate the nth Born term from the previous e—1.

3' C. E. Jones and G. Tiktopoulos, J.Math. Phys. 7, 311 (1966).
"See, e.g., S. C. Frautschi, Regge Poles awd S-matrix Theory

(W. A. Benjamin, Inc. , New York, 1963).

IV. POTENTIAL FUNCTION

When we refer to the potential function as determined
in the nth Born approximation, we mean that it is
derived from g;, rr/;, and, p(s, t) correct to order g;" for
all i= 1, , N. If we were to use this p(s, t) in (3.7) to
calculate D, (s,t), and then apply (3.6) to find A (s,t),
this would be equivalent to summing the 6rst n terms
of the Born series. ' The amplitude would not, of course,
be unitary. What we shaO in fact do is to solve the
N/D equation with B/v(s) known to the eth Born
approximation. This will not give the same answer
because the N/D equations enforce unitarity, starting
from the approximate left-hand cut, and for low e
there may be a considerable diRerence.

The potential in the first Born approximation is
found by setting p(s, t) =0 and keeping only the pole
terms. The potential in the nth Born approximation is
obtained by iteration using the Mandelstam elastic
unitarity equation, "'2 which we write in the form
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Using (4.1) again, we find

where the terms of order g' are given by

p "&&"'($t)

2gs

b(mP t")—ReD, &'»'($, t')a(E)
dt'dt". (4.12)

K'&2 (&I,', &!,t', &'")+'
,

',

I +,,

'"
,

I +
Fxo. 1.The unitarity diagrams for two di6'erent Yukawa

potentials up to the third Born approximation.

Using (4.9), this becomes

L(e, g)

p&jk ($&/) 'Irgigjgk ((—1)(a9—2bgx+c&)

p"'($, &,')= Q p, "'($,t), (4 4.)

where

and
p; "'($,t)=~av(t)L$ —$O"(t)j '" (4 5)

If we regard the Yukawa potential as representing
the exchange of a particle, this is analogous to calculat-
ing a given graph from a knowledge of the lower-order
ones, starting with the single-particle-exchange dia-
gram. For example, if we calculate to order n=3, for
/=2 diferent Yukawa potentials, we sum the graphs
depicted in Fig. 1.

We can 6nd p($, t) explicitly for v=2 and m=3 as
follows: Using only the pole term of (3.7), we derive
from (4.1)

where we write

mj+mJs)

X (ax 2b2x—+&;2)} '&'dx, (4.13)

(4.14)

%csee that symmetry in j and& leaves only E(1V+1)
distinct terms in the triple sum of (4.11), as might be
expected from the graphs of Fig. 1.

The upper limit of the integral in (4.13) is given by
the lowest zero of the denominator (ax' —2b&x+c&),
namely,

.2,2)2y~ 2(~g+,2)]}—&&2 (46)
*= ( ~ )= '( )(Lb&'() ( ) &()3' ' b&(")} ( )

There are q~X(X+1) distinct terms in the double sum of
(4.4) because of the i jsymm-etry. (This is evident from
the graphs of Fig. 1.)

Each distinct piece of double spectral function
p;&&2&($,t) has a boundary in the $ tplane given by-

The boundary of p;;&&'& ($,t) in the $ /plane is given by-

L, ($,&,') = (m;+vs&&, )', (4.16)

$=$p"(t)=4(1+(mm )'—&tt+ (m' —m~)'/t
—2(m&2+m')] '}. (4.7)

Using (3.7), we then derive
N

D, &'&($)t)=pole terms+ Q D&&'&'&'($,t), (4.8)

where
ReD&&'&'~'($, t) =s.a;, (t)($0"(&&)—$} '"
ImD, "&"($,t) =0

for $~&$0"(t), and

(4.9)

0
m*, ( 4m, ) 4m, ~e', ) (p.~g& )

m (m+m ) ~
(2m+m ) 9m

for $~& $0''(t)

ReD, &'&'&'($, t) =0,
ImD, &""($,t) =p;~"& ($,t)

(4.10)
Fzo. 2. A sketch of the s-t plane singularities for two Yukawa

potentials, showing the positions of the poles at t =m12 and t =m22,
and the curved boundaries of the double spectral function for the
second and third Born approximations. Our units throughout are
chosen such that the external masses are equal to one.
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and we write the solution of the equation as

s,.ii (t) (4.17)
e i(2}

la

l2

300-
(3}

Pijk (st)

200—

IOO-

I

)2(m;+ra;ym„

t
F . 3. A iece of double spectral function p;;f. . .„p" (3) (s t, lottediG. . piece

against t for three values of s.

'3 B. H. Bransden, P. G. Burke, J. W. MoGMoffat R. G. Moor-
house and D. Morgan, Nuovo pimento 30, 297 (1963}.s

In Fig. 2 we depict the s-t plane, and show the
boundaries of p;;&'& (s,i!) and p;, i,

'8) (s,t) for the case E=2.
The general features of p, ,&&3)(s,t) are easily foun

from (4.13).We find that

(3)[s ijk(]) tj 0 (4.18)

and that all derivatives of p, ;q&'&(s, t) at s=so' "(t) a're

in6nite. Therefore, from its boundary, the function
har 1 to a peak, and then falls away, being

eventually proportional to s ' at 6xe t, an o a
6xed s. Its main features are sketched in Fig. 3.

This behavior is to be contrasted with that o
"('&

&~s t~ which has an inverse square-root singularity
at its boundary, and falls monotonically in bot s an
being eventually proportional to s—'~' at 6xed t and
to t ' at fixed s.

The double spectral function cannot readily be calcu-
lated to higher order, but the general features are clear.
Successively higher terms would have less pronounced
peaking close to their s-t plane boundaries. This agrees
with the numerical findings of Bali,"and of Brans en
et al. ,33 whose double spectral functions were calculated
from the exchange of a Breit-Wigner shape for t e

p mesomeson in x-x scattering. They found oscillations corre-
sponding to the boundary peaks, which died away
quickly with increasing t. We obtain more severe osci-
lations since we are iterating a 8 function. The sin-
gularity at the boundary disappears, however, by the
time the third Born approximation is reached. The
oscillations make it dificult to calculate higher Born
terms for more than one Yukawa potential.

The improved asymptotic behavior of successive
terms int in the iteration, each by a factor (st) '",
follows by inspection of (4.1), but we note that e

(0

-l6 -l2
I

-4 0

FrG. 4. S-wave bound-state positions plotted agaD1st the
cou ling constan or a s'l' t t for a single attractive Yukawa potentia . 8 1,

oildar . 83 1 sE eno e e(2 d t the exact solution, primary and secondary.
83(2) denotes the 3rd Born approximation prim y
ar . 82(1), 82(2) denotes the 2nd Born approximation primary

ar . 81(1) 81(2}denotes the 1st Born approximation
uolsE 83 82, and 81 throughoutrimary and secondary. The sym olsE. . . a

this a er denote, respectively, the exact solution an t e
solution with t e t ir, secon,'

h h th d d and first Born approximations to
the left-hand cut.

t t 1 d ble spectral function must have an asymptoticoa ou
portional to t &' if calculated exact y.be avior propor iona o

is clear that in this case, where we take only terms up
to those in g', the infinite integrals of (3.20) will con-
verge. The divergent parts correspond to the s-channel

f the new form of the strip approximation, an
thegive an unimportant short-range component to e

foi ce.

V. NUMERICAL EXAMPLES

In this section we present, mainly in grap ical form,
the results of solving the N/D equations with potentia s

mainly interested in potential strengths which are
similar to those found in strong-interaction physics.

the exchanged particle, in units of the reduced mass o

Finkelstein, " the equivalent energy-dependent poten-

ing will correspond to g/m. 3, over the range of energies

t ical order of magnitude for such forces.ypica
1, ' F' . 4 we plot the position of an S-wave

~ 0

]bound state resulting from a single Yukawa potentia
of the form (3.3) as a function of the strength of the
coup ing. orrespon il' . C ding curves (except for the inclusion
of the third Born approximation) are to be foun m
Refs. 10 and 29. We see that the first Born approxi-
mation is not really satisfactory if the potential is
strong enoug to pro uceh t oduce a bound state, but that the
third Born approximation is quite good even for arge

3' J. Finkelstein, Phys. Rev. 145, 1185 (1966).
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Fxe. 5. Regge trajectories for a single attractive Yukawa
potential (a) V= —3e "/r; (b) V= —Se '/r using B, B3, B2, and
81 (top to bottom). The notation is the same as in Fig. 4.

couplings, and also gives quite a satisfactory account
of the secondary trajectory which appears for g&6.5.

The corresponding trajectories for two diferent
couplings are given in Fig. 5, and again for the weaker
force the third Born approximation is very good.

Evidently, a very strong force is needed to produce a
P-wave resonance. If we arrange combinations of
attractive and repulsive potentials to produce the same
S- or P-wave states, as in Fig. 6, then we get a somewhat
steeper, and certainly higher-rising trajectory the
larger the repulsion. "It is also found that the width of
the P-wave resonance is smaller with a larger repulsion.
This is exactly the eGect which we hope for from the
P repulsion in dynamical calculations.

The next question we want to ask is: How good are
the various Born approximations for producing trajec-
tories when both attractive and repulsive forces are
present? In Fig. 7 we show the results for a corn-

-0.2

-04-
I I

4
5

-OA~
I I

(d) 0 2 4
S

FIG. 7. Regge trajectories for an attractive force combined
with various longer-range repulsions. The potentials are (a)
V= —3e '/r (b) V= —3e "/r+0.5e~'"/r; and (c) V= —3e "/r
+1.0e) 3"/r. The notation is as for Fig. 4.

LO I.O
13

paratively weak attractive force and various longer-
range repulsions. Evidently, the lower Born approxi-
mations are much less accurate than they are when
there is only an attractive force. Indeed, we see in Fig. 8
that the lower Born approximations even give trajec-
tories which are in the wrong order, i.e., the trajectory
is more highly bound the stronger the repulsion. This
e6ect is shown with greater clarity in Fig. 9, where we

plot the change in the position of the S-wave bound
state due to the introduction of a fixed repulsion against
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FrG. 6. An S-wave bound state and a P-wave resonance pro-
duced by various forces. The potentials for the P-wave resonance
are (a) V= 24.3e '/r+7 5e~'"/—r; (b) V= 1.8e "/r+5e 0"/r-
and (c) V= —8e "/r. For theS-waveboundstate (d) V= —14e '/r
+3.8e~'"/r; (e) V= —7e "/r+2e)'"/r; and (f) V= —3e "/r.

I OA-l2-8 -4 0 4
(d)

-l2-8-4 0 4
(~) s

"A. Ahmadzadeh, Ph.D. thesis, University of California
Radiation Laboratory Report Qo, UCRI, -11096, 1963
(unpublished).

FIG. 8. Regge trajectories as in Fig. 7, but with a stronger
attraction. The three cases are (a) V= —Se "/r; (b) V= —Se"/r
+1.5e~'"/r; and (c) V = 8e'/r+3, 0e~'"/r, —
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FrG. 9. The shift Bsg of the S-wave bound-state position when
the potential V= —gee "/r is changed to V= gee—"/r
+0 1e~"./r The n. otation is as for Fig. 4.

(b'j

Re Dp(s)

the coupling strength of the original attractive force.
The response of the exact solution to the repulsive
perturbation is almost independent of how deeply the
state is bound, but this is certainly not true of the lower
approximations. Only the third Born approximation is
able to produce reasonable results for a wide range of
coupling s.

In Fig. 10we plot the same effect the other way round,
that is, we 6x the strength of the attraction and vary
the repulsion. For clarity, we have chosen a case in
which none of the Born approximations gives a satis-
factory result in that the response in each case is in the
wrong direction. The important thing is that as the
repulsion is increased there comes a point at which the
position of the bound state has moved tof to s= —~,
If the repulsion is increased beyond this, the ghost
phenomenon, mentioned above, appears.

This is readily explained if we examine the behavior
of the corresponding X and D functions obtained with,
for example, the erst Born approximation (see also
Ref. 2). Figure 11(a) shows the form of the E and D
functions when a normal bound state is produced. In
Fig. 11(b) more repulsion has been added and the state

L2

0.8

0.4

0-

Np(s)

(c)

Re+(s)

Fzo. 11.A sketch of the potential function BP (s) and the Sand
D functions for the potential V= —11e "/r+gpe~'"/r in the
first Born approximation. The three cases have (a) go=2.7;
(b) gg =3.0; and (c) gg =3.3. Over this range of gg, Bo~(s) changes
only slightly.

becomes more tightly bound. A further increase in the
repulsion results in the development of a pole of the
g function at threshold, as the position of the bound
state moves to —~, and the E and D functions fiip
their signs near threshold. This happens when we reach
a solution of the homogeneous equation obtained from
(3.17) (see Ref. 36). The erst zero of the D function,
shown in Fig. 11(c),corresponds not to a resonance but
to a ghost.

An examination of (3.17) shows why this happens.
The sign change occurs at the point where the integral
vanishes at threshold, and we get E~B~. Increasing
the repulsion further results in the ghost moving erst
somewhat nearer to the threshold and then farther
away, 6nally to vanish as the dip in the D function
fails to reach zero (as in Fig. 12). Ghosts thus arise only
after the bound state has moved off to —~.

It is evident from Fig. 9 that the way to check that
the Born approximation used is adequate is to ensure
that when a repulsion is added the bound state is really
repelled, and (Fig. 10) that the amount by which it
moves is roughly proportional to the strength of the

-lb
0

I

2 3 4 5 6 7
~a

FxG. 12. A sketch of the S-
wave D functions for the poten-
tial V= —11e '/r+g ye~ 3"/r in
6rst Born approximation. The
two cases have (a) gg ——3.3;
(b) gg ——8.0.

R~ Do ~

FIG. 10.The shift bshe of the S-wave bound-state position when
the potential V = —11e "/r is changed to V = —11e "/r
+gee~'"/r. The notation is as for Fig. 4. 36 J. S. Ball, Phys. Rev. 137, B1573 (1965).
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repulsion. If it is not, a higher approximation is needed.
We can anticipate from these figures that whereas the
first Born approximation, which has usually been used,
will nearly always be unsatisfactory unless the coupling
is very weak, the third Born approximation is likely to
be good for most of the types of forces encountered in
strong interactions, and indeed for rather stronger ones.

~o'(s) = l/(C. '+a') (6.1)

(a real and positive), which is well known" to be the
first Born approximation to the potential

V (r) 4gge 2ar— (6.2)

For X)2a, the potential function (6.1) gives rise to
a'bound state on the physical sheet. If a small long-
range perturbation is added, in the form of a second
pole at q,2= b' (b(a), the—small shift in the bound-
state position is easily calculated by the Dashen-
Frautschi method. ' Kayser' has shown that for weak
binding such that the bound state lies to the right of

q,'= —b', a repulsive perturbation moves the bound
state towards threshold in the correct manner. For a
stronger binding force, however, where the bound state
lies between the two force poles, a repulsive perturba-
tion appears to act like an extra binding force, moving
the bound state to the left.

The reason for this is easily found. The potential
function (6.1) is the full left-hand cut for the potentiaib'

—ih.ue ""
V(r) =

L(X/2a) e ""+1]'- (6.3)

The addition of a second pole at q,'= —b', of residue
X', gives the first Born approximation to the potential

V(r) = 4Xae 'a" 4X—'be ""—
or the full left-hand cut for the potentiap'

(6.4)

where

[dF (r) /dr j' F(r)d2F (r)/dr'—
V(r)=2

LF(r) j'
(6.5)

X X' V, '

p(r) —1+ e 2ar+ e 2br —
e
—(a+b) r — (6 6)

2a 2b a+b
"H. A. Bethe and R. Bacher, R,ev. Mod. Phys. 8, 111 (1936).' V. Bargmann, Rev. Mod. Phys. 21, 488 (1949); C. Kckart,

Phys. Rev. 35, 1303 (1930).
'9P. J. S. Watson, Ph.D. thesis, University of Durham, 1967

(unpublished).

VI. SOLUBLE MODEL

It is interesting to look at some of the anomalous
properties of repulsive forces in a simple soluble model.

Following Kayser, ' we consider S-wave scattering
with nonrelativistic kinematics, replacing the left-
hand cut by simple poles. With one pole, the potential
function is

For small X, X' the potentials (6.4) and (6.5) are
quite similar, and as X, X' approach zero, (6.5) ap-
proaches (6.4).

For large X, i.e., a strong attraction, expressions (6.4)
and (6.5) are very different, and it is evident that
X'&0 can no longer be interpreted as corresponding to a
simple repulsive force.

The conclusion to be drawn from this example is
that a given potential function Bb"(s), although it can
be interpreted as some Born approximation to a given
potential, also can often be regarded as the exact
potential function for an almost completely diR'erent

force which coincides with that potential only in the
limit of weak coupling. This gives us some insight into
the qualitative features of the numerical results pre-
sented in Sec. V, although, unlike this example, our
results are not dependent on the bound state's being
inside the left-hand cut.

Kayser' has shown that these considerations enable
us to understand a similar problem presented by
Sawyer' in connection with the Dashen-Frautschi
method. If the force producing a bound state is approxi-
mated by a simple pole, and if the pole is moved slightly
to the left, leading, according to (6.1) and (6.2), to a
weakening of the binding force because of the decrease
in its range, then 5. Dashen-Frautschi calculation pre-
dicts that the bound state becomes more tightly bound.
By inspection of (6.2) and (6.3), however, it is clear
that an increase of a does not correspond simply to a
decrease in the range of V(r) The chan.ge is more com-

plicated, and as Kayser' has demonstrated, leads not to
a weakening, but to a strengthening of the binding force.
Therefore, the result of the perturbation calculation
of .Sawyer is in no way anomalous (cf. Ref. 7).

Unfortunately, this simple model is unable to en-

compass the ghosts which our numerical calculations
have produced. The poles correspond to potentials

V(r) which satisfy the conditions for the Mandelstam
representation to be obeyed by the amplitude. "There-
fore, causality will not be violated, and ghosts cannot

be produced. The potentials V(r) corresponding to the

functions Bbr(s) used in the numerical examples must

violate the Mandelstam representation. Our approxi-

mations have mutilated the analytic properties of the

potentials to such an extent that they cease to bear any

relation to the potentials they are supposed to approxi-

mate, and therefore nonsensical results occur.

VII. CONCLUSIONS

We have solved the X/D equations for potential

scattering with various Born approximations to the
left-hand cut. It turns out that the approximation
which is most commonly employed, the first Born
approximation, is often quite inadequate when we have

a combination of attractive and repulsive potentials,
and leads to anomalous behavior in that repulsions
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may have attractive eGects, and ghosts may appear.
Both of these unpleasant features are removed for a
wide range of potential strengths, including those which
are likely to be encountered in particle physics, if the
third Born approximation is used.

It is expected that this demonstration of how the
solutions go awry will enable us to recognize the break-
down of these approximation schemes more readily in
the future.

Also, it is believed that there is good reason to hope
that in calculations of strong-interaction dynamics,
such as, for example, those based on the strip approxi-
mation, it will also be the case that an approximation
to the left-hand cut involving just a few iterations of
the "potential" provides a satisfactory input to the
X/D equations. It may be, of course, that the sort of
"equivalent potential" obtained from the Mandelstam
representation can never be made to give a satisfactory
account of strong-interaction dynamics, and that
arbitrary parameters specifying the more important

features of trajectories are required as input. ~ However,
we shall not be able to arrive at a clear decision on
such matters until the current-calculational schemes
have been explored fully, without the debilitating effects
of unnecessarily poor approximations. Calculations are
in hand to use this same sort of iteration of the potential
for x-m scattering in the strip approximation, and we

hope to present results shortly.
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Saturation of sum rules is tested in several strong-coupling static models, and the results are compared
with the known properties of the models. A meson current commutation relation is very poorly saturated
by low-lying states. Superconvergence relations are discussed in both s- and p-wave models. There are no
such relations in s-wave models, but there are two in the p-wave model, one of which is saturated, the
other not. It is also shown that certain truncated Chew-Low equations have no solutions.

INTRODUCTION

'HE purpose of this paper is to carry out several
tests of the saturation hypothesis' in soluble

field-theoretical models. Obviously, caution must be
exercised in generalizing from these, but they have the
advantage of being soluble. Usually' the only test of
saturation is the experimental data; this often leads to
little insight into the situation, and therefore in contrast
we shall ask our questions of a toy (but understood)
world.

All our examples will be in the strong-coupling limit
of static models. '4 Properties of these models are well

~ Supported by V. S. Atomic Energy Commission Contract
No. AT-30-1-2171.

~ Recent applications of the saturation scheme include: V. de
Alfaro, S. Fubini, C. Rossetti, and G. Furlan, Phys. Letters 21,
576 (1966); B. Sakita and K. C. %'ali, Phys. Rev. Letters 18,
319 (1967); K. Bardakci and G. Segre, ibid. 159, 1263 (1967);
S. Weinberg, ibid. 18, 507 (1967).' J. J. Sakurai, Phys. Rev. Letters 19, 893 (1967);T. Das, V. S.
Mathur, and S. Okubo, ibid. 19, 470 (1967).' G. Wentzel, Helv. Phys. Acta 13, 269 (1940); S. Tomonaga,
Progr. Theoret. Phys. (Kyoto) 2, 6 (1947).

known, and this makes it easy to test a few sum rules
within them. We shall erst try saturating a meson
current commutator and 6nd that it fails miserably.
We next consider some superconvergence relations,
which have been derived in the model. We 6nd con-
tradictions in the sum rules (some do not saturate) and
prove a related theorem on the existence of solutions
to a class of cutoff static models. The p-wave model is
seen to have one derivable sum rule which is valid and
another which fails.

SATURATION OF A CURRENT COMMUTATOR

We shall deal 6rst with the question of saturation
in charge-symmetric scalar theory, which may be
de6ned by the interaction Hamiltonian

IIr = gp d'r r. (Nr)y. (r),

C. Goebel, Midwest Research Conference, 1965 (unpublished);
T. Cook, C. Goebel, and B. Sakita, Phys. Rev. Letters 15, 35
{1965).


