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We use the superconvergence of certain Compton scattering (s-channel) helicity amplitudes for 6xed s
and large I, to derive a sum rule for j- and u-channel processes. The I-channel (yE~ yE} contribution
contains the well-known nucleon pole terms and the continuum, which we replace by just the m.-E inter-
mediate states; we then feed in photoproduction data. The t-channel (yy ~ EÃ) contribution consists of
the x, q poles and the continuum. Ke choose a suitable combination of superconvergent amplitudes such
that the eBects of 0+, 2+, and 1+ resonances in the I channel are eliminated. Assuming that this takes care
of most of the t-channel continuum, we get a sum rule for the m.o ~ 2y and qo —+ 2y widths, or alternatively,
by using the experimental widths, we can check the consistency of the superconvergence in question. A
brief comparison is made with related work by Goldberger and Abarbanel, and by Pagels.

Compton scattering. Ke feel that a certain aspect of
Pagels's work needs reexamination and a brief discussion
of this point ls glvcn ln thc appendix. In any case, oui
sum rule is derived from quite a diferent point of view,
using superconvergence of the amplitudes in the crossed
channels, relative to the channel studied by Pagels.

1. INTRODUCTION

'HE exploitation of Regge asymptotic behavior,
along with analyticity, has yielded in recent times

some interesting sum rules connecting various observ-
able quantities in photonic scattering processes. ' These
rules may be expected to remain as useful relations
between static properties of the particles involved and
their scattering amplitudes, inasmuch as no appeal is
made to the detailed dynamics of the system in their
derivation.

For the nucleon Compton-scattering process in the
near forward direction, one of us has calculated a sum
rule for the nucleon magnetic moment. ' In this paper, we

propose to study backwards Compton scattering and
obtain, by using a combination of superconvergcnce
and dispersion relations, the 2y-decay rates of the g and

g mesons. The possibility of such a calculation based on
superconvergence has also been suggested by Abarbanel
and GoMberger. 4 However, we use a diferent combina-
tion of amplitudes from the one used by these authors,
d.esigned. so as to eliminate contributions from the fs
pole and possible 0+, 1+ poles in the yy —+ EN channel.
%c have also included the pion photoproduction data
to estimate the continuum contribution in the yE —+ yS
channel.

It shouM be mentioned at this point that a calculation
of the + and q' photonic decay widths has also been
performed by Pagels, ' based on an analysis of forward

2. KINEMATIC PRELIMINARIES
AND NOTATIONS

Ke shall follow the notation and kinematics of Hearn
and Leader, ' of which we will only rewrite a minimal
amount here. The s channel corresponds to Compton
scattering, where s, t, and I are the standard Mandel-
stam variables. There are six invariant amplitudes in the
problem, and we will use the choice A l ~ .A6 introduced
in H-L. These amplitudes satisfy the crossing relations

A, (s,t,N)=A;(N, t,s) for =f1, 2, 3, 6

2;(s,t,g) = A, (N, t,s) f—or i=4, 5.

W, 8, p, and e refer, respectively, to the total energy,
nucleon energy, nucleon momentum, and scattering
angle in the c.m. frame of the s-channel process. C ~ 4 6

refer to the six helicity amplitudes in the s channel
described in H-L, while Mg ~ M6 correspond to helicity
amplitudes in the t channel (yy -+ Eg). We will

reproduce from H-L some of these amplitudes and
their interrelationships in greater detail when we use
them.*Research sponsored by the Air Force OfIjce of Scientific

Research, Once of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. 68-1365

f On leave of absence from the University of Southern Cali-
fornia, Los Angeles, Calif.' S. Dreii and A. C. Hearn, Phys. Rev. Letters 16, 908 (1966).' S. Rai Choudhury, Phys. Rev. Letters 19, 96 (1967).

~ By "backward" we shall mean N=O. The scattering is back-
ward then only in the asymptotic rey.on.

'H. D. I. Abarbanel and M. L. Goldberger, Phys. Rev. 165
1594 (1968).

~ H. Pagels, Phys. Rev, 158, 1566 (1967).

3. CHOICE OF AMPLITUDES AND DERIVATION
OF THE SUM RULE

Consider the following three helicity amplitudes in

the s channel:

s A. G. Hearn and E. Leader, Phys. Rev. 126, /89 (1962);
referred to as H-L.
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ImC 3,6(s,t',I')dh'=0. (3)

Equation (3) is clearly a sum rule relating residues
of poles of C3,6 to integrals over imaginary parts of the
continuum amplitudes in the t and I channels. This is
in principle the sum rule we use for evaluating the 2y
decay widths of the m' and the g, both of which occur as
poles in the t channel.

Now, from thc Hcalil-Lcadcr dc6njtjon of the g;, jt
can be seen that the m and p poles occur only in A3,
which in turn is present only in C6. The reason for our
introducing C 3 and 42 wi11. be clear from the following.

The sum rule (3) for 4'q can be written as
eo

I'e'+Re" —Ch' Im46(s—,
—t', 2'—P—s)

7f

00

+— dg' ImC q(s, 2m' —I'—s, I') =0, (4)
(~v) '

where E6" is the nucleon pole residue, E6' is the sum of
the Q and q pole residues, and m and p arc the nucleon
and pion masses, respectively.

As is well known, these amplitudes have kinematic t
singularities which have to be factored out. The
reduced amplitudes, which are assumed to be analytic
in the t plane except for dynamical singularities, are
given by

4q=@p[sin(&8)] ~

43=4 3[cos(-,'8) sin'(-'8)] '

Cq ——48[sin~(28)] '.
Further, by appealing to Regge asymptotic behavior of
the helicity amplitudes, we note that for fixed. s and
large t, C~ behaves as t (') 'f' while C3 and C6 behave
as P&'& II', where a(s) is the position of the leading
Regge trajectory in the s channel. Ke will be working
at the point s=0—the choice of this point wild, be
elaborated on below —and it may be reasonably ex-
pected. that n(0) for the leading fermion Regge pole is
less than ~~. Thus, C2 is convergent in t, whereas C 3 and
C6 are superconvergent, obeying

Photonic intermediate states have as usual been
neglected in both channels, being suppressed by a
factor e'. Now, we can assume that the I-channel
continuum is dominated by the E-vr intermediate state,
for which we will feed in photoproduction data. The
nucleon pole residue is readily available in terms of the
nucleon magnetic moments. This leaves the t-channel
continuum, about which unfortunately not much experi-
mental information is avaBable. However, this con-
tribution may be expected to be dominated by the
T=o, 2s intermediate state. (2'=1 is forbidden by
charge conjugation and G parity. ) The only established
2s resonances that qualify are the f'(1250 MeV) with
J"=2+ and a possible 0+ contribution. The latter will

occur only in the amplitudes A~ and A~ as can be readily
seen from the dehnitions of the A; in H-L. However, it
is clear from Eq. (2) that A ~ and A~ can be eliminated.

by using the super convergent combination. 4 6
—(E/m) 4 ~

instead of C6. For this combination then, the t-channel
continuum is replaced in our approximation by the
residue of the f' pole. This residue is of course not
known, but we will presently show a way of elimjnating
it. It may also be noted that possible J~= j.+ poles will

not couple to A4+Aq or A~ and will not contribute to
our combination Cg—(E/m)43. Such a pole, although
not allowed in the T=O two-pion system, might have
occurred via higher intermediate states in the t channel.
our supclconvcrgcllt amplitude ls then

E 1 Ce 8 C3
C'6—~3=

m sin'(8/2) sill(8/2) m cos(8/2)
—(s—m')' EWi

p (A,+A,) —m-
st m)

using Eq. (2).
For 6xed s, this may be replaced by

(1/~) [(A4+A&)(m+(EW/m)) —2A,]
= (1//) [(A 4+Ay)-2m —2A g] for s=0. (5)

Our sum rule is just the superconvergence relation
analogous to Eq. (4), where 46 is replaced by the ampli-
tude in Eq. (5), with the integral evaluated. at s=o.
The s' and g poles occur in As, while the f' pole can
occur only via (A4+A5) with some residue yf, since

As has negative parity. The nucleon pole occurs in all
three. Collecting the residues of all these poles as given
in H-L, we have

gNNs fr&3 gNNyfqI YfI
2pf

g2

+ [(lI n'+I n '—)(I+ )+b—-'-(I r)]—
Im[ ', mA4(g, t,o)+,'m-A 5(N, t,o)-

—2A, (N, &,0)] =o. (6)
2~2
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Hcx'c p,„and p,„refer to thc total IQagnct1c IQOIQcnts of
the proton and. the neutron, pr is the f» mass, I and. r»
ax'c 2g 2 IQatrlccs Rctlng on thc nucleon lsospnmrsq Rnd
tile cl'osslng pl'opcl"ty 111 Eq. (1) llas been used 111 thc
last integral in going from 2;(0,/I, N) to A;(I, //, 0). The
g~/»» and g/»/» are strong coupling constants, while f
Rnd f» Rrc effective ~p Rnd 'g'r'r couphng coIls'tRn'tsl

respectively, and. are related to the decay rates 1jr by
the relations

I/» I/»

f»= 81, »d f.=—81
~P &w

&y using Eq. (6) for proton and neutron Compton
scattering, the / and g decay rates can be obtained, ,
provided, y~ 1s known. Th1s constant 1s determined as
follows.

Wc note' that A4(s, t)+A»(», t) is given in terms of

2+ —4E 2m
&»+&»=— &»+, (C'»—4'»)

p' cos-,'8 sin-', 8

Prom the asymptotic and analytic properties of C~, 43,
and. 4, discussed before, we can see that A4+A» obeys
unsubtractcd. dispersion relations in t (although it is not
superconvergent). Thus,

A»(s, t,»»)+A»(s, t,N)

pe e~+, B(/.'—1)(I+r»)+k(/. ')(I—r»)j
Pf' —$ PP—I

1 " PA»(s, /', I')+As(s, t',I')j
Im dN'. (8)

(m-p) I —I
However, since A4 and Aq are odd under s ~ e crossing,

09

+
(~e)

Py 8
O=A (0,2»N', 0)+A (0,2»/I', 0)= I+—L:', (P,

'—1)(I+ )+-',/I„'(I—,)]
py

—282 5$2

LA»(0, 2»II'—I/, ', I')+A/;(0, 2»»F—I', I')j

Tlm lntcgl'Rl 111 Eq. (9) ls Ollcc RgM11 obtMncd by 111'tl'0-

ducing +-E intcDQcdiate states Rnd us1ng photoptoduc-
tion data. The fo pole residue yr is then available from
Eq. (9) and can be substituted into Eq. (6) for the»r
and g decay widths.

%C conclude this section with some explanation of
how to deal with the point s=0, at which the sum rule
is written. The amplitud. es A;(O, t,N) are related by
crossing to A;(N, t,0) which appear in the integral in
Eq. (6). As I-+»0, of course, this corresponds to back-
ward scattering, but it is unphysical in the region of
integration between N=(»II+//, )' and I=2»N'. This is
clear from Fig. 1 and also from the expression

2N (2»/»' —I)
(cos8„), 0——1+

(I—»/P)'

However, it is also clear from the 6gure that s=o gives

FIG. 1. The unphysical region of integration is shown as the
thick line. The physical region is shaded, the integration heing
carried out on&the line s =0.

a smaller unphysical region than any other value. s &0
will give a laxger unphysical range in the low-energy
end, while s&0 has an in6nite unphysical range beyond
SOIQC IQRX1IQUIQ N.

The contribution from the unphysical part for s= 0 is
obtained by wll'tlIlg thc A;(N, $,0) 111 'tcrllls of llcllclty
RIQplltudes) wh1ch expand 1n partlRl wRvcs Rs

Ime), „(N,t,0)=—Q(27+1) Im4~(N)d), „~(8„).
2p

The dl„~(8), being polynomial in cos8, can be used to
extrapolate for the unphysical 1cos81&1 region, with
the partial-wave amplitudes ImC~(N) being given by
unitarity expansion with ~E intermediate states. The
calculation is presented in the next section.

4. CALCULATION AND RESULTS

The integrands in Eqs. (6) and, (9) involve the absorp-
tive parts of the amplitudes (24+25) and A» in the
s channel. In the approximation of retaining only the
x-E intcrmed1atc stRtc, thcsc CRn bc cxpx'csscd Rs

bilinear products of photoproduction amplitudes, of
Wlllcll WC retalI1 thC S, p»/», Rlld 8»/» Waves Ollly. Tile
procedure is well known~ and the result is

Imf~, (~,~ 0)+~,(~,~ 0)3
=2 (»r/P») t

—BEq(1—cos8)nl+-', »Ng(1 —cos8)n1
—12»wq(1+3 cos8)a» g'Nlqn»'j, (1—0a)

~ Ke assume that the resonant D@~ state is excited hy isovector
photons only. See Ref. 2.
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cos8 = 1+$2s(2ms —s)/(s —ms)s 1; {10c)

and. the n's are related to the CGLN (Chew-Goldberger-
Low-Nambu) photoproduction multipole amplitud. es

jIl~y& E(~y)g by

nt (M——r~ Es +—BEt++BMs )
X {Et+—Mt+ —Es —Ms )*
—(3Et+ BMs +—Mt++Et )

X (—Et++Mt+ Ep M—s )*,—(10d)

ns= ( Et++M—t+ Es=M—s )
X (Et+ Mt+ —Es —Ms )*-
+ (Et+ Mt+ —Es —Mp )—

X ( Et++M't+ —Es= M's )—*, (10e)

ns= —(M't+ —Es +BEr++BMs )
X (BEt+—BM's +Mti+Ep )
—(BEt+—BMy +M't++Eg )

X (Mt+ Es +BEt—++BMs )*, (10f)

o.4= —850+Be+~.

The multipolc amplitudes are taken from the energy-
dependent parametrization given recently by Walker. s

The s-wave contribution is retained in the integral up to
s= 100p,', as was done earlier, '9 whereas the integration
of the other waves is carried out well past the second
resonance region. The photoproduction integral has to
be evaluated for both the proton and the neutron case,
in order that the +' and qo widths may be independently
obtained by taking the di6erence and sum of the two
cases, respectively. In our approximation, v RD multipoles
except Eo+ are the same for proton and neutron. The
6nal numerical results, upon computing the integral and
substituting for the nucleon magnetic moment, are

f,g.~N =e'(0 53+0.09), .

where wc have exhibited the pole and continuum con-
tributions separately. The result for the x meson corre-
sponds to a mean lifetime of 0.53&10 '6. The result for
the g meson of course depends on the g-S coupling
constant and if wc use the value obtained by SalP' in
his 6t to the reaction s+X -+ rl+X, we get for the rl' a
width of 65 eV.

R. L. Walker, quoted in Rd. 9.
9 S. L. Adler and F. J. Gilman, Phys. Rev. 152, j,460 (1966).
rs J. S. Ball, Phys. Rev. 149, 1191 (1966).

ImA s(s, t,0)= (2' W/p) P,s-q(1 —cos8)ns

+,'q(1-+3 cos8)ns+-', qn4j; (10b)

1S thc C.ID. momentuIIl of thc ploD ln tIM reRctlon
y+E~rr+X corresponding to a total c.m. energy
gs; cos8 is the scattering angle in Compton scattering
corresponding to e=0:

S. COMMENTS

The +' lifetime agrees reasonably with experiment. "
For the q meson, experimental information is much less
dclnite than with the mo meson. Our result for thc q
meson di6'ers from that of Pagels' roughly by a factor
of 2, and both are in considerable disagreement with a
recent value of 1.21&0.26 keV obtained by Bemporad
et al." This last result is, however, far from being a
con6rmcd one and we must await more precise experi-
mental values of the g width for an assessment of the
result for the g width. %C would like to emphasize,
however, that there is almost a total cancellation
between the pole and the continuum contributions for
the q' sum rule and hence the g' width is extremely
sensitive to slight variations in the latter. The con-
tinuum coDtrlbutloD CRDIlot bc calculated vcI'y pI'cc1scly
because of lack of experimental information. The agree-
ment otherwise of the q' width with experimental values
is thus not a reasonable measure of the validity of our
sum rules. However, when the contribution of the
meson-pole term to the sum rule is small compared to
other terms, as is true with the g pole in our case, the
sum rule should be more properly regarded as a con-
sistency condition to be satis6ed by the scattering data
rather than a way of calculating the meson decay
widths. From this point of view, the g sum rule seems
to be satis6ed quite reasonably by experimental data.

APPENDIX

A 1-channel Regge-pole term in As(s, 1) has the form

p(/) t»'(1—4ms)»s- I(')
E„(s,t) =

Sinmn A.

2s—2m'+f, 2m' —2s—& ~-
X P (g& +P„ol

L~(1 4-')J»s — L1(1—4 s))»si

(A1)

p(/) is determined by' the residue of the Regge pole
whereas A is a scaling factor. At 3=p', this expression
1cduccs to RD usual Fcynman pole. Two RssuolptloDs
now enter Pagels's derivation. The function p(1) is taken
to remain unchanged as we go from the pole to the
point I,=O. This may be reasonable but has to be
cxRIQlncd. The second assumption RITlounts to sRy1Qg
that the integral

" ImR„(s', 0)

sp
s' —

equals the Feynman pole contribution at 1=0, where so
is a point somewhat above the resonating regions. On

"I'or references on the experimental value of the H lifetime,
see Ref. 5."C.Bemporad et a/. , Phys. Letters 2SB, 380 (1967).
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evaluating, one easily sees that it differs from the pole
term by a factor

2s~(o) L($o—rtts)/A$&(&)

assuming n(t) to be linear in t. We cannot determine

this factor, since we do not know h., but for the g meson
this can be quite diBerent from unity. Both the behavior
of P(t) near t=0 and an estimate of h. can be obtained
from high-energy Compton-scattering data (Regge
region), for which we have no information so far.
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Use of Born Approximations in N/D Calculations

P. D. B. CQLLINs AND R. C. JQHNsoN
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The N/D equations have been solved with the first, second, and third Born approximations to the left-
hand cut, for nonrelativistic, single-channel potential scattering, with potentials involving combinations
of attraction and repulsion of diferent ranges, and the results are compared with the exact solution of the
Schrodinger equation. It is found that for the sort of potential strengths which occur in strong-interaction
dynamics, the third Born approximation is satisfactory. It is known that the 6rst Born approximation,
which is commonly used, suGers from several defects in that long-range repulsions can produce attractive
e6'ects, and "ghosts" appear on the physical sheet, and we explore the way in which the approximation
breaks down. It is concluded that in dynamical calculations, such as those involving the strip approxima-
tion, much more satisfactory results are likely to be obtained if the left-hand cut is calculated from a few
iterations of the potential.

I. INTRODUCTION
' 'T has been known for some time that the forces which
~- generate strongly interacting particles are likely
to contain both attractive and repulsive components.
In particular, it is known that the exchange of a
Pomeranchon (E) trajectory gives rise to a long-range
repulsion. '

This has created severe dif6culties for the usual sort
of ftf/D calculations which are used to solve dynamical
problems. ' In such calculations it is usual to impose
unitarity on an amplitude whose left-hand cut is given
by just the first Born approximation; that is, the left-
hand cut of the amplitude is assumed to contain just
the cut of the potential. This is not, of course, the same
as taking the erst Born approximation to the amplitude,
in that exact unitarity (or at least exact within the
framework of the possibility multichannel calculation
which we wish to perform) is imposed on the right-hand
cut, but the eGects of the reaction to the potential on
the left-hand cut are ignored. It has been found that if
a repulsive force is combined with an attraction (the
two having different ranges), the effect of the repulsion
if often to give stronger binding, i.e., to act as an
attraction.

This fact was commented on by Kayser, ' and has
been noted since by many authors, ' "particularly in the

' G. F. Chew, Phys. Rev. 140, 81427 (1965).
2 P. D. B. Collins, Phys. Rev. 142, 1163 (1966).
3 B.Kayser, Berkeley Report, 1965 (unpublished).
s G. Auherson and G. Nanders, Nuovo Cimento 46, 78 (1966).' R. F. Sawyer, Phys. Rev. 142, 991 (1966).
~ B. Kayser, Phys. Rev. 165, 1760 (1968).
~ H. Banerjee, Nuovo Cimento 50, 993 (1967).

context of the Dashen-I'rautschi type of perturbation
calculation. '

What is worse, if the repulsion is really strong it is
possible for "ghosts, "by which is meant in this context
resonances with negative residues, to appear. ' These
violate causality and so must be due to the inadequacy
of our approximations.

In calculations involving the "new form of the strip
approximation" it was found necessary to remove the
I' repulsion by normalizing the potential, ' though it was
realized at the time that the validity of this procedure
was doubtful, and that the I' repulsion probably repre-
sents the physically important sects of the presence of
in6nitely many channels with thresholds above the
resonance region. '

It is to be expected that these defects of the strip
approximation would be removed if we were able to
use an exact expression for the left-hand cut, but in
general, this is prohibitively diKcult to calculate. The
question thus arises as to the order of the Born approxi-
mation to the left-hand cut which is needed to give
satisfactory accuracy in this sort of problem. The best
way of trying to assess this is to examine the situation
in single-channel potential scattering, where we can
compare the solution of the X/D equations, for various

types of potentials treated in various Born approxi-
mations, with the exact solution to the corresponding
Schrodinger equation. We know, of course, that if we

8 R. F. Dashen and S. C. Frautschi, Phys. Rev. 135, B1190
(1964); 137, 1318 (1965).' R. F. Dashen, Phys. Rev. 135, 31196 (1964).


