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Relations among the Superconvergence Conditions for Forward Elastic
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Superconvergence Conditions for Forward Amplitudes~
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The superconvergence conditions for forward elastic scattering of two spinning particles are discussed.
The crossing relation implies that the t-channel forward amplitude is related to those s-channel forward
amplitudes which do not Qip helicities by more than 1. Therefore, in general, the superconvergence con-
ditions for the t-channel forward amplitudes do not exhaust all possible superconvergence conditions for
forward amplitudes. A. general method to obtain all independent superconvergence conditions for the s-
channel forward amplitudes is described. The linear relations among the derivatives (with respect to t) of
the t-channel helicity amplitudes at t=o are derived and discussed.

I. INTRODUCTION
' 'T was suggested by de Alfaro, Fubini, Rossetti, and
~ ~ Furlan' that, because of the kinematic structure of
the scattering amplitudes for particles with spin, the
high-energy behavior of certain amplitudes leads to
superconvergence conditions. A general way to obtain
superconvergence conditions for particles with spin is
to construct amplitudes free from the s-kinematic
singularities directly from the t-channel he1icity ampli-
tudes. ' However, the superconvergence conditions for
the forward-elastic-scattering amplitudes need special
treatment for the following reasons: (a) At t=O, the
t-channel helicity amplitudes are no longer kinematica11y
independent of each other; therefore the corresponding
superconvergence conditions are related to each other;
(b) the s-channel forward amplitudes which flip
helicities by more than 1 do not contribute to the
f-channel forward amplitudes. Therefore, in general,
the superconvergence conditions for the t-channel
forward amplitudes do not exhaust all possible super-
convergence conditions for the s-channel forward
amplitudes. ' The superconvergence conditions for
forward amplitudes are investigated in a series of
papers. In the previous papers, '4 we discussed the
linear relations among the t-channel forward ampli-
tudes and showed that there exists a set of t-channel
helicity amplitudes with the following properties (at
1=0): (a) The corresponding superconvergence condi-
tions are independent; (b) the superconvergence condi-
tions for any other $-channel helicity amplitude are
linearly related to the superconvergence conditions for
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Trueman, Phys. Rev. Letters 17, 1198 (1966). This subject was
brieQy discussed, within the framework of the Regge-pole model,
by M. Gell-Mann, in ProceeChngs of the Thirteenth Iwternutiorbal
Conference on High-Energy Physics, Berkeley (University of Cali-
fornia Press, Berkeley, Calif. , 1967).The author would like to thank
Dr. J. M. 9'ang for calling his attention to Gell-Mann's article.

~ K.. V. Lin, Phys. Rev. 163, 1568 (1967).
4 K. V. Lin, Phys. Rev. 167, 1499 (1968).

this set of amplitudes. In this paper, we shaH discuss the
linear relations among the derivatives (with respect
to 1) of the 1-channel helicity amplitudes at 1=0 and
show how to obtain all independent superconvergence
conditions for the s-channel forward amplitudes.

Using only the Trueman-Wick crossing rely, tions, s

Wang developed a general method to identify the
kinematic singularities and zeros of the helicity ampli-
tudes. ' It was pointed out that the $-kinematic zeros
of the s-channel helicity amplitudes imply kinematic
constraints among the $-channel helicity amplitudes. ~

We show in Sec. II that these kinematic constraints in-
troduce certain linear relations among the derivatives
(with respect to L at 1=0) of the 1-channel amplitudes.
The algebraic structure of these linear relations and a
general method to obtain all independent superconverg-
ence conditions for forward amplitudes are discussed
in Sec.III for the special case where one of the scattering
particles has no spin. The general case is discussed in
Sec. IV. Several mathematical details are given in the
Appendices.

Ir. LImEAR RELATIONS AMONG THE DERIVA-
TIVES OV ~-CHAmmEL HELICITV

AMPLITUDES AT t=O

We consider the elastic scattering of the particles c
(spin J,massM, ) andb(spinJ', massMs):u+b ~ a+b.
Their helicities are denoted by u, p, n*, and p*, re-
spectively. We use the convention J~&J'. The crossed
channel is de6ned to be 5+b -+ a+a, where a means the
antiparti. cle of u, and the corresponding helicities are
P', P", n', and u", respectively. The square of the
center-of-mass energy in the direct (crossed) channel is
s (1). The s-channel helicity amplitude f ~s~ s'(s, t) has
a kinematic factor d"* &*~", where )e—=n —p and
p*=n* P* ",—The—1-.channel helicity amplitude

e T. L. Trueman and G. C. Wick, Ann. Phys (N. Y.) 26, 822
(1964).

eL. L. C. Wang, Phys. Rev. 142, 1187 (1966). We follow
Wang's notations in this paper.' K. Abers and V. L. Teplitz, Phys. Rev. 158, 1365 {1967).

e Y. Hara, Phys. Rev. 136, 3507 (1964).
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f ~,p p '(s, t) has a kinematic factor t'" if and only
if the number )(—tb (h=—n' —u", p,=p' —p") is odd. 's
We define

d(n"n)d(u'n*)d(p"P)d(p'P*)(~-/~t")
) t

) —p =odd
X[t ''-(K+st) /-f. ..- p p- (s,t)5

f;p*,,p'(s, t)= t —"* ""-f *p*,ep'(s, t) .
Under parity symmetry, ' we have

=0 I)(*—/ *I»m+1,
)).e—/be = eVen, (Ref. 11)

f:p, p'(s, t)=(—1)'* &*f .* p, p'(s, t),

f," p.p"'(s)t)=( 1)—" f-, ,- p. p-'(s)t).
(2)

=m!K '/sF,—*p~, p(s) if lV —/)*l =2m+1, (8)

where

f:P,.P (s,t) = 2 d...* (z~+y)d.„.s(z~—@)
~l ~l I Pl PI I

Xdp p '(zx (t)')dp"p—'.(z7I+(t)')f ."pp"'(s, t),, (5)

where

sing= (s+M, ' Mb') t'"[(t—4M ')K5-
sin)t)'= (s+M bs M, ') t'"[(t—4M b') K5—

At 3=0, we have the following kinematic constraints~:

[~"/~(t'") "5l: 2 d- -*'(l +4)d-"-'(l —0)
O, I ~l I pl pl r

Xdp p"(z~ 0')dp-p'—(z~+4')f- --.p p '(s t)5

=0 if l) *—/*l) Ib,

=rb!f:p .p'(s, O) if l)*—t)*l =It. (6)

The case of m=1 has been discussed in Ref. 3. Carrying
out the differentiation, we have (t=o)

d(n"u)d(u'n*)d(P"P)d(P'P*)
I II pI plI

X -p =even
X(g)N/gt)))) f, „,„)(st)

Time-reversal invariance implies

f-*p,-p'(s, t) = (—1)"* "*f-p,-"p*'(s,t)

f..~" p.p"'(s)t) =( 1)"—f, .~-.
p .p. '(s)t).

It was argued by Hara' and Wang' that all
s-kinematic singularities and zeros of the amplitude

f .;.p.p'(s, t) are included in the kinematic factor
(cos'ze))~" +~(sin-'gz, )~" )"~, where the angle 0, is the scat-
tering angle in the t channel. We have

sin8)=2( —K—st)'"[(t—4M, ')(t—4Mb')5-'" (4)

where
K= [s (M—,+M b)'5[s (M.—Mb)—'5

The s-channel helicity amplitudes are related to the
3-channel helicity amplitudes by the following crossing
relations'".

d(n"n) =d ".I( ', z)-,

d(P"P) =dp-—p'(z~)
l&*—t

*IF,...,(s)= 2 (r!) ~& f:p-. ..p (s,O),
&=o

B=C~(n J—,+n*t')+Cb(P'(/+P*J)if ,)),*)/b*

=——C'( nt+ueJ) —Cb(P)+P*f) if V(/b*,

Ca= 2 1(g/—gtl/2)y

=s(s+M.' Mb—')(4Mb) 'K '/', —

C b 2
—1(g=/ gt 1/2) y)

=i(s+Mb' M,')(4Mo) —'K '/',

the operators (n$)", (n*t')", (Pf)"', and (P*P"' commute
with each other and are defined by

( L)"f "p.-p'(sO)=—g( )g( —1)
Xg(n r+1)f:—p(. „&p'(s, ,o),

(n*B'f-*p,-p'(s, O) =g( u*)g(—u*—1)"—. —
Xg(—*—«+1)f,.*„*.. '(s,O),

(P*L) f:p,.p (,o)=g(P*)g(P*—1) — "~
Xg(P* r+1)f~~(p~ „)—~p'(s)0) )

(Pj')'f:p*-p'(s, o)= g, ( P)g(—P —1) "——
Xg(—p —r+1)f "p"(p,&'(s, o, ),

g(n) =—[(J—n+1)(J+n)5'/s,

g(P)= [(J' P+1—)(~'+-P)5'",

and the operators (nt')", ( J,u)", (PJ,)"', and (P*$))" are
de6ned in a similar way.

Equations (7) and (8) are derived in Appendix A.
Note that the validity of these equations does not
depend on the assumption of time-reversal invariance.

Equations (7) and (8) are equivalent to the following

equations:

d(u "n)d(u'u*)d(P'P)d(P P*)f...-, ,-'(s)t)

=0 if lh*—p,*l)2m,

V—
p,
*=odd, (Ref. 11)

I II pI pll
X -p =even

=0 if X —p, =odd,

=m!F p, p(s) if l)(*—p*l =2m, (7)

'M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (j.959).
&b I. Muzinich, J. Math. Phys. 5, 1481 (1964)(,

=t~~* )*~/'[F p, „p(s)+0(t)5 if )),
*—/b*=even, (9)

"These identities folio~ directly from parity symmetry
Lace Eq. (2)j.
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I II pl pit
& -p =odd

d(n"n)d(n'n*)d(P"P)d(P'P*)
ll

X =odd

d(n "n)d(n'n*) T..""(0)

=0
XI t 'I'(K'+st) 't'f ",s s"'(s,t)g

if X*—p,
*=even,

=0 if ~X*~ &2m+1 or @=even,
!F(n~n) if IX*I =2m+1. (12)

" 'EK ' F 's', s(s)+O(t)j We define

if y*—tl,
*=odd, (10) e!G"(n*n)= —Q d(n"n)d(n'n*) T. ""(0)

I II

where 0(t) means "of the order t as t ~ 0."
The forward amplitudes F are all kinematically

independent. (The amplitudes which are related by
parity symmetry or time-reversal invariance are con-
sidered to be the same amplitude. ) The amplitudes F(s)
have the same high-energy behavior as the forward
amplitudes f(s,0). Equations (7) and (8) imply that
certain linear combinations of F(s) have kinematic
factors of the form K"" ( s" at high energy), where tt
is a positive integer. In the cases of low spin, these
combinations can be found directly. We shall develop
a general method to 6nd these combinations.

In Regge-pole theory, Eqs. (7) and (8) imply certain
conspiracy conditions among different Regge trajec-
tories. "The sPecial case of J=J'= xp (nucleon-nucleon
scattering) has been discussed by Volkov and Gribov. "

f-"-(t)=f- p, -p'(s, t—),
T .,„(t)—=f . "„'(s,t) if A=even,

K"'t '"(K+—st) '~'f ~ '(s t)
lf X= odd,

Ta."(t)=(K+st)- ' "f~—.~- pp'(s)t) if:—t-i P(K+ st)-li l &Pf, &(s,t)

F(n*n)=—F ~p, p(s),

T..-"(t)=—(~"/~t") T- --(t),
e—=0 if J= integer,

if J=half integer.

) =even,
if P =odd,

Using these notations, Eqs. (7) and (8) can be ex-
pressed in the form

d(n"n)d(n'n*) T; "(0)=0

III. FORWARD ELASTIC SCATTERING OF A
SPINLESS PARTICLE BY A SPINNING

PARTICLE

In this section, we shall discuss the superconvergence
conditions for forward amplitudes in the case of J'=0.
We use the following simpli6ed notations:

) =even
if

~

X*
~

=even(2e,
d(n"n) d(n'n') T ~ ""(0)

I IIa,e
) =odd

if ~)i*
~

=odd(2s+ 1. (13)

The functions G are all kinematically independent and
can be expressed in terms of the amplitudes f(0) and
their t derivatives. The orthonormal property of the d
function implies that T"(0) for e&0 are linearly related
to both F and G. However, certain linear combinations
of T"(0) can be expressed in terms of F alone.

Note that the high-energy behavior of the forward
amplitudes f(0) is quite different from that of their
t derivatives. For example, in Regge-pole theory, we
have

Lf(0)]-'(8"/Bt )f(t) ~i p~CDn(s)j~ as s-+pp .
On the other hand, we have the following restrictions
imposed by unitarity and analyticity':

~
(rt"/8t") f(t) ~

g=p & Cf(0)Lln(s)) ".
Therefore those linear combinations of T"(0) which do
not depend on G have much better high-energy be-
havior than the individual terms.

The algebraic structure of Eqs. (11) and (12) is dis-
cussed in Appendix B. The case of m=0 has been dis-
cussed in Ref. 3. It is shown in Ref. 3 that those for-
ward amplitudes T(0) having different s-kinematic
factors are all kinematically independent. Let us choose
a set of T in the following way:

T,(t)=T . . .' (t), (X;( =i=0, 1, , 2J.
Then any amplitude T(0) other than T;(0) is a linear
combination of T

T; -(0)— g C( ', ",i)T,(0)=0, (14)

i —X =even

where the C are constants. We apply this result to
Eqs. (11) and (12) for v=1. Since these equations are
linear, we have

T- «-'(0) —r. C( ', ", )T"(o)

X =even
if ~7*(&2m or a*=odd,

P( * ) if [X)=2e, f0+j =2 if 'A =even,
=3 if X =odd

F(n*n) Pd(n"n) d(n'n~)

"A general discussion on this subject was given by M. L.
Goldberger, Comments Nucl. Part. Phys, 1, 63 (1967).

~3 D. V. Volkov and V. N. Gribov, Zh. Eksperim. i Teor. Fiz.
44, 1068 (1963) LEnglish transl. : Soviet Phys. —JETP 17, 720
!1963l].

—P C(n', n",i)d(n;"n)d(n n*)j. (15)

'4T. Kinoshita, Jectlres ie Theoretica/ Physics (University of
Colorado Press, Boulder, Colo. , 1965), Vol. 7B.
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Note tha, t these linear combinations of T'(0) do not
depend on G. Equation (14) implies that we can write
the left-hand side of Eq. (15) in the form

struct a new set of forward amplitudes by taking proper
linear combinations of F with ! X~!=2r (2r+1) such

that they have s-kinematic factors of the form E"
(E"+'~'), where n=O, 1, , J—n —r (J+v r—1—).
However, not all of them are kinematically independent,
although the amplitudes having different !X~! are all

kinematically independent. We shall prove in Appendix
8 that these new forward amplitudes have the following

properties (for a fixed !X*!):(a) Those amplitudes
which have different s-kinematic factors are kinematic-
ally independent; therefore the corresponcfjng super-
convergence conditions are independent; (b) in general,
there are several amplitudes which have the same
s-kinematic factor; in order to obtain all independent
superconvergence conditions, only one of them needs
to be investigated.

The following forward amplitudes are all kinematic-
ally independent and free from s-kinematic singularities:

(«)3, e=o 1 ~ ~ J—e

(» 'LT -(»)—Z C(u', u",i)T,(»)j}~=o

~ -()—2 ('")
g(E+g») &'-i~I) /22', .(»)g}, 0

In other words, these linear combinations of F with
!X*!=2(3) have s-kinematic factors of the form E"
(E"+'") where n=O 1 J—r —1 (J+v—2). No«
that there is no linear combination of F with !X*!= 2(3)
which has an s-kinematic factor E~ ' (E~+" '").The
reason is that there is only one amplitude among all T
such that !X!=2J or 2J—1. In general, we can con-

&~.~-2-(0) =E "L 2 d(Ju)d(J —2n u)F

TJ,g 2~i(0)=E " '»2L Q d(J'u*)d(J —2n —i, u)F(u~u)), n=0, 1, , J+e—1
n, a@

(x~j =t

(» 'L&J-.,~- 2.(»)—
$ =iy2j 0 j e e ~

~ ~ ~

C(ij,n, r)(K+s») Tz,+;,z,+; 2 2;(»)j}~ o

=E"g F(u*u')Ld(J —r, u*)d(J—r—2e, u) —Q C(ij e,r)d(J r+i, u—*)d(J r+i —2e 2—j,u)—$,
e,a+ slT

)x~) =2r
n=o 1 J—~—r)

(»-'L&~ ..~-, 2. i(») — Z C*(ii,nr)(E+»)'&~ w; ~-,+; 2 ~ 2;(»)j}~-0
~ s ~

0 o ~ a g,

F(u*u) Ld(J—r, u*)d(J—r—2n —1,u) —P C*(i,j,n, r)d( J—r+i, u*)d(J—r+i—2n —1—2j, u) j,
)X*j =2r yj.

where
C(ij,n, r) =C(ij,n,r) L(2J r)!(2J—r——2n)!r!(2n+r)!O'I'

e= 0, 1, , J+s—r—1 (16)

XD2J—r+i)!(2J—r—2n+i —2j)!(r—i)!(2n+r—i+2j) g-'»',

C*(i,j,n, r) = C(~,g, n, r) I (2J r)!(2J —r 2n —1)—!r!(2—n+ 1+r) ~j'»'

)&P(2J—r+i)!(2J—r—2e—1—2j+i)!(r—i)!(r+2e+1—i+2j)!$ '"
p2n+m —1)

C(m, m, e,r) = (—1) +'m-'(2e+ 2m)! m —1 f

»'A+m —1) (A+ m —3)
C(m, O,n,.)=(—1)-+~! !+(—1)-!

&A —1)
A=—C(1,0,n, r) =2J—2n —2r+2,

m —I ~ r7

C(m, m —m', n, r) =—C(m', O,n, r)C(m —m', m —m', n, r), m=m'+1, , r

]2n+m)
C*(m,m, n, r) = (—1)™+1!

m

A+m —2)
!C*(m,O,e,r) = (—1)~+'

C*(m, m —m', n, r) = —C*(m',O,n, r)C*(m—m', m —m', n, r) .
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From these amplitudes all independent superconverg-
ence conditions for forward amplitudes can be obtained.
The proof and a simple way to calculate the coefficients
of Ii in the above expressions are given in Appendix B.

a',a",p', p"
X —

tlt, =odd

=0

d(n"n)d(n'n*)d(13"!3)~(P'13*) T- -- p p "(0)

if
I

X*—@*I)2n+1 or = even,

if IV—
ted*I )2n or =odd,

=n!F p,.p(s) if IV—p,*I=2n, (17)

IV. FORWARD ELASTIC SCATTERING OF
TWO PARTICLES WITH SPIN

We use the following simplified notations:

r (r') =0 if J(j')= integer,
jf J(J') =half integer,

T, „p,p (t)=j ",p p '(s, t) if X—p, =even,
E"'t '—t'(K+st) "'j ~ ", p-'(s, t)

if X—IM= odd,
T&g&rt prpsr (t) —= (8 jBt )T&g~&g&&,p~p&1(t) ~

(t) lt —IM-pl/21' —Ii,—pl/2t wj, „p—,p«(s t)

where
ip== 0 (1) if X—ti= even (odd),

Kg=LE'+st+(t —41!Ii.')(t—4~5')4 'j'"
~L(t—4M, ')(t—4M t,')4 'j"'.

The amplitudes F are free from s-kinematic singular-
ities. '

Using these notations, Eqs. (7) and (8) can be ex-
pressed in the form

d(n"n)~(n'n*)d(P"P)d(tO*)T- ",p p-"(0)
I rl pl pl/

) —p, =even

=n!P *p*,.p(s) if IX*—ti"
I
=2n+1 (18)

The algebraic structure of Eqs. (17) and (18) is dis-
cussed in Appendix C. The case of m=0 has been dis-
cussed in Ref. 4. We shall describe a general method
to construct a set of forward amplitudes which are all
kinematically independent and free from s-kinematic
singularities; from these amplitudes all independent
superconvergence conditions for forward amplitudes
can be obtained. Since the essential arguments are the
same as those used in Sec. III, we shall give our result
without proof.

We shall review brieQy the result of Ref. 4. The
/-channel forward amplitudes can be divided into two
groups, according to whether X—@=even (group 2)
or odd (group B). The amplitudes of group A (B) are
linearly related to each other. Among all amplitudes
of group A (B), there exists a subgroup of amplitudes,
say T;, which satisfies the following properties: (a)
They are kinematically independent; (b) any other
amplitudes of group A (B) can be written in the form
T~~-, p p(0)=g;C~T;, whereC, =O if IX;+ti, I& IX+ti
or IX;—ti, I

& IX—tiI, and not all of the C; with IX;+ti;
= I) +p I

are zero. The T; of group A can be chosen in
the following way:

(X;&ti~) =(2m+p, +p)"+', (p, +2m+p)", m=O, 1, , J'—e', p=0, 1,
=(2J'+2p, +2J'%2m)"+', m=0, 1 ''' J e p=1 '' J J
=(2J'+2p —1, +2J'+2m+1)"+', m=0, 1, , J'+v' —1, p=1, , J—J'+ Ig —p'I; (19)

where E is the number of T; having the same 4 and p;, and any two amplitudes (say, T; and T,) havmg the same
7,; and p; satisfy the restriction (this result is more general than that of Ref. 4; see Lemma 9 of Appendix C)

u, ' ~)O+~ .;)« f -I~'I&I.,I,
(n' n')(n +—n' 7;)g0 —if I7;I & Ip I.

The T; of group B can be chosen in the following way Lwe de6ne r=J n', s—=J'——p—', s'—=J'—p", and use the con-
vention X)~ 0; we choose all possible values of r and s if tt )&0 (r and s' if tt &0)j:

(X;,p;)~=(2m+1+P, &P)'"+', m=0, , J'—1+@', P=O, , 2J'—2m —1;
=(p, +2m+1+p)'"+', m=0, , J'+e' —1, p=0, , 2J' —2m —1, 2m+1+pg2J';
=(2J'—2m —1, &2JI)™+1 m=0, ~ ~ ~, J' 1+m', —
=(2J, +2J'+1+2Iv —v'I+2m) +', m=O, ~, J'—v' —1+2';
= (p, +2J'+m)™+1, m= 0, , 2J', 2J'&p&2J 2J'—m+ p= odd.

we choose all amplitudes with ),=2J;

r=O, 1, s(s') =0, , -', &—1 if lhi02J, li;& Ip;I, and 1(r= even,

r=0, 1, s(s') =0, , -', (1V—1), r+s(s') &-,'(X+1) if X;N2J, X;) Iti, I, and 1lr odd

r=0, 1, , E 1 if-
s(s') =0, 1, r=0, , 2$—1 if Iti;I 82J' and

(20)
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Let us now consider the t-channel amplitudes 2'(t), with X—ti = even. We shall classify them in the following way.
The amplitudes are divided into several subgroups. The amplitudes in each subgroup satisfy one of the following
conditions (for a definite number n within the range 0&~ n&~J+J'—

I
n —v'I):

for X& ltil:
r+s(s') =n+N 1—, r=n, 2J—X&~ 2r, 2J' —I pl &~ 2s(s');

2J—X—r+s(s')=n+N 2, 2—J—X—r=n —1, 2J—1—X&&2r, 2J'—1—lpl )~2s(s');
for lt l&l~:

r+s(s') =n+N 1, s—(s') =n, 2J—X&~ 2r, 2J' —Ital &~2s(s');
2J—X—r+s(s') =n+N —2, s(s') =n—1, 2J—1—X&~ 2r, 2J'—1—Ital ~& 2s(s'),

where the number N is a function of X and ti given by Eq. (19).We shall denote the amplitudes corresponding to n
by I „(t).

Similarly, we shall classify the t-channel amplitudes with X—ti= odd by the following conditions (0&~ n&&J+J
+ Is—s'I —1):The amplitudes with 'A=2J belong to the subgroup corresponding to n=0;

for X/2J, X& Ital, and N=even:

r+s(s')=n+~N 1, r=n—, 2J—X~&2r, 2J'—lp, l &~2s(s');

2J X r+—s(s'—)=n+ ,'N 1, -2J—'A r= n, —2J——1—X)~2r, 2J'—1—
I p I

&&2s(s');

for X/2J, X& I p, l, and N= odd:

r+s(s')=n+sN »r=—n& 2J X&~2—r, 2J'—Ital ~&2s(s');

2J X r—+s—(s') =n+s(N+1) 2, 2J —) r=n—, 2—J—1—X&~2r, 2J'—1—ltil )~2s(s');

for lt I
=2J'&):

r=n+N 1, 2J—X&—2r;

r+s(s')=n+2N 1, s(s')—=n& 2J—X~&2r, 2J'—Ital ~&2s(s');

2J ) r+s(s')—=n—+ ',N 1, s(s'-) =n—, 2J—1—X~&2r, 2J'—1—Ital ~) 2s(s'),

where N is a function of X and p, given by Eq. (20). We shall denote the amplitudes corresponding to n by I„„(t).
The following forward amplitudes are kinematically independent and free from s-kinematic singularities:

It(y )=It -Ii+yl/2' —I&—~l/2I

P:;,.s(s)D„,;(n*P*,nP), n=0, 1, ",J+J'—Iv—&'I;

D.„( *p*, p)= d(. ,;", )d(. ,—*)d(p.,;",p)d(p. ,;,p*)
—g C(n, i,nt, j)d(a„,;",n)d(n„, ,n*)d(p /', p)d(p„...p+);

m, j

=E:( -,n t -,n) P p, p(s)D„,s,*(n*p*,op), n=0, 1, ~ ~, J+J 1+ I
~

D-,.*(~*P*,~P)=d(~-.n" ~)d(~-.'-~*)d(P-."P)d(P-. u', P*)

—Q C~(n, p,nz, g)d(n~, «,n)d(n~, ', (p)d(p «p)d(p & pe)
na, q

where
C(n, i,nt, j)=0 if ll~, ,+ti„„l& IX„,,+p„,;I or Iz„;—p„,l & I),

C*(n,P,~,v) =»f I&.,.+t -..I & Il-,.+t - , I
or Il, n t. ..I

& I&-,, u. ,, l
. — —

A general way to determine the numbers C and C* is described in Appendix C.
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APPENDIX A: DERIVATION OF LINEAR RELATIONS AMON|"
DERIVATIVES OF t-CHANNEL AMPLITUDES

We shall derive Kqs. (7) and (8) in this Appendix. Several useful properties of the d function are summarized
here, namely, '

~.,'( -B)=(-&)'-"& .,.'(B)=(-&)""d .—.'(B),

2(B/BB)A, '(B)=g(p)A, sc-&'(B)—g(—~)d~,.+~'(B),

2-'[(~+~) '(&-~)!J-"'(*+~)'+ (~-y)'-"=2 &~.'(-, )*'-"~'+"[(~+l)!(~-l)!]-'I,

d,„'(B)A„s(B)= B„„..

Using these properties, we can rewrite Eq. (5) in the form

(Al)

(A2)

(AB)

(+) (-)
f;;(sr)=P M+f. ;,;-'( s~)+[~( A+ s)$' 'I+M+[V'I'(I+s&) 'I'f...--, ,-( ~)g if y*—„*=~ (A5)

where

M+= 2'[d~—-~s( ',x y)d-~. ~—~ (,'s+p)(E-p-ps'( ,'s+qV)(-Ep p*s'(-', s —y')

~d---'(! +~)~- (! -~)dp-p'(! ~')dp p"(!-+e)j,

II pl pit
X —p even

"p'p"
k -ga =oclcl

The follovnng functions are analytic functions of t at /= 0'8:
f~i+~~ p~p~~ (s&f) &

where g—p= even

'"f ~ -,p.p-'(s,-f), where X—p= odd,

Equations (7) and (8), which correspond to m= 0, have been discussed in Ref. 3.Let us assume that they are true
for all ns &~ I, where m is a positive integer. At t= 0, we have [see Eq. (6)j

(+) (-3 M& /0+1) M& ted+1
(B"+'/@"+')L2 M'f- ",p p '(V)+ 2 M f- --,p p-'(s, ~)j=Z I l~.++&.-o k r J

I&*—p,'~ =an eve»n«g«»~+2,
=(~+ )'1f- p.-p'(s, 0) & I&*—v*I=2~+2,

~

-." ~=—I![(n,—r)!r!$—'fN)

kii

(+)
A„+=—Q(B"/BP)M+(B"+' "/Bt"+' ')f ~ - p p-'(s, t),

(—)
2,—=Q(B"/Bp)[P'(E+st)'"M —$(B"+' "/Bt"+'—")[t '('(E+st) '12f ~ „p,p„g—(s,])j. —
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(at 1=0)
Using Fq. (A2), we can differentiate M+ and [P"(E+st)'12M j in a straightforward manne dorwar manner an plove t at

g,+=0 if ))(*—p*) =an even integer&2m+2 and «QO,

2(@+1-t)
=[«!/(2«)!]II'"(~+1—«)! 2 («'!) 'If"'f-*e .-e*(s 0) lf I)(*—~*I =2&+2 and «WO

gal

~ + 2a p p — an t'

A„-=0 if ~)(*—Il*~ =even&2e+2 or «=0,
2(M1-r)+1

= (—1)[«!/(2«—1)!)e' '(m+1 —«)! («'!) 'H"f p, e'(s,0) if ~V—p*~ =222+2 and «~0. (A8)

It follows that 22+= 0 at t= 0 if (
X*—p,*)&20+2. If ()(*—p,*(= 222+ 2, we have (t= 0)

(+)
~ 2'—= 2 d(a"a)d(a'a*)d(!3"&)d(P'P*)(~"+'/@"")f- --,2 2-'(V) =If*f:2 ..p'(s, O),

~+2 t(22+ 1
II*—= (~+1)'+ Z I («')L(2« —1) 'j '(~+1—«) '

2 (~1-r)+1

0

~+2 (22+1
(«~ () 1+2g+t' —1-

=2k «

2 {m+1-r)
X«![(2«)!j—'(22+1—«) ( g («'()-%'2~"

t&+2 2n 2&+2 —(2«+« —1 «+2 2n-2r+2 /2«+«
=(.+1) t 1+2 Z

~

[(2«+"-1)~j-'II'~"-'-Z Z I i[(2«+")tj-'Jf ~"
~'-0 E 2r—j. "-2 &2«i

2n+2

=(~+1)! 1+ g (P!)-'II'
@~1

t( P 2n+2 fP
Z I

—2 (P!) 'lI" Z
&2&—1 — «&..& (2&)

=(I+1)!Z (P!) 'If'.

In the last step, @re have used the identity

0=(1—1) =1yg
~ ~(

—1) .
" fp'!

,=l &ri

Equation (8) can be proved in a similar way.

a~I, satisfy Eq. (31) and conditions (32)

(31) X(~—*)'(~+a*)!j-'I', (34)

g(b, (2)—= Q t(nn ')x ' s—"[(j—')((g+ )(
a', a"

a, a+

under the conditions

APPENDIX B: ALGEBRAIC STRUCTURES
OF EQS. (11) AND (12)

We shall generalize the method of Ref. 4. Let us g( ' )=(*+&) (1 ~y) (1+*3')'

consider the following linear equations: g(@b)= g s(n2nszs- ys

g d(n"n)d(n'n*) f(n*n) =1(a'a"),

QQ = QQ = Q Q
(82)

f(nn*) =0 if ~)(~
~
)222 or )(*=odd.

The conditions (32) imply that t(a'a") = t(n"a')
=1( n' n") an—d t(—a'n")=0 if X=odd. We need

several linearly independent solutions of Eq. (81) for

our later discussion. Let us 6rst prove the following

lemmas.
I.em«llu f. The numerical values of f and 1 which

are deined. by the generating function g(a, b), with

X(J—n")!(++a")tj 212—
I«oof. It ls easy to checl( that the f deaned b

have the following properties.

QQ

f(-*-)=o f )*=.dd ., ~),*~)2,
f( * )&0 if ()*(=2 .

Uslllg the generating function of d( /I ) given y
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(A3), we can rewrite Eq. (31) in the form

t(n'n")xl ~"yl+~"gl—"go+I'[(J+n')!(J—n')!(J+n")!(J—n")!] '"
al al l

= Z f(n*n)( Z d(a"a)*' "'8+"'[(J+n") (J—a") '?'")(2 d(a'a*)*' "t7'+ [(J+a ) l(J—a') 'j 'IP)
a, a+ all

=2 "Z f(n*a)(*+y)'+ (x y)'—(*+V)'+ "(* V)'—"[(J+n)'(J—a) (J+a*)'(J—a') '1 "'
a, a+

"[(x+y)(*+ft)j"Z f( * )[(x—y)(*+y) '3' L(*—V)(*+ft) '3' "
(gg yg)ps(gg+gy)2p(gg+yg)2J pa —pp—

X[(J+a)'(J—a) l(J+a*) l(J—a*)!j '"

t(n'n") = g C"(n',n",i)T;,
l~'l & l~l

(86)

where the C are constants. For those C having
/
X, [

=
/

X t,
at least one of them diGers from zero.

Proof. Equation (14) is a special case of Eq. (86).
First, let us prove that if all nonvanishing f are linearly
independent, then the T; are linearly independent. To
see this, let us assume that the T are linearly related.
Since there exists a solution of Eq. (81) such that all f
and t are zero, it is clear that the linear relation among
the T must be homogeneous. We can write P, d,T;=0,
where the coeScients d; are constants to be determined.

According to Lemma 1, each of the generating
functions g(a, b) generates a special solution of Eq. (81).
We de6ne

a

G(b )—= 2 g(»p)( —1)"
r0

= (4xy) '(x+y)' P(1+xy) '

= 2 t '(a'a")*' "y' "'[(J—a')!(J+a').
a', a"

X(J—a")!(J+a")!3'" (87)

Each special solution gives a linear relation among the
constants d,. We want to show that all of the d, are
zero. It is easy to check that P '(n'n")=0 if n'Wn".
Therefore, we have

p d;t"(n, ',n,")=0, a=0, 1, , lt.
i,Ag =0

We have used Eq. (84) in the last step. It is obvious
now that the t(n'n") satisfy Eq. (85).

Lemma Z. We choose a set of t(n'n") in the following

way:
T;—=t(n,',n,"),

where

—~X ~

j~

——01 2 ~ ~ J—v —g ~ ~ ~ J—v —1 J—v2! &] ) ) ) ) ) ) ) )

012 J—e—e J—n —1) ) ) ) ) )
~ ~ ~ )012 J—v —e.) ) )

Then any other nonvanishing t(n'n") can be written
as a linear combination of the T; such that

We have n+1 linear homogeneous equations and n+1
unknown d;. These d; must be zero if the determinant of
Eq. (BS) does not vanish. Up to a nonvanishing pro-
portional constant, we can write the determinant of
Eq. (BS) in the form

2J—2~ ]2J—2~

mp-11 (mi-1)

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

t'22 —2ny (22—2m~ (21
—

2n)
imp —rt) km, —ei mn n

= (2J)!(2J—2)! (2J—2e)![mp!mi! m !

X(2J—mp) l(2J—mi)! (2J—m„)!j '

1
mp(2J mp)

X m"

~ ~ ~ 1
~ m„(2J—m„)
~ m.'(2J—m.)'

~ ~ ~ ~ ~ ~ ~ ~ ~

mp"(2J m)"p—~ ~ m„"(2J—m )"

where we denote J—o. by mp, wy, ' ', m . It is clear
now that the determinant vanishes if and only if there
exists a pair of i and j such that (J—a )(J+a )
=(J—nj')(J+n, ')2 namely, n =&n2'. Therefore we
conclude that all d; with 'A;=0 must be zero. Using the
generating functions G(1,a), one can prove in a similar

way that all d; with P);~ = 1 must be zero, etc.
Since the number of f is the same as the number of

T;, any t(n'a") other than T; can be written in the
form (36) without the restriction X,

~ ~&~X~. We want
to prove that C"( ', nia)=0 if ~lI.; (~lI. ~, and at least
one of C"WO, where (X~ = ~X;). Each special solution
of Eq. (81) gives a set of linear relations among the C.
Let us consider first the case n'=n". We have [see
Eq. (87)1 t"(n'n") =0 if n'Wn",

/0 if o.'= 0,".
Therefore at least one of the C"(n',n",i) with X,=O
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does not vanish. Next, we consider the case
~

X
~
)0. The

special solutions generated by G(0,a) imply

C"(n',a",i)t"(n,' n,")=0, a=0, 1, , n
i,hz =0

In other words, we have C=O if ~X~) (X;(=0 Lsee

Eq. (88)].Now we turn to the case —,'~X
~

=1.Since we

have
to'(n'n")=0 if PX(&1,

Wo if —,'(~[=1,
it is clear that at least one of the C with P X,

~

= 1 differs

from zero. The more general cases can be treated in the
same way.

We apply these lemmas to Eq. (11). According to
Lemma 2, there are several different ways to choose T;;
we use the symbol p to distinguish them. We have

T ""(0)- P C" ' "(n',n",z)T.,' ' "(0)
~, [);[& (x[

where

D,=O if 'A; & X,.

/0 if A, = X.
The second property implies that the superconvergence
conditions for F*(n',n",n,p) are linear combinations of
the superconvergence conditions for this particular set
of amplitudes. ' The proof follows directly from the
following lemma.

Lemma 3.Let us consider Eq. (81),with the following
conditions:

1 tXCX = Q A = CX 0,'

(ii) f(n*n) =0 if
~

X*
~
& 2rz+2 or X*=odd;

(iii) the nonvanishing f are all linearly independent.

According to Lemma 2, we have

t(n'n") PC—""(n',n",i)t(n,',a;")

=0 if m=0, 1 . e—1

=I!F"(a',n",rz,p) if m= rz,
where

(89)
= f*(n',a",p)

f(n~n) Ld(a"n) d(n'a*) —P C" &(n',n",i)

F*(n',n",n, p) == p F(n )$d(a "n)d(n'n*)
a,a.

)x*}=2n+2
Xd(a;"a)d(a n*)].

—P C" '~(n', a", )zd(a,"a)d(n n*)]

The new forward amplitude F* has an s-kinematic
factor K~ "~t'. To see this& let us rewrite Eq. (89) in the
form

{t "[T "(t)—P C" ' "(n',n",i)T,', ,' (t)]jg o

f*(a' a" p) =2 D'(a' a"p)f'' (811)

where

We choose a set of f*(n,n;",p;) —=f;*such that-,'
~
X,

~
=0,

1, , J—v —rz. This set of f* has the following pro-
perties: (i) They are linearly independent; (ii) any
other f~ can be written in the form

It t~ll'{t "LT "(t)—P C" ' "(a',n",z) Wo if

= F*(n',n",rz, p) .
&&(E+st)""'~ !"& !'tT;, ;"(t)])&=0

Proof. We shall use the arguments of Ref. 3. If the
f,~ are not linearly independent, we can write

The forward amplitudes F*(n',n",N,p) are linear com-
binations of the forward amplitudes F(n*n) with

(X*( =2rz For a 6xed. ~X*~ =2rz, the number of ampli-

tudes F* is bigger than the number of independent
forward amplitudes F. In other words, the amplitudes
F* are not all kinematically independent. We can
select a set of forward amplitudes F~(n,',n;",zz, p,) such
that —,'~a, '—n;"~ =0, 1, , J—v —rz. Note that they
have different s-kinematic factors. We shall prove that
this set of forward amplitudes has the following prop-
erties: (a) They are kinematically independent;
therefore the corresponding superconvergence condi-
tions are independent; (b) any other forward amplitude
F*(n',n",n,p) can be expressed in terms of them, such
that

F*(n',n",rz, P) =P D,(n', n",rz,P)F*(n,',a,",rz,P;), (810)

Q d;f;*=0. (812)

According to Lemma 2, we can choose a particular set
of t(n,'n/') —=T; such that they are linearly independent;
besides, any other t(n'n") can be expressed in terms of
them Lsee Eq. (86)].The left-hand side of Eq. (812)
can be written as a linear combination of T;. The linear
independence of T; implies that all of their coeKcients
must be zero. Let us 6rst prove do=0. Note that, if
i/0, f,* is a linear combination of those T where
-,'

~
P; )0. The choice of T is arbitrary. In fact, we can

choose those t(n'n") appearing in f0* as part of T In.
other words, we have do=0. Similar arguments can
be used to prove that all of the d; are zero. Since the
number of f;* is the same as the number of independent
f(n*n), any other f* is a linear combination of f,~. The
conditions which are satisfied by the coefFicients D;
can be proved by using essentially the same arguments.
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The algebraic structure of Eq. (12) is very similar to
that of Eq. (11).Let us consider Eq. (81) under the
following conditions:

AA = AQ = A
(813)

f(nn') =0 if

IX*�I�)

2m+1 or X*=even.

The conditions (813) imply that t(n'n")= —t(n"n')
=t(—n"—n') and t=o if i~=even. We shall omit the
proofs of the following lemmas.

Ke de6ne

&'(n'n")—=&(n'n") E(~—n'). (J+n') t(~—n") '(~+n") l3 "'
f (- -)=-f(-*-)E(~--).V+-).V--*) (~+-*) j-

LemrrIa 4 The numerical values of f and t which are
defined by the generating function g*(a,b), with a & n,
satisfy Eq. (81) and conditions (813), where

g*(aP)—= (*—X)(&+X)"(1—e')"

condltlons:

(i) f(«*)= f(n*n) = f( n* n)

(ii) f=0 if IVI)2ri+3 or X*=-even;

(iii) the nonvanishing f are all linearly independent.

According to Lemma 5, we have

](n'n") —Q C" "(n',n",i)](n,',n,")

= f*(n',n",p)

f(n*n) Ed(n"n)d(n'n*) EC—"'(n',n" i)
n,n+

la~i -a~+3
Xd(n;"n)d(n n*)].

We choose a set of f*(n,n,",p,) such that &(Ili,
I
—1)

=0 1 J+s—e—1.This set of f* has the following
properties: (i) They are linearly independent; (ii) any
other f* can be written in the form

X(1+gy)2z—i—2a—2b (814)

g*(a&)=—Z f'(n'n)&' X' *
f*(n',n" p) =Z D*(n'n" p)f'' (81S)

gg(f ) p (I( I Il)gJ a&yj a'I— —

Iemmu 5. We choose a set of 3 in the following way:

T,—=t(n, n,"),
where

!(Il'I-1)
=0 1 . 7+v—I—1 1+v—2 J+s 1—

0 1 ''' 7+v—I—1 ' J+s—2

where D;=»f I4I & I~I, b«&0 if I%I = fr~I.
In Lemma 6, we use p to distinguish different ways of

choosing T;.
We shall now prove that the forward amplitudes (16)

are all kinematically independent and free from
s-kinematic singularities. Let us go back to Eq. (81)
with the conditions (82). For convenience, we modify
(82) such that f=o if IX*I&2r—2 (instead of 2'). We
choose the T; of Lemma 2 such that 0. =J, J—1, ~

J—r+1 and n n ;"=0,—2,. 4, . We have Esee
Eq. (86)g

0, 1,

t ~ a a ~ a ~ a

''') J+'v —5 1 ~

t'(J r, J—r—2e) = —Q C(ij,e,r)
~ ~ ~

j&»0

Then any other t can be written as a linear combination
of them such that

)(n'n") = g C"(n',n",i)T;, (817)
l~'I & l~l

where the C are constants. For those Chaving
I
X; I

=
I
X I,

at least one of them divers from 0.
Lemma 6. Let us consider Eq. (81) with the following

Xt'(J r+i, J—r+i 2—n 2j—) (—819).
The special solutions generated by G(b, a) can be used
to determine the coeflicients C(i,j,n, r) in a simple way.
It is easy to check that C=-0 if j&i.

Since Eq. (819) is homogeneous, we shaH ignore the
factor 4 of G(b,a). The linear relations among the C
corresponding to (a,b) are

(r-1, e),

(r—1, n+1),

(r—2, I),

(r—2, e+1),

(r—2, n+2),

2J—2n —2r+2—=A =C(1,0,~,r),
2e+2= C(1,1,n,r),

2+2 2+2)
IC(1,0,~,r) gC(Z, O,, r),

2

& = (2ri+2)C(1 O,e,r)+Ac(1,1,m, r)+C(2,1,m,r),
2ri+4 2n+4

C(1,1,m, r)+C(2,2,n, r),

(82o)
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The simplicity of these equations is obvious. One can calculate all of C in a straightforvrard manner. The result is

given in Sec. III.
Let us assume that f(n*n) =0 if !X~ !& 2r instead of 2r—2. Then we have

t'(J—r, J—r—2rt) —p C(ij,rt,r)t'(3 r+—i, J r+—i 2rt—2j—)= p f'(a*a) Ld( 3—r—2e, a)d(J —r, a~)
. e,a+

Lx*) =or

—P C(ij,rt, r)d(3 r+—i 2n —2j,—a)d(J r+i—, n*)j=—Q f'(n*a)D(a*n), (821)
~ ~

+17 a, e+

D(n*n) =D(nn*) =D(—n—n*).

%e shall describe a simple rvay to calculate the coefIj!.cients B. If the numerical values of I,
' are generated by

G(b,a), then the corresponding numerical values of f' are generated by Lsee Eq. (8'/) j
0

Z g(pP)( —1)'I !=(1—e')"(1+*r)"" "t:(1—*')(1—X')O'= Z f""(* )*' X' "
@~0 )a,a+

At u=r, ere have

4'bt, , = Q f't" (n~n)D(n*n).
a,a

tx+) =2m

It can be shorn that the D satisfy the foHovring equations:

3—r—v)
D(r+v —r+v) = (—1)"+'4'" ~

rt )
J—r—v—1

D(r+v+1, —r+v+ 1)+D(r+v, —r+v) =(—1)"+"4' ~+'t'

~-& (2m)
2D(r+vym, r+v+m)+—2 P ! !D(r+v+m i, —r+vym —i)—

'-~ & i)
(2m) (J r v m)———

!D(r+., —r+.)=(—1)-+ 42-~+-!
&m) )'

a&here @re de6ne

(8
!=—0 if a&b.

From these equations one can calculate the D step by step.
Let us consider Eq. (81) with the conditions (813).For convenience, we change the notation such that f 0

if !X*!)2r+1 (instead, of 2++1).We have

t'(3 r, 3—r—2n —1)—Q—C*(i,j,rt r)t'(J —r+i, 3r+i 2rt 1
'
2—j)=———

a,a@
)X+) =2r+1

fl( 8 )D)k( 4 ) (823)

where D*(a~n) = —D~(nn*) =D*(—a—n~). The special solutions generated by G*(b,a) can be used to determine

the D in a straightforward way, where G is given by Eq. (87), with g replaced by g*. The result is given m Sec.
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III. Using the following equations, the D~ can be calculated step by step:

J—r—1+'U'l

!DW(r+ 1 & r &) ( 1)n,—r42r —J+i/2

e
J r 2—+/—/)

D*(r+2—c r+1—//)+ —D*(r+1 i/ —r —i/) =—(—1)"+"4'" s+'
)

(B24)

m-1 2m
2D"(r+1+m i/, —r+—m i/)—+2 g D*(r+1+m i/ s,———r+m —v —i)

215 (J—r+e—m —1
D@(r+.1 ~ r y) —( 1)e+~42r 2+m+1/—2!'

fg /s

APPENDIX C: ALGEBRAIC STRUCTURE OF EQS. (1'7) AND (18)

4Ve shall generalize the results of Appendix B. Since the arguments used here are essentially the same, we shall
give our results without proof, unless some new arguments are used.

Let us consider the foBowing equations:

Z d(-" )d(-' *)&(p"p)d(p'P)f( *p*;p)=/( ' ",p'p"), (C1)

where n means all possible values of n, n*, P, and P~. We d.efine

f'( *P, p) —=f( 'p*,-p)L(J- ) ~(~+.) '(~- *)~(J+-*)'(~'-p) ~(J'+p) '(~'-P) /(~'+ p*) ~]-'/',

/'( ' "p'p") =/( ' ",p'p")L(~ —') '(~+ ') '(J—")'(~+ ")'(~' —p') '(~'+p') '(~' —p") /(~'+p") 'j "',
g'(x,*,y,y)= Z f'( *p—',np)x' x' "y' 'y' ',

(~)

g( ,x,x,y)y=—Q /'(n'n", p'p")xs "'x~ "y'-s"ys-' s', -
(~')

(C2)

(C3)

(C4)

where (n') means all possible values of n', n", p', and p".
Lemma 7. Equation (C1) implies

g'(x, *,y,y) = Ll(1+x)(1+*)]"Ll(1+y)(1+y)3"'g'(x*,**,y*,y*),

where I*—= (e—1)(I+1) ', u= x,x,y,y.
We are interested in Kq. (C1), with the following subsidiary conditions:

f(n*p*~np)=f(npn*p*)=f( n p —n'p*)—, —f(n*p', np)=0 if !)'—/*! &2/s or =odd. (C7)

The conditions (C7) imply that /(n'n", P'P") = /(n"n', P"P') = /( —n' —n", —P' —P") and 3=0 if X—/i =odd. We define

g(a, b,c,a', b', c',a",b'",c")= (x+x) (1—xx—)'(1+xx)'(y+y)" (1—yy)'(1+yy)"
XL( +y)( +y)l"'C(1-*y)(1-e)j"L(1+ y)(1+*V)3"', (Cg)

where a+b+c+a"+b"+c"=27 and a'+b'+c'+a"+b"+c"= 2J'.
Lemma 8. The f' given by g~= g(a, b,c,a', b', c',a",b",c"), where a+a'= even, b+b'= even, and a+a'+2a" ~&2/s,

satisfy conditions (C7). It follows from Kq. (C6) that g'= g(b, a,c,b', a', c',b",a",c")
The special case where as=0 has been discussed in Ref. 4. If e&0, it is more convenient to use the following

generating functions, which are Hnear combinations of the above functions:

g'= (xx)"(yy)'g(b, O, c,b', O,c',b",O,c"),
where b+b'= even, 2r+b+c+b"+c"=2J, 2s+b'+c'+b"+c" =2J', r+s &~ I;

g'= (xx)"(yy)'(xx+y//)g(b, O,c,b', O, c',b",O,c"),
where b+b'= even, 2r+b+c+b"+c"=2J 1, 2s+b'+c'+b"+c—"=2J' —1, r+s~& I 1. —

(C9)
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Lemma P. Let us consider Eq. (Ci), with subsidiary conditions (C7), where n= 0 I.f the nonvanishing f are all
linearly independent, then there exists a set of t, say T;, which has the following properties: (a) The T; are linearly
independent; (b) any other t can. be written in the form t(n'a", p'p") =p; C~T;, where C;=0 if

I Xq+ti, I
& I X+ti I

or Il '—t 'I & Il —t I
and»t ai»f th«' with

I
li'~t 'I =

I
~at I

a«ze». Tl e T* c» be chose»n th«ollowing
way:

(X; ti~)"= (2m 0)"+' (0 2m)" or (2m,0), (0,2m) +'
= (2m+r r)"+' (r, 2m+r)" or (2m+r, r)", (r, 2m+r) "+'
= (2m4ri -r)~+' —(—ri 2m+ f)~ or (2m+ f r) —(—ry 2m+r)~+"

m=0 1 ~ J —e a=i 2 ~ - 2J —2'
=(2J'+2p, 2J' —2m)"+', (2J'+2p, —2J'+2m)"+', m=0, 1, , J'—i', p=1, 2, , J—J'—Io—~'I

= (2J'+2p —1, 2J'—2m —1)"+', (2J'+2p —1, —2J'+2m+1) +',
m= 0, 1, , J'+o' 1, p= 1—, 2, , J—J'+

I
r —o'I

where we use N to represent the number of T; having the same X; and ti;, and any two t (say, T; and T,) having
the same X and p, satisfy the restriction

(p,' p)(p,'-+p,' ~)« f I~I&I~I,
(a a)(n —+n X)W0—if I) I

& I@I.
(C11)

Proof. The restriction (C11) is more general than that given in Ref. 4. To illustrate the new argument, let us
consider those T; corresponding to (4,0)' and prove that they are linearly independent of each other. If these T;
are not linearly independent, vie have

According to Ref. 4, rve can use the following generating functions:

g'=( 1+»)"-'( 1+ye)" (*+*)', (1+»)" '(1+ytt)" '(*+*)'{1+sory){1+*V)(*+y)(*+tt)
{1+»)"-'(1+yft)"-'L{1+~y)(1+*b)(~+y)(*+@&'.

These functions imply three homogeneous linear relations among the d;. The argument used in the proof of Lemma
2 Lsee Kq. (38)j can be used here to prove that all of the d; must be zero.

Lemma 10.Let us consider Eq. (C1), with subsidiary conditions (C7), where J+1'—
I

v —i'I &~n&0. If the non-

vanishing f are all linearly independent, then there exists a set of t, say T;, which satis6es the two properties
mentioned in Lemma 9. These T; can be chosen in the following way Lwe de6ne r=J n', s=J'—P—', s'—==J'—P",
and. use the convention X)~ 0; we choose aH possible values of r and s if ti~)0 (r and s if p &0) which satisfy the
restrictions indicated below; we use the classification of (X;,ti~) defined in Lemma 9, and N is the number of T;
having the same X; and ti; for n= 0):
for k& Ip;I:

r+s(s') &n+N 1, r&e, 2J——X;&2r, 2J'—Iti;I )2s(s');

2J—A. r+s(s') &~n+N 2, 2J——g,——r&n —1, 2J—1—X;&~2r 2J'—1—Ip, I &~2s(s');

for Ip, I&x;:

r+s(s') ~& n jN 1, s(s') ~(e, 2J——g, ~& 2r, 2J'—Iti;I ~) 2s(s');

2J 4 r+s(s') &n+N——2—, s(s') &e 12J——1—y;) 2r 2J'—1—Iti;I &2s(s').

The choice described by Lemma j.o is not the most general one; however, it is the simplest choice.
We now consider Kq. (C1), with the following subsidiary conditions:

f(n'p*, ap) = f(ap, a*p*)= f( —a p, —n*—p*)—, —f(a*p*,np) =0 if
I

X*—t *I = even or & 2e+1. (C12)

The conditions (C12) imply that t(n'n", p'p") = t(n"n', p"p') =—t( n" n', —p"——p')—and t =0 if X—p = even.
Lemma 11 The f given .by g~={x x)g(a, b,c,a', b', c',a—",b",c")

I or {y g)g(a, b,c,a', b—',c a",b",c")j, where
a+a'=even, b+b'=even, a+b+c+a"+b"+c"=2J—1 (or 2J), a'+b'+c'+a"+b"+c"=2J' (or 2J'—1),
and a'+a+2a"&2n, satisfy conditions (C12); from Eq. (C6) we have g'=(x x)g(b, a,c,b', a',c',b",—a",c")

I or
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The special case where m= 0 has been discussed in Ref. 4.
Lemma 1Z. Let us consider Eq. (Cl), with subsidiary conditions (C12) and n=0. If the f are all linearly in.-

dependent, then there exists a set of t, say T;, which satis6es the two properties mentioned in Lemma 9. These T;
can be chosen in the following way (we use the convention of Lemma 10):

(X;,p,)~=(2m+1+P +P)'~+' m=0, 1, , J'+v' —1, P=O, 1, , 2J' 2—m 1—

= (p, +2m+1+p)'"+', m=0&, J'+v' —1, p=0, , 2J'—2m —1, 2mg2J' —1—p
= (2J'—2m —1, +2J')™+1,m, =0, , J' 1+v-'

= (2J, +2J'%1+2
~
v—v'~ %2m) "+', m=O, , J'—v' —1+2v

=(p, +2J'+m)"+', m=0, ~, 2J', 2J'&p&2J', 2J'—m+p=odd;

we choose a11 t with X=2J;

r=0, 1, s(s')=0, , ~N —1 if X&2J, X& ~p~, and N=even,

r=O, 1, s(s')=0, , ~(N —1), r+s(s')&2(N+1) if X/2J, X& Ip, l, and N=odd,
s(s')=0, r=0, , N 1 if —Ill =2J'&X,
s(s') =0, 1, r=0, , yN —1 if [p( &X and )p( 02J'.

Lemma 13 Let us. consider Eq. (C1), with subsidiary conditions (C12), where J+J'—1+ ~v
—v'~ &&n&0. If

the f are all linearly independent, then there exists a set of t, say T;, which satisfies the two properties mentioned in
Lemma 9. These T; can be chosen in the following way I we use the classification of (X;,p,) defined in Lemma 12,
and N is the number of T; having the same li; and p; for n =0]:
for X,= 2J': all t in this class; for X;W2J, X;&

~ p; ~, and N= even:

r+s(s') &~ n+ ~~N —1, r&~ n, 2J—X;&&2r, 2J'—
~ p;~ &~ 2s(s');

2J—X,—r+s(s')&~n+-', N —1, 2J—X;—r&~n, 2J—1—X;&~2r, 2J'—1—~p;~ &~2s(s');

for X,&2J, X;& ~p, ~, and N= odd:

r+s(s') ~&n+ iv(N+1) —1, r~& n, 2J—X;~&2r, 2J'—
~ p;~ ~&2s(s');

2J—X;—r+s(s') &~n+~i(N+1) —2, 2J—X;—r~&n, 2J—1—X,~&2r, 2J'—1—~p;~ &~2s(s');

for (p;) =2J'»;:

for )w(&X, and (p;)&2J'.
r ~& n+N 1, 2J——X;~& 2r;

r+s(s') &~ n+ ~~N —1, s(s') &~ n, 2J—)„&~2r, 2J'—
~ p;~ &~2s(s');

2J X; r+—s(s—') ~& n+v N 1, s(—s') &&n, 2J—1—X;~& 2r, 2J'—1—
~ p;~ &&2s(s').


