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A recently developed method for electronic wave functions has been applied to Li, Be+, and B++. This
method, the G1 method, leads to much better energies than does the Hartree-Fock (HF) method (for Li
the G1 energy is —7.447560 as compared to the HF energy of —7.432727); however, the independent-
PurticleAzterpretation is retained. A significant difference is that although the HF valence orbital has a node
(being orthogonal to the core orbital), none of the three G1 orbitals has a node. The valence G1 orbital
satisfies the cusp condition at the nucleus, has a minimum in the core region, and outside the core region is
very similar to the HF valence orbital. The Gi wave function has the form of a paired-electron wave function
but strong orthogonality is rot imposed. Since the resulting orbitals have significant overlaps and since the
energy is made much worse by imposing strong orthogonality, it appears that strong orthogonality is a
signi6cant constraint for orbital-type paired-electron wave functions (such as in the extended valence bond
method). Since the Gi wave function is nearly at the radial limit and does not include instantaneous correla-
tion among the electrons, the dynamic correlation is essentially all due to angular correlation just as for
two electron atoms and ions. Since the 61 valence orbitals need not be orthogonal to the core orbitals, the
use of this method for solids could eliminate these problems in band-structure calculations which are
due to the orthogonality conditions inherent in the HF method.

I. INTRODUCTION

~

~
~

UR conceptual foundation for understanding atoms
has been the Hartree-Fock (HF) method. In

this method the wave function is approximated as a
Slater determinant' of spin orbitals, and each orbital is
determined as the optimum state for an electron
moving in the self-consistent held due to other electrons.
The resulting orbitals are orthogonal and each can hold
up to two electrons (one of each spin) and is taken as an
eigenfunction of 1' and l,. One can derive a somewhat
universal energy ordering of the orbitals for atoms and
develop an Aufbau scheme which for nontransition
elements usually leads to the correct ground configura-
tions and the correct ordering of the low excited con-
6gurations, and thus explains the periodic relationships
among the elements. Because of these beautiful qualita-
tive successes, we have no right to quibble with the
HF method if there should be some properties for which
it leads to a few percent error.

However, there are some well-known deficiencies'
with this method when applied to molecules, such as
the bad dissociation as the molecule is pulled apart.
And even for atoms there are some problems. One is
that the HF method usually leads to incorrect spin
densities at the nucleus. Another is that for many stable
negative ions the HF wave function leads to a higher
energy for the ion than for the atom.

A crucial feature leading to the interpretive successes
of the HF method is that it leads to an independent-
particle interpretation. That is, the many-electron

t Research partially supported by National Science Foundation
Grant No. GP-6965.

* Alfred P. Sloan Fellow.
f. Contribution No. 3578.' A linear combination of determinants is sometimes required in

order to obtain the correct symmetry, but a single determinant
is always sufBcient for closed-shell and half-closed-shell systems.' W. A. Goddard, III, Phys. Rev. 157, 81 (1967), hereafter
called II.

wave function can be interpreted in terms of orbitals,
each of which is an eigenstate of an electron moving in
the (self-consistent) field due to the other electrons. An
important question here is whether the HF method is
the best one leading to an independent-particle interpre-
tation and if not whether the others remove the
de6ciencies of the HF method and yet lead to successful
Aufbau pictures.

It has now been shown' that one cue go beyond the
HF method and yet retain the independent-particle
interpretation while removing such problems as im-

proper molecular dissociation, '' bad description of
negative ions, 4 and poor spin densities at nuclei. ' In
addition, the new method, the GI method, apparently
leads to a satisfactory Aufbau principle.

The next question is whether the new method
through its independent-particle interpretation leads
to any significant changes in our concepts of, say,
atoms. The three-electron wave functions reported
here are examined from this point of view', and even for
this simple case some modifications in concepts are in
order.

II. 61 METHOD

The general GI method far electronic wave functions
has been described elsewhere. ' There are two import. ant
special cases of the GI method, the Gl method and the
GF method. The GF method has been described else-
where' and applied to several systems including H2,
LiH', He4, Li', Be4, Li~', CH4', and CH3'.

For the case of three electrons the G1 wave function is

' W. A. Goddard, III, J. Chem. Phys. (to be published), here-
after called IV.' W. A. Goddard, III, J. Chem. Phys. 48, 1008 (1968).

5 W. A. Goddard, III, Phys. Rev. 151, 93 (1.967).' W. A. Goddard, III, J. Chem. Phys. (to be published), here-
after called III.
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Tasrz I. Basis sets and results for Gi calculations on I.i, Be+, and B++. (Hartree atomic units are used. ')

V/2E
CIISPS

&Z S(r;)&
g(0)
(Z r2)
Slo

b11b

pin(0)
gib(0)
e2.(0)

Li
a3

is 3.788
1s 2.2815
2s 0.6545

-7.446137
1.000002

—3.5351
—1.6205
—3.700'?
13.722
0.2152

19.077
—2.8378
—2.4638
—0.19589

3.567
1.551
0.1041

Li
Q4

1s 3.786
1s 2.3190
3s 3.751
2s 0.6547

-7.447267
0.999978

—3.1555
—2.7666
—2.2346
13.903
0.2204

19.039
—2.8397
—2.4549
—0,19596

3.389
1.757
0.09341

Li
c6

1s 5.29
2s 5.29
1s 2.395
2s 2.395
1s 0.6727
2s 0.6727

—7.447553
0.999998

—2.9009
—3.2109
—3.2294
13.870
0.2076

18.619
-2.8426
-2.4587
-0,19615

3.337
1.805
0.09524

Li
ds

1s 3.0
3s 4.32
3s 3.069
3s 1.341
3s 0.7803

-7.447531
0.999859

—3.0000
—3.0000
—3.0000
13.837
0.2095

18.607
—2.8424
—2.4586
—0.19614

3.361
1.774
0.09404

Li
e6

1s 3,0
3s 4.31
3s 3.094
3s 1.369
3s 0.842
4s 0.707

-7.447540
0.999856

—3.0000
—3.0000
—3.0000
13.839
0.2091

18.663
—2.8425
—2.458'?
-0.19615

3.361
1.'? 75
0.09437

Ll
f6

1s 3.0
4s 5.35
3s 4.79
3s 2.989
3s 1.293
3s 0.7695

—7.447556
1.000011

—3.0000
—3.0000
—3.0000
13.865
0.2097

18.624
—2.8426
—2.4587
—0.19615

3.353
1.788
0.09357

Li
g6

1s 2.993
4s 5.43
3s 4.78
3s 2.979
3s 1.295
3s 0.7693

—'? .447556
1.000001

—2.993
—2.993
—2.993
13.854
0.2094

18.634
—2.8427
—2.4588
-0.19615

3.351
1.788
0.09352

Li
A7

is 3.0
4s 5.33
3s 5.4
3s 2.999
3s 1.347
3s 0.841
4s 0.732

—7.447560
1.000001

—3.0000
—3.0000
—3.0000
13.864
0.2095

18.654
—2.842 7
—2.4588
—0.19615

3.352
1.789
0.09366

Be+
i6

is 4.0
4s 6.87
3s 6.87
3s 4.04
3s 2.002
3s 1.327

—14.29162
1.000002

—4.0000
-4.0000
—4.0000
35.139

0.946'?
6.5592

-5.4892
-5.0457
—0.66589

5.163
3.027
0.2258

Q++
j6

1s 5.0
4s 7.86
3s 7.86
3s 4.84
3s 2.702
3s 1.875

—23.38990
1.000000

—5.0000
-5.0000
—5.0000
71.501
2.431
3.4135

—9.0661
—8.5736
-1.3895

7.200
4 479
0.3846

a See Ref, 10,

where P&„P», $2, are orbitals which are self-consisten, tly
optimized with respect to each other, n and P are the
spin-up and spin-down eigenfunctions of s„and' 8

leading to a stationary energy. The result is a set of
equations (called. the G1 equations) the solution of
which are the optimum orbitals.

Gl 011 11 021 &2I )

0»"= erI 2e—(123)—(132)+ 2(12)—(13)—(23)),
O„a= er&3L—(123)+(132)—(13)+(23)),
o]ip = re L2e—(123)—(132)—2 (12)+(13)+(23)), (3)

basP = -'ev3L(123) —(132)—(13)+(23)),

~ 41a elakla I

& /lb el bulb &

~ 4'2a e2a42a

Each operator H' in (7) can be written as

H'=?b+ U'

(7)

where 0& and ~& are signer projection operators based
on the orthogonal representation' for the symmetric
group. Here 0& operators on spatial coordinates, col'

operates on spin coordinates (the tableaux are given in
Fig. 1), and e is the identity operator. As shown in I,
the energy (and any other expectation value of a spatial
operator) can be written as

where" Jr = ——',V' —Z/r for an atom with nuclear charge
Z and U' is an average potential due to the other two
electrons. Thus each optimized orbital (called. a Gi
orbital) is an eigenstate of an electron moving in the
average potential U' due to the other electrons (U'
involves the other E—1 orbitals and includes permuta-
tion operators and Jr). Equations (7) are solved by
taking a Roothaan expansion" in terms of a set of basis
functions (X„),

for any spatial function C and spin function &. Thus the
spin terms may be immediately eliminated and only
0»& of the operators in (3) is actually needed here.

In the Gl method we take the C and X in. (4) to be
product functions,

x(1,2,3)=n(1)P(2)n(3), (6)

and optimize all of the orbitals, i.e., we And the set

7 W. A. Goddard, III, Phys. Rev. 157, 73 (1967), hereafter
called I.

8 Note that MQP'cLpo. and (o21~0fpn are both doublet spin functions
and that the combination of 0;&& to use in GI& is just the one such
that G&& is antisymmetric in the particle {space plus spin) co-
ordinates.' D. K. Rutherford, SNbstitntiona/ Analysis (Edinburgh Univer-
sity Press, London, 1948).

which leads to the following equations":

B„„'C„;=5„„C„;e,i=1, 2, 3

Fro. 1.The Young tableaux for
three-electron doublet states.

[p]] 1 qP [~ ]] ] 3)
1 2

Atomic units are used. Thus A =1, e =1, and p, =1, where p,
is the reduced electron mass. Thus the main correction for the
6nite mass of the nucleus is included, but the units depend on the
nucleus mass. Hence the unit of energy is the reduced Hartree,
h~= (27.210)M/(%+ra. ) eV and the unit of length is the reduced
Bohr, ao ——(0.52917) (M+m. )/M A.. Alternatively, for comparison
to molecular calculations in which the nuclei are 6xed (masses
assumed to be infinite), we can consider the present calculations to
be in unreduced atomic units (with m, =1)."C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951)."The Einstein summation convention is used for Greek
subscripts.
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FxG. 2. The G1, GF, and HF valence orbitals for Li.

III. CALCULATIONS

Calculations on I.i were carried out with various
basis sets," each using optimized orbital exponents,
until a satisfactory basis set was found. The various
basis sets'4 are shown in Table I with the total energy

TAsz.E II. Expansion coefEcients for the G1 orbitals of Li, Be+,
and Be~.The basis functions are in the same order as in Table I.

Lia3

0.72125
0.29765
0.00197

Lih7

1.14339—0.10516—0.07724
0.00739
0.01130
0.00813
0.00330

Be+i6

1.14394—0.07634—0.10769
0.01241
0.00318—0.00043

3+ j6
1.14136—0.02179—0.16128
0.02082—0.00288
0.00206

for the expansion coefficients. (The explicit forms of the
B' matrices are given in Appendix A.) Since the B'
involve the unknown coeKcients, Eqs. (10) must be
solved iteratively.

As shown in IV, ' the cusp conditions and the Koop-
mans, Hellmann-Feynman, 3rillouin, and virial
theorems apply to Gi wave functions.

E; virial ratio, V/2E (should be 1.0 for a properly
scaled basis set); and cusps (the cusps should be 3.0
for all three G1 orbitals). We found that the type of
basis set proposed by Roothaan and Kelly" (Slater
orbitals 1s, ms, m's, , m"s, where m, m', , m" ~& 3) is
necessary in order to obtain good cusps with a reason-
able number of functions. Basis sets d5, e6, and f6 did
not have the orbital exponent for the 1s basis functions
optimized. This is clearly a restriction for d5, e6, and
f6 since the virial ratio V/2Z is too far from 1.0
(generally a well-optimized calculation should have

~
V/2E —1.0~ &~SX10 '). On the other hand, basis sets

Li h7, Be+ i6, and 8++ j6 are complete enough so that
the virial ratio and cusp conditions are simultaneously
satisied. Upon optimization of I ~. for these three sets
the energy changed by less than one part in 10'; hence
the optimum value of I ~, is Z, and no restriction has
been imposed.

The expansion coeKcients for the Gi orbitals are
given in Table II for basis sets Li a3, Li h7, Be i6,
and 8++ j6.

IV. DISCUSSION

A. Nodeless Orbitals

In Figs. 2 and 3 we show the G1 orbitals for Li
(basis set h7). For comparison, the HF and GH orbitals
are also shown. The most signi6cant difference is that
mome of the G1 orbitats has a mode We see .that the core
orbitals g~, and p~~ die oG monotonically and are
similar in shape to the HF or GF core orbitals. However,
the Gi core orbitals are split far more than the corre-
sponding GF orbitals $@~,(0)/P~q(0) =1.87 for the G1
case and 1.02 for the GF case). The valence orbital for
the G1 wave function is p2„which is really quite similar
to the HF and. GF orbitals for r)2.25ao (the core
extends to about 1.5ao). That is, the three methods lead
to valence orbitals with nearly identical amplitudes in

4.0 ~ ~ I I
I

I I I I
I

I i ~ I
I

~ ~ I I

LI

@Is —0.16544
1.15002—o.00776

0.61010
0.12841
0.07783
0.27126—0.00168
0.00295—0.00106

0.67069
0.10122
0.11102
0.18992
0.00007
0.00067

0.71003
0.05852
0.17699
0.11746—0.00099
0.00047

$2o 0.05003 @2 Q 06Q97—0.03619 —0.00167 -0.00197 —0.00089
1.00407 0.00065 0.00076 0.00157

0.02044 0.02648 0.02760
0.28904 0.38657 0.38849
0.64649 0.62404 0.60678
0.11219

3-0

4l
Cl
w 2.0

CL

I-0

"The basis functions are Slater orbitals which have the form
x 0(r)=Sr" e &", where X is a normalizing constant and t is
called an orbital exponent. Such an orbital is referred to as an
ns orbital.

'4The orbital exponents given in Table I have generally
included about one more place than were reliably optimized.

0.0
I.o 2.0 3.0

DISTANCE FROM NUCLEUS(ao)
4.0

FIG. 3. The core orbitals for the G1, GF, and HF
wave functions of Li.

'I' C. C. J. Roothaan and P. S. Kelly, Phys. Rev. 131, 1177
{1963).
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13.83
0.241

18.59
2.636
2.594—0.4025

—7.447560—2.843—2.458—0.1962
13.86
0.210

18.65
3.352
1.788
0

—7.432727—2.471—2.471—0.1963
13.82
0.167

18.63
2.614
2.614—0.4074
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TABLE IV. Correlation energies~ for atoms using G1, GF,"
and HF' wave functions. The energies are in reduced Hartree
units~ and the nuclear charge is Z.

G1
QF
HF

G1
GF
HF

Number of electrons
2 3

15'0 2$)

0.0139
0.0139
0.0398

0.0257
0.0257
0.0420

G1
GF
HF

G1
GF
HF

0.0285
0.0285
0.0435

0.0298
0.0298
0.0443

0.0305
0.0452
0.0453

0.0332
0.0472
0.0474

0.0349
0.0485
0.0488

a The "exact nonrelativistic" energies are from Scherr, Silverman, and
Matsen, Phys. Rev. 127, 830 (1962).

b The GF correlation energies are based on Goddard (Ref. 4).
e The HF correlation energies are based on Roothaan, Sachs, and Weiss

(Ref. 19).
d See Ref. 10.

Thus we expect the valence orbital to have a cusp at
the origin, a minimum in the core region, a maximum
outside of the core, and an exponential drop oB at large
r. That is, we would expect that the lowest state for an
electron moving in the potential V would be nodeless. 20

Hence the G1 orbitals for Li are certainly quite con-
sistent with our physical expectations of what the
orbitals of an independent-particle wave function should
be like. The HF and GF valence orbitals, on the other
hand, each have a node in the core region (due to the
forced orthogonalization) and have very large ampli-
tudes near the nucleus. Thus we conclude that the
~odes in the valence orbitals for HF and GF wave
functions for Li are purely artifacts of these methods
due to nonphysical orthogonalization constraints and
have no physical significance whatsoever.

The above results would indicate that for larger
atoms nodes may occur in ground-state orbitals only
when required by symmetry, as for a p or d function.
This may lead to some modifications in our ideas
concerning the ground and excited states of atoms.
Thus each Rydberg series for Li starts with a term in

which the electron is in a radially nodeless orbital
with successively one more node for each term. In
addition, in the calculation of band structures for solids
some problems involving orthogonalization of conduc-
tion states to core states may now be ameliorated.
A,ttempts have already been made along these lines and

' It is easy to show that the lowest state of an electron moving
in a local potential is nodeless. However, this does not necessarily
apply to HF, GF, or 61 orbitals since the potentials contain
exchange-type terms and hence need not be local. On the other
hand, the nonlocal terms are usually small enough so that the
lowest orbital is nodeless,

within the framework of the HF method through the
use of pseudopotentials. "" We now' see that by
abandoning the HP framework in favor of the G1
framework we not only eliminate the core orthogonaliza-
tion conditions in an ab irido, direct, natural, and
nonarbitrary way but in addition get much better
energies.

B. Correlation

We have previously shown' that the HF, GF, and
G1 wave functions do not contain correlation. That is,
each orbital is optimum for an electron moving in the
field due to the other electrons, and thus each orbital is
adjusted only for the average positions of the other
electrons rather than for the instantaneous positions.
We compared the GF correlation energies and the HF
correlation energies and found that the GF correlation
energies are significantly smaller for the two- and four-
electron atoms, but for three-electron atoms the GF
and HF energies are nearly the same. This apparent
inbalance does not occur for the 61 method. (See
Table IV, where for several two- and three-electron
atoms the correlation energies using G1, GF, and HF
wave functions are reported. ) The G1 method removes
65.2—32.7% of the HF correlation energy for H to
Be++ and 32.6—28.4% for Li to 3++.

The increases in correlation energy for Li+ to Li and
for Be++ to Be+ are 0.0020 and 0.0034 for the G1 case
and 0.0018 and 0.0031 for the HF case. That is, for
these systems the G1 and HP methods predict quite
similar increases in correlation energy upon adding
electrons. The increases in correlation energy for ious
of increasing Z in the two-electron sequence (starting
at H ) are 0.0118, 0.0028, and 0.0013 for the G1 (and
GF") case as compared to 0.0022, 0.0015, 0.0008 for
the HF case. For the three-electron sequence the
differences are 0.0027 and 0.0017 for the G1 case and
0.0021 and 0.0012 for the HF case. Thus within an
isoelectronic sequence the correlation energies increase
much faster in the 61 case than in the HF case (this in
spite of the 61 correlation energies being much smaller).
That is, as compared to the HF method, the G1 method
is relatively more effective far less positively charged
systems. This, of course, is expected since the splitting
of those orbitals which are doubly occupied in the HF
wave function is due to the electron-electron repulsion'4
and should be less when this repulsion is relatively less
important as compared to the other energy terms.

s' J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959);
M. H. Cohen and V. Heine, ibid 122, 1821 (1961.); J. M. Ziman,
Advan. Phys. 13, 89 (1964); A. U. Hazi and S. A. Rice, J. Chem.
Phys. 45, 3004 (1966)."I thank Professor R. S. Berry for first bringing the pseudo-
potential method to my attention."For a two-electron singlet state there is one tableau, and thus
the 01 and GF wave functions and energies are identical.

"In the absence of electron-electron interactions, the many-
electron Hamiltonian is separable; hence the HF and G1 wave
functions are equal to the exact wave function and thus identical,
That is, the orbitals are not split,
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Since the Gi, GF, and. HF wave functions can all be
given an independent-particle interpretation and thus
none of them contains instantaneous electron correla-
tion, we could de6ne correlation energy in terms of any
of these methods. However, of the three the G1 method
yields the lowest energies and hence the other methods
still contain what could be called a static (nondynamic
or noninstantaneous) correlation error. In addition, the
G1 method seems to treat systems with different
numbers of electrons in a comparable way. Thus it
would seem that correlation should be defined with
respect to the G1 wave function. That is, the difference
between the exact energy and the G1 energy is essen-
tially the energy error due to dynamic or instantaneous
correlation among the electrons.

In the ground states of two- and three-electron atoms
the HF, GF, and G1 orbitals are all s orbitals. Thus for
these methods the many-electron wave functions con-
tain no angular correlations between electrons and are
referred to as (many-electron) radial wave functions.
The best possible radial wave function Lincluding con-
figuration interaction (CI)$ is called the radial limit.
For the two-electron atoms (H, He, Li+, Be++) we
have already seen4 that the Gi (and GF) wave functions
are nearly at the radial limit (E '—EaL=0.001 for He).
The same situation seems to occur in the three-electron
case, where for Li the G1 energy is —7.447560 which is
far better than the best published values (—7.4420 by
Weiss" and. —7.4422 by Brown and Fontana") of
which we are aware for radial configuration interaction
wave functions. Since even for three basis functions
the G1 energy (—7.446137) is much better than these
CI values, it seems reasonable to presume that the G1
energy is nearly at the radial limit (probably about
0.001 to 0.002 off).

Thus essentially all additional improvements in the
wave function beyond the G1 result must be due to
angular correlations since there are almost no dynamic
radial correlations left to account for. This leads to the
following physical picture from the G1 wave function of
Li: Of the two-core electrons, one is at the inner part of
the core while the other is at the outer part, thus allow-
ing a static (nondynamic) correlation of these electrons
since they are in different regions. The valence electron
is then outside this core region. When these regions (all
of which overlap) are optimally adjusted, we obtain a
description which almost completely eliminates the
necessity of further instantaneous radial correlations
among these electrons. This wave function errs in that
it lacks angular correlations among the electrons. Such
angular correlation allows electrons at the same r to
slip around on different sides of the nucleus and thus
keeps the repulsion energy to a minimum while decreas-
ing the distance of the electrons from the nucleus. Thus
the G1 wave functions and other wave functions near

"A. W. Weiss, Phys. Rev. 122, 1826 (1961)."R. T. Brown and P. R. Fontana, J. Chem. Phys. 45, 4248
(1966).

the radial limit are generally more expanded than the
exact wave functions.

Next we will consider several other types of wave
functions and compare them to the G1 wave functions.

1. Comparison of HF, GF, afbd Gl Methods

The GF wave function for Li is

GfaLQla (1)$2a'(2)/lb'(3)42(1)42(2)p(3)7, (11)

where

Gf 022 &22 012 +1% (12)

022"——bl [2e—(123)—(132)—2 (12)+13)+(23)j,
012a=-,'V3L(123)—(132)—(13)+(23)j,
(g22~ =

biL2e —(123)—(132)+ 2(12)—(13)—(23)$, (13)
bl-, P= 16&3t

—(123)+(132)—(13)+(23)j
and the HF wave function is'~

(2'Lgl(1)$1(2)$2(3)42(1)P(2)12(3)j.

Ke have already shown in II that

(14)

C1G1 ($14'1$2Q'PQ) =C2Gf (4tl14 24 lo22P)

=~(see p), (15)

where c~ and c2 are constants. Thus the HF wave
function is a special case of both the G1 and GF wave
functions, and hence the G1 and GF methods in general
lead to energies better than the HF energy. We have also
noted in II that a function of the form C(plagl|42anp42)
is fbot an eigenfunction of S if pl/qh, lb and that
the doublet spin projection of this function is just
Gfa(&la&2aglbclnP) That is., the natural generalization
of the HF method in which we allow all orbitals to be
different, in which we spin-project to obtain an eigen-
function of S', and in which we they optimize all the
orbitals corresponds to the GF method (also called the
spin-polarized extended HF method).

The G1 wave function is quite different from this
and cannot be written as a spin-projected Slater
determinant. In Sec. IV C3 we show that the G1 wave
function corresponds to a natural generalization of the
valence-bond method. In the case of Li the G1 wave
function may be expanded as"

G (~.~ ~.W )
2 t +(4'1 4lb42 42P42)+ +(4'lt41 42 42P42) j

= 2 (fb/(4|lla4I'lb+4t'1b4tlla)4'2arlp& j y (16)

"C=(1/Et}gg',v is the antisymmetrizer, where g, is the
parity of the permutation r.

C. Comyarison with Other Wave Functions

We will first compare the various methods (HF,
GF, and G1) leading to independent-particle wave
functions.
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and the GF wave function may be expanded as

Gf (Plagsggj b«P)
= sI ~(4rA'sA»«P)+a O'(4»4'sA't. «P)

+-', ~(e.~ ~. l3)l, (17)

a singlet state, wrote

P&C(1 . .Ã)=O~&(1,2)O~s(3,4)

and then required that

(20)

Z. Paired TyPe Wane -Fgtbctiols

In Appendix D we show that

G, Cx=c, eI (iV,P,C)xg=cseL(P, C)xg (1g)

for any spatial function C', where P& (the row sym-
metrizer) and Xt (the column antisymmetrizer) are
defined in Appendix C and X=o.(1)P(2)n(3)P(4). as
given in (D3). For a three-electron doublet, Pt=Le
+ (12)$ and Et= Le—(13)g. The function

eL(P,C)xj (19)

is of the form suggested by Hurley, I,ennard-Jones, and
Pople~ in 1953.The only difference is that they assumed

"R.P. Hurst, J. D. Gray, G. H. Brigman, and F. A. Matsen,
Mol. Phys. 1, i89 (3958}.

"Z. W. Ritter, R. Pauncz, and K. Appel, J. Chem. Phys. 35,
57i (196i}.

30 A. C. Hurley, J. Lennard-Jones, and J. A. Pople, Proc. Roy.
Soc. (London) A220, 446 (1953).

which demonstrates the diGerences between G~ and Gf
and the similar limit for pt, ——g, b.

The G1 method leads to far better energies for Li
than either the HF or the GF methods but we see in
Table III that es, (by Kooprnans's theorem approx-
imately the negative of the first ionization energy) is
quite similar for all three as are the expectation values
of the spatial operators P; 3 (r;) (the density of electrons
at the nucleus) and P; r,s and indeed the entire density
maps (see Fig. 4). For spin density" near the nucleus
the three methods differ signihcantly, but all three
lead to nodes or near nodes near 0.85ao and similar
spin densities for larger r (see Fig. 5).

Thus on the basis of predicted physical properties,
the three methods are rather similar except that the
G1 method leads to much better energies than the other
two and the HF method has somewhat poorer spin
densities at the nucleus.

Wave functions of the G1 form I Eqs. (1) or (16)]
have also been calculated for Li by Hurst et al.28

(8= —7.4436) and by Ritter et at.ss (E=—7.4450).
These calculations used three- and six-basis functions,
respectively, but did not optimize the orbitals self-
consistently. From Table I we see that for three basis
functions the energy is —7.4461, if calculated self-
consistently, while it is —7.4476 if large basis sets are
used. Of course, if the calculations are not done self-
consistently, we do not obtain an independent-particle
interpretation.

We next compare the G1 wave function to some
electron-pair-type wave functions.

O;(1,2) O;(1,2)dx& ——0 if i&j . (21)

8[(PC)xh= ~L(~.~.+~.~ )(~ ~.+~ ~ )

and thus all three expressions in (18) have the form
of a generalized valence bond wave function. That is,
the 61 method corresponds to a generalization of the
valence bond method in which all the orbitals are
completely optimized (instead of being restricted to be
atomic orbitals), in which the core orbitals are not
forced to be identical in pairs, and in which no ad hoc
orthogonalization conditions are assumed between
orbitals.

For all three wave functions in (18), the expression
for the energy after summing over the spin coordinates
1S

&=(c
I &I o»c'&/(c'I o»c').

That is, an advantage of the G1 operator is that it
allow's the spin terms to be immediately eliminated.

Wave functions of the form SL(PC)xj with a product
C and with the SO constraint have been called extended
valence bond (EVB) wave functions by Slater" and
paired-electron orbital functions by Hurley, Lennard-
Jones, and Pople. " The proper optimization of the
orbitals for such a function would be quite complex due
to the number of off-diagonal Lagrange multipliers
needed to ensure SO. However, Slater has constructed
approximate EVB orbitals from virtual and occupied
HF orbitals, "and Klessinger and McWeeny'4 have ap-
proximately optimized the orbitals for several systems
by arbitrarily partitioning orthogonal basis functions
among the orbital pairs.

The nonbonding and inner shell orbitals have been
taken as doubly occupied in the KVB method. However,
this means that for atoms the KVB wave functions are
identical to HF wave functions. Consequently, in
discussing the KVB method in this paper we will allow

s~ J. M. Parks and R. G. Parr, J. Chem. Phys. 28, 335 (195&)."F.A. Matsen, Advan. Quantum Chem. 1, 59 (1964).
~ J. C. Slater, Quantum Theory of 3foleceles and Solids

(McGraw-Hill Book Co., New York, 1963), VoL 1, p. 196.
3 M. Klessinger and R. McWeeny, J. Chem. Phys. 42, 3343

(1965); M. Klessinger, ibid 43, S117 (Z9.65).

This latter condition, known as strong orthogonality
(SO), is a constraint on the wave function. The function
(19) with (20) and strong orthogonality is usually
called a separated, -pairs w'ave function. " The function
RI (XtP,C)Xj of (18) is of the form suggested by
Matsen. "

If l is taken to be a product of one-electron orbitals,
then
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even the inner shell EVB orbitals to split. Next we
will consider the effect of the strong orthogonality
constraint.

3. Egect of Strong Orthogonality

The G1 valence orbital (@~ ) is not at all orthogonal
to the core orbitals (the overlaps for Li are 0.14 and
0.23, see Table V). In order to determine how sensitive
the wave function is to this overlap and to test the eftect
of SO, the G1 valence orbital was orthogonalized to the
core orbitals (see Table VI). This caused the energy to
increase by over 7 eV, yielding an energy worse than
the HF and GF energies. Of course, we did not optimize
the orbitals under the SO constraint (which would

yield the EVB wave function), and if we had the

energy would surely be better than the HF energy
(since the HF orbitals are also strongly orthogonal).
The strongly orthogonal 2a orbital is binodal, which

explains the high energy obtained here. This binodal
character results because the iti~, ' and iti~~

' orbitals
are concentrated in such diRerent radial regions. Thus
it appears that in the EVB case the optimum core
orbitals would be only slightly split in order to avoid
extra conditions on @2,Kvn. In this case the EVB energy
and orbitals wouM be similar to (but not identical with)
the GF orbitals.

An approximate relationship between GF energies
and EVB energies is plausible. The GF orbitals can be
transformed in such a way that the new orbitals form

strongly orthogonal pairs but with the energy and
all expectation values unchanged (this is the trans-
formation diagonalizing the matrix S,,=(it;, ~gati, q)). Thus
the GF orbitals can be considered as the optimum
strongly orthogonal orbitals for a t"fC„ type wave
function. Also for identical core orbitals (p~, =@~q=g~)
the HF, GF, Gi, and EVB type wave functions are
all the same Lfrom (15) and (18)j. But we already
know that the GF orbitals of I.i are only slightly split

((itii~~itiib) =0.99989), and we have evidence above
that the EVB core orbitals must be split much less than
the G1 orbitals. Thus, if the EVB orbitals are only

slightly split, the EVB, GF, and HF wave functions
should all lead to quite similar energies. Although the
GF wave function with the SO orbitals is not id.entical
to the EVB wave function with the same strongly
orthogonal orbitals, it does have a similar energy
(the GF energy for Li is —7.432813, the energy of the
EVB wave function using the transformed GF orbitals
is —7.432753).

Strong orthogonality in the EVB wave function leads
to a node in the valence orbital and gives rise to
energies near the HF and GF energies, both of which
also have nodes in the valence orbital. The fact that
all of these methods forcing nodes in the valence orbital
lead to much worse energies than the Gi energy is
another argument for the importance of the nodeless
character of the valence orbital.

TABLE V. Orbital overlaps for the 61, GP, and HF orbitals of I i.

HF
GF~
G1b

&4i.l4»)

1.0
0.99989
0.92822

&dna Ilia)

0.0
0.0
0.14005

&4 ii Iqha)

0.0
0.00369
0.23309

a Goddard (Ref. 4}. b Basis set hV.

Because of SO, the paired functions in separated
paired and KVB wave functions cannot contribute to
the spin density. Thus for atomic states such as I.i'P,
N45, Mn++'5, C'P, O'P, etc. , these methods will

predict zero spin density at the nucleus and hence no
Fermi contact contribution to the hyperfine splitting.
This, of course, is a well-known defect of the HF
method. (A similar problem arises for spin densities at
nuclei in the plane of molecules having only unpaired
ir electrons. ) Similarly, for a system such as Li '5, the

separated-pair-type wave function leads to a, Q(0)" of

~$2, (0) ~', i.e., just the same as for the HF case. For
wave functions without SO the spin density can involve
all pairs, but even so the Q(0) for the G1 wave function
of Li '5 is 9/o off. For a state such as Li 'I', where the
core electrons are by symmetry orthogonal to the
unpaired electrons, then the G1 wave functions leads

to zero Q(0) just as do SO wave functions.

TABLE VI. The effect of strong orthogonality upon the G1 wave
function (basis set h7). (Hartree atomic units are used. )

V/2F
&E ~(;)&
Q(0)
&Z r")
e2-(0)

Strong orthogonality

—7.180038
1.037773

14.144
0.4109

19.512
0.6410

No restriction

—7.447560
1.000001

13.864
0.2095

18.654
0.09366

a See Ref. 10.

V. SUMMARY

The Gt. wave function for I.i leads to much better
energies than does the HF and GF wave functions, yet
the Gi method retains the independent-particle inter-

pretation. Thus, since the Gi wave function does not
contain dynamic or instantaneous correlation between

the electrons, we could reasonably define correlation

energy with respect to the Gl energy rather than with

respect to the HF energy.
Just as for the two-electron atoms the G1 wave

functions for three-electron atoms are nearly at the
radial limit. That is, for these systems the dynamic

correlation energy is essentially all due to angular

correlations; dynamic radial correlation is only very

slight.
The density distributions obtained from the HF, GF,

and Gi wave functions are nearly identical, but the
errors in the spin density at the nucleus for the three
methods are 28, 4, and 9/o, respectively. Despite the
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large difference in shape between the G1 and the HF
and GF valence orbitals, all three lead to essentially
the same orbital energy.

In contrast to the HF and GF methods, the G1
method does not force orthogonality between valence
electrons and core electrons. The G1 wave function
would allow such orthogonality if it were energetically
favorable, but in fact we 6nd that the resulting valence
orbitals have significant overlaps with the core orbitals
resulting in a signi6cant decrease in the energy. The
resulting G1 valence orbitals are nodeless with a form
quite like that expected on physical grounds (cusp at
the origin, minimum in the core region, maximum
outside the core, and exponential falloff far outside the
core). This is in contrast to the HF and GF valence
orbitals which have nodes. We conclude that such

nodes are artifacts related to unphysical constraints
built into the wave function. The lack of orthogonality
conditions between valence orbitals and core orbitals
for G1 wave functions may remove problems due to
this Orthogonality in considering bands of states in

solids and Rydberg series in molecules and atoms.
The G1 wave function has the form of a paired

electron wave function. Thus the extended valence
bond wave function is a special case of the 61 wave
function in which a constraint, SO, is assumed. Since
SO has a quite deleterious effect on 61 wave functions
for I.i, we conclude that SO is an inappropriate con-
straint for orbital-type wave functions. As a result, we

suggest that for i, i the EVB method should yield
energies similar to the GF energy and much worse than
the 61 energy.

APPENDIX A

The explicit expressions for the 61 matrix Hamiltonians are given below. B„„'~is obtained from H„„' by
interchanging 1a and lb. Basis functions are indicated by p, and v; P&„p», and &2, are denoted by a, b, and c,
respectively.

&.' =&~lbl v&D~."+&~I»lb&I &bl v&
—i&bi~)&~l v&7

——:&~lbl~&C&~lv)+(~lb)&bl v&7+I & Ib&
—

—:&s l~&&~lb&7(bi&I v&

—
24&~ I ~&+&~ I b&&b I ~&7&~ I

b
I v&

—
l&u I ~&&~ I v&(&b I

b
I b) —&)——;&~I b&(~ I v) ((b I

b
I ~&

—&(b I ~&)

+( I b&&b I v&(&~ I «I ~&
—&)—l&~ I ~&&b I v& {&~I

b lb&
—&{~lb&)+ (~v I «)+ (~v I bb) :(~~I—"—)+( b

I bv)
—(» I b~)(b I ~)—l {~b!~v)&b I ~)—l (~~ I bv)(b I ~)+&~ I b) L(vb I «)——:("I b~) 7—l(~ I ~)L("I bb)+ (vb lb~) 7

+&vlb&l {bl«) —2(~~lb~) —l&vl ~&l (~~lbb)+( bib~)7,

&.' =( Ibl v&D""——:D I&I~&&~l v&+( I @lb&&bl v&7
—kD I ~)&~lbl v&+( lb&&bl1I v&7

——:&~I~&&~l v)(&bi&lb) —&)
—

l&~ I b&&b I v) (&~ I
b

I ~&
—&)—2& I ~&&b I v&(&~ I

b
I b&

—&&~ I b&)
—

l& I b&&~ I v&(&b I
h

I ~&
—~&b I ~&)

—le I hl ~&(~ lb&&b I v&+(~ I @ lb&&b I ~&&~ I v&+&~ lb)&b I ~&&~l hl v&+( I ~&&~l»&bi&I v&7+( I «)
+2(pe I cb)(a I b)+ {pv

I
bb) —

~ L(pb I
b v)+ (pa I

bz )(a I b)+ (pa I av)+ (pb I av) (e I b)7—2(p I a& I {vu
I bb)+ (vb I ab) 7

—-'( lb&I:(vbl «)+(v~l ~b)7—-'&vl ~&C(~~lbb)+( bl ~b)7—
2&v lb&L{l bl «)+(I ~lob)7.

vrhere

F'&=&clzlo c&l&clo e&,

=ZQ'Ifl~;&D"iD, (B1)

Di."=(1~I 1b)—&(1~ I 2~)(2~ I 1b),
D»»=1 ——;l&1al2a&l~,

D2."=——:I&2~I 1~&+&2~I1b&(» I 1~&7,

D2."————,'L(2a
I
1b)+(2a I 1a&(1a I 1b)7,

D. "=1+I&1 I»&l',
D=1+&1~11b&'—kLI(1~1 2~& I'+ I(1bl 2~& I'

+«((1~I 2~)&2~ I »&&» l1~&)7 (B2)

APPENDIX B

The expressions used for expectation values of one-
electron properties for 61 wave functions are discussed
next.

Consider a one-electron operator F=P; f(i), where
the f(i) are functions only of spatial coordinates. Then

Now consider a one-electron operator M=+; m(i)
Xs,(i), where m(i) is a spatial function. Then, using

(Ds),

—{M)= {P~@lgng{i~) —gw(i2) I 1v&~c)/(2 +'sD),
5 11 &2

=(»—D '((~l~l~)L1 —I&bl~) I'7

+&bi~lb&L1 —
I &~I~&l'7

+2 «(&~I~lb&C&b l~&—
&b l~&&~l~)7)},

=(2D) '4&~l~l~&I&bl~&l'+&bi~lb&f&~l~&l'

+2 «((~ l~ lb&&b I ~&(~ I ~&)

+2& I I &(1+I& I»l'
—2 «L(~ I

~
I ~&((~ I ~)+&~ I b&&b I ~&)7

—2 «L&b I
~

I ~&(&~ Ib&+(~ I ~&&~ Ib&)7)

where iz refers to the 6rst column and i2 to the second
column of the tableau, and. (F& is the expectation value
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of g; m(i). In (33), p,„, p, b, and P~. are denoted by
a, b, and c, respectively.

APPENDIX C

We will now derive a useful form for the Oqq operator.
Consider the Young tableau Sq of n= [2,1" j as

in I'ig. 6.Let 6' be the product of the positive symmetric
groups9 of the rows of S~ [i.e., (P= (e, (12),(34),
(12)(34), . })and let M be the product of the negative
symmetric groups of the columns of Sq [i.e., X=(e,
—(13), —(15), —(35), (135), (153) —(24), + (13)
X (24), . ~ }].Now let Pq be the sum of all elements of
6' and Ã~ be the sum of all elements of X. Then

Pq = [e+ (12)j[e+(34)]. [e+ (2m —1, 2')j

FrG. 6. The SI Young tableau. 2m-1 2g

P,-X;P,-=Q ~„~O„~.
Pre

(C2)

Let 0„„& and 0„& operate on the left and right, re-
spectively, of (C2). Then since

E~ = [e—(13)—(15)—(35)+(135)+(153)
&& [g—(24)—(26)—(46)+ (246)+ (264)+ j,

where m is the length of the second column of S~
(m= E—n). We wish to show that

O» —(1/2m8»)P»Q»P» (C1)

where 8 =N!/f» and f» is the degree of the n irreduc-
ible representation of the symmetric group S~.

Any sum of permutations can be expanded in terms
of the O„,j'; thus we may tak.e

invariant since (1 2)P~ =Pq, but on the right side we
have terms with (1 2)O„, . In addition, for aQ r and g,
1 and 2 are either in the same row or the same column.
Thus

(1 2)O„, =+0„, 1 and 2 in same row,
= —0„, i and 2 in second column.

Hence the r and s in (C7) can be restricted to those with
1 and 2 in the same row. Similarly, we operate with (3 4)
on (C7). Since 1 and 2 are in the same row, then 3 and
4 are either in the same row or in the same column, and
just as above we fmd that the r and s in (C7) can be
restricted to those with 3 and 4 in the same row. Con-
tinuing we 6nd that r= s= 1 is the only allowed tableau
in. (C7):

Pg Eg Pg =A, gg O~~ .

we obtain
Ore O)~~=6 &6,go.

but from p. 29 of Ref. 9

0„„=—0„„"E„„O„,,
0

0 PP P 0 PP ag aPao P

(C3)

(C4)

(C5)

The constant P j~ is easily obtained by comparing the
cori.cient of e on each side of the equation. The
coeKcient of e in Pj E~ Pj =the coeS.cient of e in
P,»P, »N, » (see p. 19 of Ref. 9)=2~. The coeKcient of
e in O~~ is just 1/8, since Uu, ——1. Thus Xn»=82~,
i.e., we obtain. (C1).

In the same way we can also show that

where E„„,the Young projection operator, is given by

E„„=p„X,.
Expanding (C4), we obtain

00„.9„,~=0„,~P,~r,~O„~P,-r,-P,-O..~.

(C6)

But P„sX„&O„„sP~X~ ——0 if P&n, since otherwise two
elements in the same row of S& are in the same column
of S„&or two elements in the same column of S~ are in
the same row of 5„& (see pp. 14 and 21 of Ref. 9).
Thus (C2) becomes

~&y pf Ef =n!m!8 O~f, (C8)

where SJ" is the anal standard tableau of the n shape.
The only differences are that all P's are replaced by
E's and vice versa, and after obtaining the expression
analogous to (C7), we operate with (1 2), (2 3), (3 4),

(n 1, m) is —succession to eliminate all r and s
except r = s = f.

APPENDIX D

In Appendix C we showed that

P»g»P» —g g»O» (C7)

Now operate from the left with (1 2). The left side is

Ogg
——(1/2 8)Pg»Sg Pg»,

and in Appendix C of I we showed that

Gg&X= f»Q[(Ou&)Xj.

(D1)

(D2)
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(Note that f HN=N!. ) Thus

G,~x= (f/2-0) o:L-(~,~,~,~)xj.

x=n(1)p(2)n(3)p(4) n(2m —1)p(2m)
&(n(2m+1). . .n(E), (D3)

and thus vX= X for any veX.
Hence

&+x=i.&L( +)( x))=i.o'E( +)xj

O'L(+ipi+ipiC')x) = ri lm le/(PiXipiC )xj. But
from p. 19 of Ref. 9 XII'IXII'1——0%II'I, thus

I!m!Qt (P,1V,p,c)xj=eQ[(E,p,c)xj.
Similarly, using (D4), we have

o;L(E,P,c)xj=e!m!o;L(P,c)xj;
thus

Gi~x= (f/'I!m!2 )QL(Eij i@')xj
= (f/2-) ~CA' C)xj (»)

for any spatial function +, and thus

e(X,+)x=e!m! o, (%x) .
This expression is used in the discussion of paired-type

(D4) wave functions.
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An examination is made of the effects of spin-spin and spin —other-orbit interactions on the energy levels
of f-electron configurations. The theory is applied to several rare-earth atoms and ions under a number
of simplifying assumptions. Considerable improvements in the fits between experiment and theory are
obtained, particularly for the sextets of Gd Iv. Electrostatically correlated spin-orbit interaction is studied
and found not to be susceptible to parametric absorption into the ordinary spin-orbit and spin —other-orbit
interactions. The various contributions to the effective Hamiltonian for two electrons are decomposed
into parts having well-defined group-theoretical properties, in preparation for their calculation for any
configuration f~.

I. INTRODUCTION

ERM analyses of complex atomic con6gurations
are usually performed with a Hamiltonian com-

prising two parts: the Coulomb interaction between the
electrons and the spin-orbit coupling. The procedure
introduces a.s parameters certain Slater integrals (such
as the F~, or, equivalently, the linear combinations E~

of Racah'), and a few spin-orbit coupling constants l ~.
'

In recent years, most efforts at improvement have been
centered on the study of configuration interaction. This
has as its origin the large off-diagonal matrix elements

of the Coulomb interaction. Its effect can be accommo-
dated by introducing effective operators that act only
within the configuration under study. The additional
parameters that enter in the lowest order of perturba-
tion theory are associated with two-electron operators
(the parameters n and P of Trees' fall in this class) or
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with three-electron operators. ' Under these limitations,
the total nu~ber of parameters necessary to describe
a configuration f~ is 14 Lcorresponding to f r, F"(k=o,
2, 4, 6), n, P, y, and six parameters T~ for the three-
electron operators].

A parametrization of such a kind neglects the con-
tributions to the Hamiltonian coming from the Breit
operator H&, given by '

&a= ——',e' Q L(n,"n,)r,, '+(n,"r;;)(n,"r,,)r„,
—'j.

In the nonrelativistic limit, II~ separates out into parts
that are easy to interpret. Some of them produce effects
that can be taken into account by changes in the elec-
trostatic parameters (e.g., the parameters Ii~, n, P, and
y for f~). Into this category fall the retardation of the
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