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We study threshold electrodisintegration of the deuteron caused by scattering of electrons at angles
near 180°. The cross section for this reaction is calculated, using nonrelativistic deuteron wave functions.
The deuteron D state is included in the calculation, as well as all of the relevant meson exchange currents.
Disagreement of the calculated results with recent electron scattering experiments indicates that a basic
difficulty exists in our present understanding of the deuteron wave function and the core radius of the
nucleon. A crude Fourier transform is then performed on the experimental transition form factor to yield
the configuration-space overlap charge density. The resultant overlap charge density indicates that a
softer nucleon core is needed than is presently popular.

1. INTRODUCTION

HE present paper is motivated by the recent ex-
periment of Rand et al.! on the scattering of elec-
trons at 180° by deuterium. The cross section for the
electrodisintegration of the deuteron found in that ex-
periment is consistently greater than that predicted by
the original Jankus theory? of e-D scattering, be-
coming over twice the theoretical value at a momentum
transfer of ¢2=10 F-2. This is a very disturbing result
since one expects that the standard calculational
technique for e-D scattering?=® should be reasonably
accurate near threshold and at low ¢% and begin to be
untrustworthy only at higher ¢?> when relativistic
effects,’1% inaccuracies in deuteron models, etc., be-
come crucial. The results of Rand et al. indicated that
the discrepancies are much greater and occur at a some-
what lower value of momentum transfer than expected.
We have reformulated the theory of e-D scattering
for large electron scattering angles. The original cal-
culation of Jankus used a pure S-wave deuteron; we
have included a deuteron D wave, meson exchange
currents,®!! and some small kinematical relativistic
corrections. In our opinion the resulting theory is
basically complete within the context of a nonrelativistic
wave-function model of the deuteron. Despite a drasti-
cally different theory, our numerical results for the e-D
cross section are rather close to the older Jankus num-
bers.! Thus the discrepancy between theory and ex-
periment persists and is even worsened since we believe
the present theory is essentially complete.
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As we will discuss in Sec. 8, the only cure for this
discrepancy seems to be a change in the deuteron wave
function at small distances. We will make a crude
estimate of the ground state and scattered wave-
function overlap at small distances, ~0.5 F, by Fourier
transforming the experimentally measured form factor.

2. GENERAL CONSIDERATIONS

We first wish to demonstrate that when scattered
backwards a Dirac electron emits a purely magnetic
photon. This photon has the quantum numbers J=1
and P=+, so the transitions it can induce in a target
system such as a ground-state deuteron are limited. For
the electrodisintegration of the deuteron near threshold,
the allowed final states of the (#p) system are 1S and the
so-called « state,'**® which is predominantly 3S with a
very small admixture of 2D due to the tensor force.

Consider an electron moving along the z axis with mo-
mentum & which is backscattered to momentum %’ and
emits a virtual photon. The momentum-space transi-
tion current for high-energy electrons with & and & >>m

is then
R\
jx= uf’fa,ui= - 21(@2') xﬁa'yxi 5

FE \ 12
jy= uﬁayui= 21(?4—;) XfTo':cXi’ (21)

m
Je=usleuL 25y,
Jo=uituL ja,gy.

This current vanishes if the Pauli spinors X; and X, are
the same and is thus pure spin flip. For a transition
from spin up to spin down, the potential produced is

A= (—1/gjee
= (—1/g) (k fAm) (e astining) | (2.)

and the electromagnetic field associated with the virtual

12 J, M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, Inc., New York, 1952), p. 110.
13 . J. DeSwart, Physica 25, 233 (1959).
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F1c. 1. Isotopics of scattering
into singlet state.

photon is

E=0, B=(i/q)(kk'/4m?) 2(e-icetinl2 g=izz 0) | (2.3)

Thus such a photon can induce only magnetic tran-
sitions. Moreover, the potential due to a 3-vector
current [Eq. (2.2)] is a pseudovector and has positive
parity.

From the above comments, we can list the possible
states of the (np) system. First, near threshold the
centrifugal barrier suppresses all but S states. The
magnetic character of the photon implies a positive
parity. The 1S state of the deuteron is clearly allowed
by these criteria, and we will see that it dominates the
final state. This is to be expected since a magnetic
photon will easily flip one nucleon spin and produce a
3§ — 1§ transition.

In addition the 3S state is possible. However, we will
find that it is considerably less important than the LS
state, although not negligible. It should be noted that
the 3S state that we speak of here actually should have a
small admixture of 3D and is more properly referred to
as the « state.!? In practice, this makes little difference
for the small relative (#p) momenta encountered near
threshold.

In the following sections, we will calculate the transi-
tion amplitude for the ground-state deuteron going to
the 1S state. Since this dominates the magnetic dis-
integration near threshold, we will include the D wave of
the ground-state deuteron and meson exchange cur-
rents. Since the 35 state is less important, but not
negligible, we will calculate only the impulse approxi-
mation for the ground state to 3S transition. As noted
above, we will not distinguish between the « and &S
states but will treat the 3S state as if it were a true
eigenstate for the final (#p) system. This is an excellent
approximation since the mixing angle is only a few
degrees.!?
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3. ISOTOPIC CONSIDERATIONS

We wish to limit ourselves in this section to the in-
elastic scattering of a ground-state deuteron into the
singlet .S state with isospin 7=1. Near the threshold for
inelastic scattering this transition dominates the cross
section. Our problem thus reduces to the consideration
of a photon induced isospin-flip transition from the
ground state (I=0) to the singlet state (I=1), as shown
in Fig. 1. It is apparent that if some system of mesons
is to couple the deuteron to a photon it must have I=1
for the strong meson-deuteron vertex to be allowed,
C=—1 for the electromagnetic meson-photon vertex
to be allowed, and it must of course have zero charge.
From these quantum numbers we can calculate the G
parity of the meson system.4

The G parity is defined as the product of a rotation by
« about the isospace y axis and charge conjugation

G=e"C., (3.1)

Since the meson system must be the neutral member of
an I=1 isotriplet, we see that under the rotation in
isospace, the neutral member, or z component, changes
sign; since the meson system also has C= —1, it clearly
must have G=1. On the other hand, G=—1 for a single
pion and is a multiplicative quantum number. Thus
for a system of # pions

G=(—1)". (3.2)

We conclude that if the meson system can be considered
as a bound or resonant state of pions then it is an eigen-
state of G parity with G=1 and consists of an even
number of pions.

For simplicity, we will limit ourselves to the non-
strange members of the pseudoscalar-meson octet P

147, J. Sakurai, Invariance Principles and Elementary Particles
(Princeton University Press, Princeton, N. J., 1964), p. 223,
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Fi1c. 2. Approximate saturation of unitarity
in the crossed channel.

and the vector-meson octet V. Moreover, we will con-
sider only pole-type diagrams of the form shown in
Fig. 1. This leads us to meson exchange currents (7r),
(wm), (on), and (pp). We delete the neutral exchange cur-
rents (91) and (ww). One should note that since only
the I=1 part of the photon is involved our results must
depend only on the isovector nucleon form factors and
not on the isoscalar form factors. In the impulse approxi-
mation of the next section this will allow us to ignore
the neutron-photon coupling during the calculation and
merely replace the proton form factor with the isovector
form factor at the end.

The exchange currents which we determined above
have the virtue of containing only well established
states of 2, 4, and 6 pions. We may therefore think of
our choice of currents as an attempt to saturate unitarity
with nonstrange vector and pseudoscalar-meson poles
as shown in Fig. 2. We will not attempt to estimate the
effects of strange-particle currents such as (KK).

4. IMPULSE APPROXIMATION

The simplest first approach to the problem of elec-
tron scattering from any nucleus is to assume that the
electron interacts individually with the bound nucleons;
this is the impulse approximation as pictured in Fig. 3.
This approximation is limited by the following:

(1) The photon-nucleon interaction is usually de-
scribed by a free nucleon form factor. The only way to
avoid this difficulty is essentially to calculate, in some
way, the nucleon form factor off the mass shell. We
have no trustworthy way to do this. In the case of the
deuteron the internal momenta are of the order of
50 MeV/c, so we do not expect off-mass-shell effects
to be of great importance since p?is then only a percent
or so of M2

(2) One usually describes the d — n-+p vertex in an
ultimately noncovariant way, e.g., in terms of wave

k¥ K'*

F16. 3. The impulse approximation.
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functions. Attempts are being made to treat the vertex
by a covariant parametrization without ultimate re-
course to nonrelativistic deuteron wave functions.”~0
Such attempts have been at least partially successful
and, among other things, serve to increase our trust in
the validity of the wave-function approach for small
momentum transfers.” Considerable progress in the
relativistic two-body problem should be forthcoming.
However, for low momentum transfers we believe the
wave-function description should be accurate. The
question remains as to what should be considered ‘“low”
momentum transfer.

(3) Nucleons are not the only particles in a nucleus
and one must eventually consider the interaction of the
photon with meson exchange currents,®t:% which are
not implicitly contained in the impulse approximation
via nucleon form factors. We will deal with these cur-
rents in later sections of this paper.

The S-matrix element for the interaction of two cur-
rents via one-photon exchange is given by the well-
known general form (see Fig. 3)15

= —ie(2m) 454 (Q/+ k'~ Q—F)

X(m*M?*/kk' EpEa)'?5,(1/¢7)J*.  (4.1)
For the present problem, j, is the electron current in
momentum space

Ju=a(k")y,u(k), 4.2)
and J* is the deuteron transition current in momentum
space, which we now wish to calculate in the impulse
approximation. The transition current is simply the
Fourier transform of the nucleon currents in configura-
tion space. With respect to the deuteron center of mass,
the proton is at a position 3y and the neutron at —31y.
Thus, if we denote the nucleon current operators by
T',* and T'»*, we can express the current in terms of the
initial and final nonrelativistic wave functions as a three-
dimension Fourier transform:

T [T e e )y, (43)

Although (4.3) is manifestly noncovariant, we wish to
retain the lowest-order relativistic terms due to the
Dirac nature of the nucleons. In particular, we wish to
rewrite the operators I'y* and I'y* for use with Pauli
spinors, but correct at least to second order in all three-
momenta involved. To this purpose, we write the
nucleon positive-energy Dirac spinors in terms of
nucleon Pauli spinors X as

uelp)= (%)Ilz(o-p/(;m)x“ ®)

15 S. D. Drell and F. Zachariasen, Electromagnetic Structure of
Nucleons (Oxford University Press, London, 1961), p. 2.
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and use the following nucleon current operators:

Tr=Fi(¢®)y*+(ix/2M)o**q,F(g?) for p=0, (4.52)
Te=F1(g®) (P*/2M)+(2/2M)o*q,G 1(q?)
for u=1<, (4.5b)

where ¢, is the 4-momentum transfer and P* is the
sum of momenta before and after interaction. Then
simple algebra results in the following expressions for
the nucleon currents in terms of nucleon Pauli spinors X:

o (p") Toug(p)
PP @ pgq
=xa?[(H } . )GE’(QZ)
M2 8M?2 2M?

+ZA%—2€Z"P’°¢T’6"’°’GR@2)+O(P"‘):Ixa, (4.60)

aa(p' )T iug(p) =xa'[(P*/2M)Gr(q*)
—(i/2M) €% gG u (¢*)+0(%) Ixs-

The electric, magnetic, and so-called “relativistic” form
factors are defined as

Gr(g?) =F1(g")+(¢°/4M*)xFx(¢%)
Gu(g®)=F1(g*)+xF(q?),
Gr(g")=F1(g*)+2kF(g?) .

The remaining ingredients necessary for calculating
the impulse-approximation current (4.3) are the wave
functions for the ground-state deuteron and the scat-
tered /=0 states. The nucleon current expressions (4.6)
allow us to use nonrelativistic wave functions and Pauli

spinors. For the ground-state deuteron, we use the well-
known wave-function form?!¢

1 Tuly) w(
[ f (y)Sm:IXM,
amvd y 8y

x1=aa, x-1=88, xo=/(aB-+8cx)/V2.

(4.6b)

4.7)

#i(y)=

(4.8)

For the scattered /=0 states, we use

. _Zs(y,ﬁ)
singlet; ¢/0)=" | = s xomtas-s0)42,
triplet; ¢s(y)= _Zt(y’?)]

plet; 1y (47r)ll2_ y XM’

xi=oa, x-1=88, xo=(a8+6a)/VZ, (4.9)

where p is the relative (#p) momentum.
The radial wave functions are normalized at large y to

Z(y,p)/y— (4x) 2 sin(py+8)/py,  (4.10)
where 6 is the phase shift of the singlet or triplet state.
16 See Ref. 12, p. 99,
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It now remains only to substitute the nucleon cur-
rents (4.6) and the wave functions (4.8) and (4.9) into
the expression (4.3) for the impulse-approximation cur-
rent. For the transition to the 1S state this results in

Jid=0,
Jia?=— 1M (X Yo, Xar) [Gar v (g?) /M J[H (¢ — T «(¢H ]

+¢ (X0l o Xar) [Guv(g?)/ MV o(¢"), (4.11)
where the deuteron structure is described by
1.0)= [ 20 iGaay,
’ (4.12)

1 00
s ) =—o s\, '2% dy.
J«(g®) " /0 Zs(y,p)w(y) j2(3gy)dy

The 7o and §» are spherical Bessel functions, and Guv is
the isovector nucleon magnetic form factor. The form
of current obtained in (4.11) can be shown to be general;
thus the modifications to be obtained when we consider
meson exchange currents will simply change the
functions Gyy(H—J)/M and GuvJ/M.

For the 3S state the transition current is

L;’=0,
Liai=—1ieg*(XartopXar) [Gars(¢®)/M JLH (¢?)+JT (¢?)]
+ ¢ (XarTopio X u){[3Gus(g?)/M 1T (g%

—[24GES(92)/M]Kt(92)} , (413)
where
Hg)= f Zy,p)u(3) jo(3a3)dy,
1 ° :
(g} =— Zy(y, i2(3qy)dy, 4.14
Hg)= ] (0 pYe(y) 2(ay)dy (4.14)
1 2 Z{(y.p)y—Zy,p)
K; ) =— .2% d .
@=— ey

Here Z,/ is the derivative of Z, with respect to ¥.

To get the cross section for electron scattering from
the deuteron, we need merely square the S-matrix
element (4.1), sum and average over spins, and integrate
over proton and neutron momenta. This is completely
straightforward and results in the following cross sec-
tion for electrodisintegration into the 1S state:

( do ) 2p[GP2+G2] F
dQdk')s  (2r)?3M sin®(%6) k

) X[1+4sin?(26)+ (k—E)2/2kk'], (4.15)
where
Gi(g) =Garv (gD ()—T.(0)],
Go(g)=Guv(g)Ts(g?). (4.16)
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Fic. 4. (wm) exchange diagram.
For the transition to the 3S state, we obtain
do a?p[G2+GE] K
( ) = LGS ‘] —[1+sin%(36)
dQdk'/ss  (2m)23M sin2(30) &
a?pGe? 4
by 2 E
(27)24M sin%(36) %
X[((k—E)2/2kE") cot2(36)], (4.17)
where
G3(¢*) =V2Gus(¢H[H(¢®)+ T (¢?)],
Gi(g?)=3V2Gus(g)JT (¢®)—24V2Grs(gDK (¢?). (4.18)

We are particularly interested in angles near =, in
which case cot(36)=0 and the 1S and 3S cross sections
combine into a single convenient form

do o[ GPHG2+G2H-G2] K
dQd  (2n)3M sin?(6)
X[14sin2(30)+ (k—%')2/2kE']. (4.19)

The cross section (4.19) is the net result of the im-
pulse approximation. Before proceeding to consider
meson exchange currents, we should note that the
deuteron structure functions such as H, are given in
terms of the 3-vector q2 whereas the nucleon form factors
are functions of the 4-vector —g¢?2. The fractional differ-
ence of these quantities is ~¢2/4M p2. For —q? of 10 F~2
this amounts to only a few percent, but it should be
kept in mind that an ambiguity does exist. We will
discuss this further in Sec. 7.

5. MESON EXCHANGE CURRENTS: (==x)

In Sec. 4, we considered the impulse approximation
for e-D scattering into the singlet deuteron state. In
doing so, we implicitly included the mesonic inter-
actions, in which only one nucleon is involved by using
a phenomenological nucleon form factor. That is, we
actually included intermediate states like p, v, (7), and
other meson systems which land on one nucleon and
ignore the other. We now wish to widen our scope and
consider a meson emitted by, say, the proton which
interacts with the photon and lands finally on the
neutron. This clearly is a three-body effect; both
nucleons and the photon participate. One could also
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consider this as the photon interacting with the overlap
of the nucleons’ meson clouds; the photon hits a meson
in one nucleon’s cloud, which then transfers to the
other nucleon’s cloud. To reiterate our above comments,
we can think of the present calculation as, equivalently,
(1) an exchange current of mesons, (2) a nucleus-photon
three-body effect, or (3) a proximity-induced distortion
of the meson clouds of the two nucleons. The exchange
currents should not be considered as a relativistic effect
since they would be present also for arbitrarily heavy
and slowly moving nucleons.

Since the transition to the 1S state dominates the
cross section near threshold, we will calculate exchange
currents only for the ground state to 1S transition and
not for the transition to the S state.

We first calculate the effect of the (am) exchange
current pictured in Fig. 4. The transition in isospace is

(pn—np)/N2 — (pnt-np)/V2. (5.1)

The amplitude for pn/V2 — np/V2 involves the proton

giving a #t to the neutron, as in Fig. 4, and has the

amplitude + |e|. The amplitude for —np/V2 — pn/V2

is similarly 4 |e|. Thus we may consider the exchange

of a 7t only as pictured in Fig. 4, using G?/4r=14, and

double the resultant amplitude to account for isotopics.
The 7-v vertex is taken to be the usual form

e(p+D*rA,. (5.2)

For the wm-d vertex, we introduce a convenient notation
for spin operators between direct-product Pauli spin
states

opi=(ct:I), o' =T:0%. (5.3)

Then the ww-d vertex is the product of =-» and =-p
vertices. In the nonrelativistic limit this is simply

[iG< ) '][iGz ]  pirtoian). (5.4
PP, P)oy o (o —lep glia?). .

4

oyiont=(07:0"),

Note that we have made yet another nonrelativistic
approximation in (5.4) which is good only to O(p?).

With the y-r and =m-d vertices given above, we can
immediately write a Feynman amplitude for Fig. 4,
with the dueteron temporarily described by functions

Y(Y2yYn)-
Srx=—2¢ / @%958*y il 51 (Y sn) (072 0 Wi(y,3)

G2 1P (z—yp) d4p ge— il (yn—2) 4]
X lﬂ;b"[ ][ }
Pom? Qe Pom? (2n)

—jg—in ez Jig

x(+n] Jatk e

¢ (2m)*
X =ik o2/ RE ) 2 (M2 ) EpE ) Pdied*x,.  (5.5)

This simplifies if we substitute center-of-mass (c.m.) and
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relative coordinates for the nucleons, and similar mo-
mentum variables

Y=%(3’p+3’n) ) 7=P+l,
Y=Yp=—Yn, g=Il—p. (5.6)

The deuteron wave functions ¥ are then written as
internal ¢(y), as in (4.8) and (4.9), and plane waves
for the c.m. coordinate:

Vi(ypyn) =€ Ys(y),
i(ypyn) =R Y, (y). (5.7

With these coordinates, momenta, and wave functions,
we can simplify the amplitude (5.5) to

Ser=—1€(2m)*64 Q"+’ —Q— k) (m*/kE)'I?

G [d3 & -
$:(y
o ] 7 o

X(a7:09)pi(y)ei™ 72 r#(q+7)i(g—7)7/
(p*+m2)(P+my?), (5.8)

with the restriction that 7°=0. This restriction implies
that no energy can be transferred between the nucleons;
it seems to be a standard feature of exchange-current
calculations which use wave functions, and merely
reflects the one-time nature of the nonrelativistic wave
function.

If we compare the (r7) exchange amplitude (5.8)
to the general amplitude (4.1), we see that the following
quantity can be identified as an exchange current:

y ——rﬁf*(y)(ff’ 70)pi(y)e’ 2

o |7 G

Xr#(g+1)i(g—7)?/(p*+m.2)(B+m,?). (5.9)

Note that in simplifying the (wr) amplitude from (5.5)
to (5.8) we found 7°=0. This agrees with the general
result of Secs. 2 and 4 that the deuteron transition
current is magnetic and has no zeroth component.

Our remaining task is to put J..* into the form of
transition current given in (4.11). We may then pick
off the contributions to the deuteron transition form
factors, which we will call G;™™ and G,™". Since we
know the form of the wave functions ¢(y) from (4.8)
and (4.9), this is reasonably simple. We first perform
the angular y integration; for this we utilize the follow-
ing convenient properties of the tensor operator Sis:

S1(§)=37-0,§ - 0n—0p 0u=T""(§)(s":0™),
Tin(g) =341 gm— s,
42 Tin(g)oi+12= e ju(3ry) T(3)

X(M*/EoEn)'?5,(1/g

]1”;-“=

/dﬂ ey 2=4rjy(3ry). (5.10)

THRESHOLD ELECTRODISINTEGRATION OF DEUTERON
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Then the y integral becomes

/ @y o1 () (07:0)pi(y)e™ V2= x4} (07: 0 )xu H 5(7°)

—xst (it o9 e T™(#) T s(72), (5.11)
where the functions H, and J, are, as in (4.12),
Hy(r*) = / Z(3)u(y) jo(Gry)dy
’ (5.12)

1= [ Zayyuls) jahryda
ST_\/8/; (Y)W Y)12(27Y)2Y .

The = integral can then be simplified to the form re-
quired, with the result

G2
Jrx?=—iei*gx,1(a: I)XMZ—M—zf(qz)
+a'xet(o”: 6’)xM—f~2—[n(q2) =], (.13)
32M*
where
n(g?) = / Hy(r%)(11)?
(2m)? [i(g+=)*+m 2% ( (I““)2+m1r2]
Jo(r?)(11)?

f@= —/ (2 2@+ +m 2] 2 (g— =) +ms 2]

(5.14)

The (=) current in (5.13) can be compared with the
general current (4.11) and the definition (4.16) to obtain

2

G1™"(¢?) ¢
v

G2
2 2r1r= 2) — 2 . 5'15
(), G 32MD7(9) $(@]. (5.15)

These add coherently to the form factors Gi and G
obtained using the impulse approximation (4.16).

The functions 5 and ¢ defined in (5.14) may be con-
siderably simplified by integrating over the angles of =:

)= / H(x)M (r,g)rdr,
$(gH)= i wJ(Z)M( Vrid
q)=—"— a\T 7,4)7°aT,
2(2m)?
8 2 2+ 2_',_4 1'2 2._4 2.2
Mrg)=—t [(g?+7*4-4m.2)*—4g*r?]
q21.2 g27.3(q2+,r2+4m7r2)
2 2 4 12_2
Xln[g HrAm qT]. (5.16)
@+ +-4m*+-2g7

For ¢=0, one may also evaluate (5.14) as contour
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integrals, obtaining the particularly simple results

Zs(y)w(y)
) ——dy,
(14+mxy) s y

e "y

4 0
FO)=— /
37 0 y

8 e myy
”0)=— / = may/ D2ty

(5.17)

These are now in convenient form for numerical
evaluation.

At this point, we should note that although we have
so far used a bare pion-photon vertex, a pion form
factor Gr(¢%) may be easily included. This will result
in G1™™ and G,™" being multiplied by the function G,(¢?).

6. OTHER EXCHANGE CURRENTS:
(ox), (on), (0)

In Sec. 5, we calculated the effect of the (wm) ex-
change current; that is, the lowest mass and therefore
the longest-range exchange current. We now wish to
consider the heavier currents (wr), (pn), and (pp).

We treat the (wr) current first. Unlike the () ex-
change current, the (wm) current involves parameters
which are not very precisely known. Specifically, we
can only estimate the wry coupling from photoproduc-
tion data and SU(3) symmetry. The w-N coupling
can be inferred by universality and SU(3) symmetry.

In order to write an (wr) exchange amplitude cor-
responding to Fig. 5, we must choose a form for the
vertices for pion nucleon, w nucleon, and wry. The pion-
nucleon coupling is taken to be the standard limiting
form for low momentum transfer that we used in Sec. 5,
Eq. (5.5). We repeat it here:

(iG/2M ) pi(Xftaix;). (6.1)

For the w-nucleon coupling we assume a form which is
the same as photon-nucleon coupling. That is, the w
couples to a 4-vector current similar to (4.6):

X,*I‘“Xi= ngXf*Xi y

XATX =X gon(Pi/2M)— hon(i/2M ) €%l X, (6.2)
If one assumes that the exchange of an w is responsible
for the ¢* dependence of the isoscalar nucleon form
factors, then

Ges(0)~egon, Gus(0)~eh,n. (6.3)

q, pol. e

g, pol. A,
R Q¥

Yn En
Q4 /p
L E
P
o ¥ ¢f

Fic. 5. (wm) exchange diagram.

RONALD J. ADLER

169

The remaining vertex, the wmy coupling, has been
considered in Refs. 3 and 11. The only gauge-invariant
and Lorentz-covariant form is (see Fig. 5)

(Gurr/ M) €apyse®g®ATPE. (6.4)

We shall assume that any ¢ dependence of g.., can be
ignored for the values of ¢*> we are dealing with; this is
probably a reasonable assumption for ¢*Sm.?=15.7
F~2 In summary, we know the vertices occurring in
Fig. 5 to the extent that we can estimate g,y and gy,

The calculation of the (wr) exchange current pro-
ceeds precisely as the (w7) exchange. A current may be
extracted from the S matrix, and additional contribu-
tions to the form factors Gy and G, result:

G1°7(¢%) = (gunrGgon/64m.e) [2(g%)+B(g*)+o(g?) ],
G2#*(¢") = — (gumGgun/64mae)s(g®).  (6.5)
The functions ©, 8, and ¢ are integrals over the deuteron

and (np) wave functions, similar to the # and { of
Sec. 5:

Ho()(r2)?

@)= / (2n)° i@+ + m k) +me?]
J 0(7'2)(7'1)2

(q ) / (27")3 [4 (Q+’V)2+mw2][4 (‘l_“)2 1:2]

( 2) / ]6(72)(71)2[2+3(Ts) 9/7'3]

TT ) Cny Bt I e et

The functions Q, 8, and ¢ are evidently slowly varying
for ¢*<m.? as may be inferred from (6.6). Since,
moreover, the (wm) contributions to G, and G. are
quite small and the parameters g,n and go.y not well
known, we will content ourselves with estimating €, 3,
and ¢ by their values at ¢?>=0. Thus we will use the
following expressions obtained by contour integration
of the 7 integral in (6.6) with ¢2=0:

, (6.6)

Q(g)~Q(0)= m

o e—mwy e—mYy
X [ (m —m, )zs udy,
0 y

y
6<q2)zs(o>=5—————7r = 67)
N P A
X/o l:mw y \1 Myy Mo y)
*'”“’/ , ‘|Ze(y)W(y)
e % \ Mey My y)_l /8 K&

(g?)a(0)=108(0)/3.
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Fi1c. 6. Differential cross section for 325-MeV electrons scattered at
180° from the deuteron (from Ref. 1) in 1073¢ cm?/sr (MeV/c).

Only a brief comment is necessary for the (on) ex-
change current. Since this is a vector-meson plus
pseudoscalar-meson current, like the (wr) current, we
need merely replace w by p and 7 by 7 in the preceding
calculation. A sign change also occurs because of the
different isotopics of the two systems. Thus we have
additional contributions to the transition form factors

G (gh)=— (8omr8angon/64me) [Q(O)+B(O)+&(O)] ’
Gy(gY) = (gpfl“tgnNgaN/64mpe)5'(O) . (6.8)

The &, 8, and & are defined as ©, 8, and ¢ with the masses
of w and = replaced by p and ».

An analysis of the (pp) exchange current yields the
following results. The p couples to a nucleon via one
spin-independent term and one spin-dependent term
due to the nucleon magnetic moment. The spin-
independent term has no effect on the exchange cur-
rent. The spin-dependent magnetic term is down by a
momentum factor, and hence has a very small effect,
about 1073 of the (w7) exchange contribution. The (pp)
can therefore be safely ignored.

7. COMPARISON WITH EXPERIMENT

The e-D cross section may now be calculated. As
previously stated, we will limit ourselves to low (np)
kinetic energies and an electron scattering angle of
180°. For a deuteron model, we will use wave functions
obtained by Partovi from a Hamada-Johnston poten-
tial.1~1® These wave functions have a hard core of
048 F and approach one-pion-exchange potential
(OPEP) functions asymptotically. The scattered state
wave functions are for (#p) c.m. energies of 1.5 and
3.0 MeV which correspond to relative (7p) momenta
of 0.190 and 0.269 F—1.

Ec.m.= pZ/M-

17 F, Partovi, Ann. Phys. (N. Y.) 27,79 (1964).

18T, Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).

Y E. F. Erickson kindly supplied us with numerical values of
the wave functions used.

(7.1)
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We first note briefly the general qualitative features
of 180° electron scattering from the deuteron.!? For a
fixed ¢? or fixed incident electron energy E;, a narrow
elastic peak will be observed centered about some final
electron energy. (See Fig. 6.) For E; several MeV lower,
the threshold for inelastic scattering occurs. The in-
elastic cross section rises rapidly to a peak due to the
virtual 1§ (np) state, then remains relatively flat form-
ing a shoulder to the 1S peak. Finally, it rises again to the
so-called quasi-elastic peak?®!® far outside the region
shown in Fig. 6. We are interested in the relatively flat
shoulder portion to the left of the 1S peak. Rand and
co-workers obtained a cross section in this region that is
considerably higher than predicted by previous theory.

Using a 7040 computer and the Partovi wave func-
tions, we have calculated the deuteron structure func-
tions H, J,, etc. These are shown in Fig. 7 for an (np)
c.m. energy of 3.0 MeV. The numbers ©(0), 3(0), etc.,are

Q(0)=—0.146, B(0)=0.042, o(0)=0.140,
Q(0)=—0.471, B(0)=0.019, &0)=0.063. (7.2)

The coupling constants that occur in the (wr) and
(pn) currents may be crudely estimated. These currents
have a very small effect so crude estimates will suffice.
The p-nucleon coupling, according to Sakurai’s univer-
sality assumption, is

gN>2.6. (7.3)

SU(3) with no w-¢ mixing then gives an w-nucleon

10
5—
Hs
Hy
2..
|-
S
Js
2F ¢
%
n
Rig
05
02F
_K'
Kol 1 L 1 L 1 Il
4 5 7 8 9 10 |
-q%  (fermi~2)

Fic. 7. Deuteron structure functions for Eq.m, =3.0 MeV.
Functions ¢ and 5 are in F!/2; others are in F3/2
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F16. 8. Deuteron form factors for E,.m. =3.0 MeV.
Units are F3/2,

coupling of

gonV3g,n4.5. (7.4)

The n-nucleon coupling also follows from SU(3) if an
f/d ratio of 0.6 is assumed;
gn=3.8. (7.5)

The wmy and pyy couplings are on rather shaky ground.
A previous analysis of the pr exchange current in

100
50} ¢
20t
1o}
st PRESENT ;
THEORY
2 L
] 1 1 1 1 ( 1
3 5 5 7 ) 9 R

-q2 (fermi-2)

I'16. 9. Inelastic e-D scattering cross section for Eqm.=3.0 MeV.
Units are 1073 cm?2/sr (MeV /).
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elastic e-D scattering!! indicated that

gpngr'yzO.ZLS 5 (7.6)

SO

7.7

A recent analysis of photoproduction by Donnachie
and Shaw?® indicates that g,., may be smaller yet, so
we will use

Zony>0.18.

2,7 S0.18. (7.8)

SU(3) then yields
Loy Zory V3 gpry20.31. (7.9)
One may note that for this value we have, numerically,
GonyY/AT2g o drre? /Ar=1/137.03.  (7.10)

The form factors G and G. that appear in the cross
section may now be calculated. We used a universal
nucleon form-factor dependence?®!

G(g?) < (1—q¥/m?)~%;, m?=0.71 BeV  (7.11)

and a p pole for the pion form-factor dependence, and
obtained the functions G; and G, shown in Fig. 8. The
contributions of (wr) and (pn) exchange to Gy and G.
are quite small;

G1*"~0.008, Gy*"~—0.032,
Gi"">~0.015, G»"~0.003. (7.12)

The final cross section is given by (4.19), which we
repeat here;

do PGl +Ge+Ga+GeT
aQdr  (20)%3M sin®(30) &

k—k)?

X[H—sin%%e)-l—( :I , (7.13)

2kE
G1=G1"+G1""+-G1"+Go,
Go=G" 4Gy ™G ™G oo,

The theoretical cross section must be multiplied by a
radiative correction factor? before comparison with a
specific experiment. According to Yearian,?? this factor
is nearly constant at 0.92 for the experiment under
consideration. As noted in Sec. 4, we also have an
ambiguity in the interpretation of ¢?; according to
Rand et al.,! the use of ¢* equal to the negative of the
4-momentum transfer squared results in correct thresh-
old behavior of the inelastic cross section. In any case,
the difference between using —¢*g, and ¢*in thedeuteron
structure functions is only a few percent in the cross
section. Our theoretical cross section is plotted as a
function of ¢ in Fig. 9 and compared to the experi-

( 2 133 Donnachie and G. Shaw, Ann. Phys. (N. Y.) 37, 333
1966).

2L M. Goitein, J. R. Dunning, Jr., and R. Wilson, Phys. Rev.
Letters 18, 1018 (1967).

22 M. Yearian (private communication).
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ment of Rand ef al. The theoretical curve is for an (np)
center of mass energy of 3.0 MeV, and the experimental
points are for $=0.98p threshold; both are on the flat
portion of the cross section curve (see Fig. 6).

As is obvious from Fig. 9, the theoretical cross section
is far too small; it is off by 209, at ¢?=5 F~? and 1009,
at ¢2=9 F~2 In Sec. 8, we will discuss possible remedies.

8. CONCLUSIONS

From the comparison of the present theory with ex-
periment, we may draw the following conclusions:

(1) The present theory disagrees with experiment.
The ratio of experimental to theoretical cross sections
rises from about 1 at ¢2=5 F~%to 2 at ¢?=9 F~2.

The transition to the .S state dominates the cross
section. Since the form factor Gz is about 259, of Gi
and G, is less yet, the 35 state contributes only about
129, to the cross section.

(3) The (wp), (pn), and (pp) exchange currents con-
tribute a negligible amount to the cross section. The
(wm) is not negligible but contributes about 109, to G,
and 50%, to Gs. Since Gy dominates the cross section, the
over-all effect of 7 is of the order of 20%.

(4) The impulse approximation to Gi dominates the
cross section. Thus the most believable reason for the
diagreement with experiment is that Gy, which depends
mainly on the structure function H,, is incorrect.

(5) Relativistic corrections to the impulse approxima-
tion®7:9 should be expected to be small when the dif-
ference between 3-momentum transfer and 4-momentum
transfer squared is small. This fractional difference is
¢*/4M p?, which is only 29, at ¢°=10 F~2. As a result, we
feel the most likely source of error is in the deuteron
wave function.

Motivated by the above conclusions, we have at-
tempted to find a qualitative answer to what is wrong

THRESHOLD ELECTRODISINTEGRATION OF
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F1c. 10. Partovi wave functions for E¢.m,=3.0 MeV.
w(y) is in F~1/2) and Z,(y) is in fermi.

with the deuteron wave function. The Partovi wave
functions we used!™!® are shown in Fig. 10.

We first varied the core radius, keeping the shape
of the wave functions the same. For core radii around
0.35 F instead of the original 0.48, the theory looked
much better, but the theoretical cross section still fell
off too rapidly.

We next made a crude inversion of the experimental
results to get the product #(y)Z,(y). To do this, we
assumed the error in the cross section was entirely due

.6
Sk L.OF
8|
6 ’z
Fie. 11. Crude estimate of AH g 1
and corresponding change in wave ~ 4l
function. AH is in F3/2 4Z, in F12, ’
25
4
o]
- 1 Il 1 1 1 Il 1 1
(o] | 2 3 4 5 o] I 2 3 4 5
y (fermi) q (fermi’!)
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to an error in the theoretical H, which we may call AH.
Comparison of the theoretical and experimental cross
sections indicates that this function AH may rise
slightly between ¢?=5 F~2? and ¢?=10 F~2, but is
roughly constant at 0.64-0.3. If this AH arises from
an addition 8(y) to #(y)Z4(y), then by the definition of H

H(g)= / w(Y)Zs(y) jo(39y)dy,

AH(g?)= / 805) jo(3a3)dy, 8.1)
0
which may be inverted:to yield
1=
80)=— / sn(gy)AH(@)dy.  (8.2)
TJo

Several forms for AH were chosen so as to give a correct
H in the region of ¢?=35 to 10; these functions and the
resultant function 8(y) are shown in Fig. 11. This is
clearly very crude but seems to indicate that the wave
function should go to zero more slowly than the Partovi
model, ie., the nucleon core is smaller and/or softer.
Specifically, a hard core of more than 0.3F seems to be
ruled out.

The question naturally arises as to how well H(¢?)
must be known to obtain a reasonably accurate func-
tion #Z, and whether one might hope to invert direct
experimental results. To answer this, we first obtained H
from uZ,, then inverted to obtain #Z, again but used

RONALD ]J.
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a cutoff on the integral over H. We found that a cutoff
value of ¢g=9 F~! was necessary to give reasonably
good results down to y=0.3 F. This is three times the
present momentum transfer measured and is in a region
where relativistic effects should be considerable.
Clearly, a quantitative inversion is not justified at
present.

The next step in this problem is to consider a number
of different existing deuteron models and see if any of
them produce better results than the one used here.
In conjunction with this, we are attempting to relate
the np scattering to deuteron form factors in a very
simple way so that the errors may be easily propagated.
This would allow us to see precisely how trustworthy the
theoretical deuteron form factors are. Specifically, we
would like to parametrize np scattering with a small
number of parameters, say 4 or 6, and obtain the
deuteron form factors as analytic functions of these
parameters.

Finally, although we feel that deuteron model un-
certainty is the most obvious uncertainty in the theory,
relativistic effects and other contributions to e-D scatter-
ing could certainly be unexpectedly large and produce
the present disagreement.
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