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A dynamical scheme proposed by Mandelstam, based on rising Regge trajectories, the narrow-resonance
approximation, and generalized superconvergence relations, is applied within exact SU(3) to the amplitude
for V+P —+ P+P', where P and V stand for pseudoscalar and vector mesons. It is shown that the coupled
vector- and tensor-octet trajectories can indeed bootstrap themselves satisfactorily. The vector-octet
trajectory is also shown to bootstrap itself. The interesting mass formula 3@v'=pz'+3'' is also obtained,
where p~' represents the average mass squared of the M-meson octet, and T stands for tensor mesons.

I. INTRODUCTION trajectory of a given C-conjugation parity to be ex-

changed in the SU(3) eigenchannels of 1, 8fr, 8ee, and 27
in the above reactions. Although the Regge-pole ex-

change in the 10 (or 10*) eigenchannel may be possible
in the reaction V o)+Pt)-+P,+P„ the lack of experi-
mental evidence for any high-ranking meson trajectory
(or, equivalently, any low-lying mesons) assigned to a
10- (or 10*-) piet makes it very reasonable to neglect
the 10 (or 10*) eigenchannel in our lowest approxima-
tion. Therefore we have only to take into account the
well-known vector- and tensor-octet trajectories. It is
shown that these trajectories can indeed bootstrap
themselves, and that we obtain very reasonable results
for the Regge parameters.

II. BOOTSTRAP OF THE COUPLED VECTOR-
AND TENSOR-OCTET TRAJECTORIES

In the reaction V o)+Pe ~ P,+P, there is only
one kinematically independent amplitude5 6 which
we can take to be the t-channel helicity amplitude

f,-o),.-e'+(s, t,tt), X=&1 (Fig. 1).' This amplitude is
free of kinematic singularities in s and I for 6xed t, and
defined from the usual helicity amplitude f- &(), oe(s, t)
with) =&1 by' ~

—=(sin8))
—'f; (y)., ;t)'(s,t)+ (sin8, )

—'f, -
& )),.-p'(s, t)

=2(sin8)) 'f;o, ),ot)'(s, t)

=P (21+1)F,-(q)., -e +(t)ep ), +(cos8t),

where'

ept +(cos8) = —ep t '+(cos8) =Pz'(cos8)/LJ(J+1)]'".

Here we have'8' S. Mandelstam, Phys. Rev. 166, 1539 (1968).
~ K. Igi and S. Matsuda, Phys. Rev. Letters 18, 625 (1967);

University of Tokyo Report, 1967 {unpublished); Phys. Rev. 163,
1622 (1967); A. A. Logunov, L. D. Soloviev, and A. N.
Tavkhelidze, Phys. Letters 248, 181 (1967); D. Horn and C.
Schmid, California Institute of Technology Report No. CALT-
68-127 (unpublished).' S. Matsuda and K. Igi, Phys. Rev. Letters 19, 928 (1967).

4 K. Igi and S. Matsuda, in Proceedings of Topical Conference
on High-Energy Collisions of Hadrons, CERN, Geneva, 1968
(unpublishedl.

f -( );os (s t) =f &„&~ t) (s,t)-
= (—1) frr;o(y)t) (s,t) . (2)

5 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
0 L. L. Wang, Phys. Rev. 142, 1187 (1966).

M. Gell-Mann, M. Goldberger, F. Low, E. Marx, and F.
Zachariasen, Phys. Rev. 1BB, 8145 (1964).

p P. Carruthers, Intro(tnetion to Unitary Symmetry John Wiley
8z Sons, Inc., New York, 1966), p. 165.
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ECENTLV, Mandelstarn' has given a dynamical
scheme based on rising Regge trajectories. The

fundamental approximation is that the scattering am-
plitude can be approximated by the contribution of a
finite number of Regge poles. In the first approxima-
tion, the Regge trajectories are simply assumed to be
straight lines, or, equivalently, the scattering amplitude
is assumed to be dominated by narrow resonances and
unitarity determines the Regge residues up to an entire
function, which can then be approximated by a poly-
nomial. Crossing is imposed by the generalized super-
convergence relations (GSCR) which Igi and the present
author' 4 have proposed to use as a guide to high-energy
scattering of hadrons. GSCR is a consequence of Regge
asymptotic behavior and the usual analyticity prop-
erties of the scattering amplitude. The above approxi-
mation, which can be systematically improved, allows
one to derive algebraic equations for a finite number of
the Regge parameters in the direct and crossed channels.
The equations may be sufhcient to determine these
parameters self-consistently.

We apply the above scheme to the scattering ampli-
tudes of V g,)+Pt)~P,+P, and &oo)+Pt) +P,+P, —
where P is the pseudoscalar octet with SU(3) quantum
number n and even C-conjugation parity; Vpo, ) is the
vector octet with SU(3) quantum number P, C odd, and
helicity X; and coo,) is the vector singlet with C odd and
helicity X. We assume exact SU(3). It can easily be seen
that in the first reaction only the familiar vector- and
tensor-octet trajectories can contribute as high-ranking
trajectories in all channels, while in the latter only the
vector-octet trajectory can be exchanged as a dominant
trajectory in each channel. The requirement of C-
conserving couplings of Regge trajectories forbids any
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Eq. (7), without the factor (gt)E;(t), should not in-
crease exponentially when i approaches &~.

After considering the crossing of the s and I channels
in Eqs. (3) and (4) and Reggeizing according to the
method of Ref. 7, we then obtain for high s

for; oo''+($)t&ot& S.t) =—(4q)q) gt)

(b)

FIG. 1. (a) Reaction V„o,~+Pp —+ P,+P, in the s channel;
{b) reaction P-,+Pp

-+ P,+V-~q~ in the t channel. and

e ' ""i—1 4+m 4avs
X — Ev(t) (8)

2 sin)rnv(t) I'(nv(t)) e

As stated above, we have only to consider the 8&f and
Sfe eigenamplitudes in the direct and crossed channels,
which we denote as

fp, pp +( t$));IS ))tf=+flop +(N., )t)s; 8)),)

for the vector exchange in the t channel, and

fp);op '+($)t)N) Sfo) = —fpi);op '+(e)t)s; Sr)))

(3)

for the tensor exchange in the t channel. %e have shown
explicitly for later convenience the crossing of the s and
I channels. Corresponding to these eigenamplitudes,
we have the partial-wave helicity eigenamplitudes,
Foi.;oo '+(t; Soy) and Fpi, , pp +(t;Sro), which are de6ned
similarly as in Eq. (1).

The basic assumption is that Fpi„.pp +(t;8$r) and
Fpi, , pp +(t; Sfe) can be approximated by one vector- and
one tensor-octet trajectory, respectively,

p~P(t)
Fo),;oo'+(t) Sdt) =J- .(t)

Pp P(t)
Fpi);00 ' (t) 8f)t) J nr(t)—(6)

and that uv(t) = avt+bv and nr(t) = art+br Unitarity.
and analyticity in the narrow-resonance approximation
then determine, in addition to the t-kinematic factors,
the form of Pp ),'(t) up to an entire function E,(t)
(i=U or T),

(«'q)q)l "" '
P p '(t)i= (4q)q) V't)

I

e ]

'Roughly speaking, the factor {o.;(t)Lcm;(/)+if}'" of Eq. (7)
comes from the fact that n;=0 is a sense-nonsense value for
F01;00 o ' +(t). Note that the sense-nonsense distinction is in
addition to the signature distinction between even and odd J.

Ln, (t)(n;(t)+1))"'
E.(t), (7)

I'L~'(t)+p j
where q, (q) ) is the c.m. momentum in the initial (6nal)
state. This form exhibits the threshold behavior of
»4 i,'(t), the nonsense-eliminating factors' at n;(t)=0,—1, and at negative half-integers, and a scale factor
e/4a; which is inserted in order that the left side of

foi;oo'+($, »,ot; Sfo) =—(4q&q)'v t)

e
—)))))r(t)+1 4g~ ~4e s ))r(t)—i

X E.(t). (9)
2sin)mr(t) I'(er(t))k e

Ke now impose crossing in the s and I, channels by
means of the simplest nontrivial GSCR which are in
the 6nite-energy form

ds o (s—u) Imfoi; oo'+(s, t,l; 8ef)= (4q)q) gt)
(/7r) eN 4avN) ~«'i

X Ev(t), (10)
2avknv(t)+1]1'(nv(t)) e

ds Iiilfpi; pp ($&t&N& 8')))t) (4q)qt'')))) t)

(Q)r)e (4urN) ""
X E.(t), (11)

2arnr(t) I'(nr(t)) E e

where X is a suitable cuto8, to be discussed below. For
the vector exchange we use the first-moment (but not
the zero-moment) GSCR, since we are not willing to
worry about any contributions from the fixed poles in
the J plane at nonsense wrong-signature integers. ' In
our approximation there is another 6nite-energy GSCR
with the 10 (or 10*) eigenamplitude in the t channel:

ds -', (s—I) Imfpi, pp'+($, »,N; 10(.10*))=0. (12)

Applying the SU(3) crossing matrix and saturating the
left sides" of Eqs. (10)—(12) by the first particles on the
vector- and tensor-octet trajectories, at J=1,and J=2,
respectively, we derive the three equations after
dropping the t-kinematic factors:

Ev(» v')
(t v'+pt —P) +-

Cy t'

&&(t r'+ o»—P)(t ~'+2» —&)Er(t r')

e$ vp) (4av$q"'" F.(t), (13)
4avI'(nv(t)+2) e )

"We should be careful of the crossing of the s and if channels in
integrating the left sides of Eqs. (10)-(12).
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Ev(~vs)
+ (I -r'+2~ &—)Er(pr')

uv e

where Z=liv'+3pr', and yr', lay'=(1 bv)—/av, and
7ir'= (2 br—)/ar are the masses squared of the pseudo-
scalar, vector, and tensor octets. In general, in this form
of self-consistent bootstrap, Ã is not arbitrary; it must
surely lie in the interval

2—bz 3—by
&Ã& (16)

since we have included in the integrations the first
particles on the vector- and tensor-octet trajectories
at J=i and J=2, respectively, but not the second
and higher particles.

First, let us consider the algebraic equations (13)—(15)
at 1=0," taking the functions E,(t) in Eq. (7) to be
constants in the lowest approximation. The only
possible solution in this case contains as a consequence
the "exchange degeneracy", "and the results are

e(,(t)+1) (4a,n') Er(~), (14)
4&rl'(nr(t)+2) e

Ev(~v')
(~v'+ s&

—s~)
uy e

X(pr'+st ——,'Z)(lir'+2t —&)Er(lir') =0, (15)

which is rather well satisfied experimentally" (the left
side=3X0.73=2.19 GeV' and the right side=1.91+3
X0.17=2.42 GeV'). Assuming the linear t dependence
of E;(t), we can obtain from Eq. (19)

E (~)=E ( ')Ll —ln(16/" —I)(~—p ')],
Er(&) = s«v(~v') D sn—(16/" I)—(~ ~—r')] (21)

Note that these results are again independent of the
value of E.

eN'ny(t) 4ayN'
Ey'(1), (22)

4ayl'(ny(/)+2) e

where Z =li '+3iir' and N' must lie in this case
between

i—by 3—b~
&Ã'& (23)

III. BOOTSTRAP OF THE VECTOR-OCTET
TRAJECTORY

In the reaction oi0,&+P&—&P,+P, only the vector-
octet trajectory can be exchanged dominantly in each
channel. Then, in the same approximation as before,
we derive the bootstrap equation including only the
vector trajectory

Ev'( y')
2(l '+-'~ —-'&-)

3~~'=~v'=sf r'=I/&, Ey/Er=4&,

with @~=a~——u and b~ ——b~=b=0. Note that these
results are completely itideperident of the value of N.
This suggests that the higher order of approximation
will also lead to a solution completely or almost inde-
pendent of E, although it may include a slight change
in numerical values.

Next we go one step further taking into account the
t dependence of the function E;(t) and evaluating the
algebraic equations at t= —by/av, nv(/)=0 and at
t= ( 1 br)/ar—, —nr(1) = —1. We can obtain the
remarkable solution, again with the exchange de-
generacy" as a consequence:

(24)nv(t) =uyt+ st(2 ayZ. ), —

which is independent of the value of Ã'. Note that when
the vector-octet and singlet are degenerate in mass
(i.e., ltiv'=p„'), or, equivalently, when they form a
nonet, this bootstrap equation becomes equivalent to
the appropriate combination of Eqs. (13) and (15) if we
take N= N' and Ev'(t) =constXEv(t). In other words,
the compatibility of all our bootstrap equations L(13)—
(15) and (22)] requires the degeneracy in mass and the
same t dependence of E(t) of the vector-octet and
singlet.

(17) Evaluating the bootstrap equation at t = bv/uv, —
ny(t) =0, we have

and
ny(t) =nr(t) =at+ ', (1 3apr')-— IV. CONCLUSIONS

Ev(pv' —2/u) Er(pr' 2/a) 16 Ev(pvs)—4
(19)

Ev(l v') Er(1 r ) e' Er(I r )

3P y =IJ r +37'P (20)

"For a reasonable argument that the choice t=o probably
provides the best mean, see Ref. 1."R.C. Arnold, Phys. Rev. Letters 14, 657 (1965).

with b=-', (1—3upz'). From Eq. (18) we have the mass
formula

We have applied Mandelstam's dynamical scheme
based on rising Regge trajectories and GSCR to the
cases of complete bootstrap of one vector-octet trajec-
tory and the coupled vector- and tensor-octet tra-
jectories, and have shown that in these cases the
trajectories can indeed bootstrap themselves and that

"A. H. Rosenfeld et el., University of California Radiation
Laboratory Report No. UCRL 8030 (revised September, 1967)
(unpublished). We have evaluated the average mass p' of a
meson octet by p =$(4''+3p~'+@8'), where p8 is calculated
from 4p'~=3@8'+p '.
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very satisfactory results including the interesting mass
formula Eq. (20) are obtained independent of the choice
of the cutoff. However, it is not clear, and still remains
to be investigated, whether we could obtain self-
consistent and cutoff-independent results even if we
included in our scheme higher resonances corresponding
to a higher cuto6 of X and more channels in the higher-
order approximation.

Note added in proof Aft.er completing the manuscript
I found that M. Ademollo, H. R. Rubinstein, G.

Veneziano, and M. A. Virasoro [Phys. Rev. Letters 19,
1402 (1967)] considered a similar problem and derived
bootstrap conditions based on GSCR. Their approach,
however, is not one of a systematic bootstrap.
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The E~3 decay form factors are studied by using a current algebra. Compared with the previous approach,
the following points are new. We use the pion partially conserved axial-vector current (PCAC) hypothesis
instead of kaon PCAC. We use a smaller off-mass-shell extrapolation —g„'=m '-+ 0 instead of the usual
soft-pion extrapolation q„~0. We apply a dispersion technique to a direct calculation of the form factors
Ii+(s) and Ii (s), and utilize the current algebra to 6x the absolute scale as well as the energy dependence
with an approximation for vector currents proposed before. For the F+(s), the E -meson contribution
gives a result consistent with the Ademollo-Gatto theorem at s=0. For the F (s), both the E* and the
I=$, 0+ meson, f(:, contribute. Our expression for the Ii (s) depends only on the mass of the z meson (not
on its width) and satis6es explicitly the requirement that Ii (s) —+ 0 in the SU(3) limit. The parameter (
is given by &=P (0)/F+(0) = —0.026—(0.061 GeV')/mP. Therefore, we predict a small negative value
for g. Our method gives information on Ii+(s) and F (s) for all the physical values of s, including the most
important region around s=0, whereas the soft-pion approach gives information only at the rather un-
physical point s=mz'. However, at this very point, our results on P+(mz')+F (mz') agrees with that of
the soft-pion approach independently of the parameter m, . Therefore, our results include the soft-pion result
at s=mz' and seem to give a consistent description of the E&3 decay form factors.

'HE form factors F+(s) and F (s) of the E &3 decays
contain many interesting clues to the problems of

SU(3) symmetry. Precise determination of the value of
F+(0), taking into account the form-factor effect, will

give us a first measurement of the second-sorder SU(3)
symmetry-breaking effect. In the SU(3) symmetry limit,
the F (s) vanishes, and its actual value, measured by
the parameter $ defined as $—=F (0)/F+(0), will there-
fore provide important information on 6rst-order SU(3)
breaking. Recent calculations of these form factors on
the basis of the algebra of currents together with the
hypothesis of partially conserved axial-vector currents
(PCAC) may be categorized as follows:

(a) Relate the [F+(ttttr')+F (ttttr')] to the E~s de-

cay by using a soft-pion-emission technique, q„~0,
where q„ is the pion four-momentum. '

(b) Determine the parameters of the I=-,', V=+1
possible scalar resonance a by studying resonance satu-

* Supported in part by the National Science Foundation under
Grant No. GP-6036.

' C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16, 153

ration of axial charge commutators~a with the less
radical extrapolation, q'= (—m ') ~ 0.

(c) Apply dispersion techniques to a direct calcula-
tion of F+(t) and F (s), and utilize the charge-current
algebra to 6x the absolute scale as well as the energy
dependence. Although this approach is very interesting,
the results obtained4 do not seem very satisfactory.
First, the calculation involves soft-kaon emission as well

as soft-pion emission, by letting the mass of the kaon as
well as that of the pion go to zero. Secondly, the F (s)
thus obtained, which includes the contribution of the
~ meson, does not explicitly vanish if we take an SU(3)
limit in its expression.
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