If $B\rightarrow 0$,

$$
M \to G^2 \left(\frac{t-2m^2}{2m^2}\right)^N \frac{1}{m^2 - s}.\tag{15}
$$

4. DISCUSSION

It follows from the previous example that in infinitecomponent theories with nondegenerate mass spectra one might hand discontinuities in the amplitude or in some of its derivatives whenever the four-momentum configuration of the external lines allows the fourmomentum of an internal line to change from spacelike to timelike.

Although our result depends on the model we have used, and although the Born approximation (which is real in our case) is not the whole scattering amplitude, we believe that it is worth while to look at processes where the kinematics is the same as in our example, to see if cusps near $u=0$ are present. In particular, in meson-nucleon elastic backward scattering the kinematics is similar. Although preliminary evidence

Finally, it is worth remarking that the shifting of the effective position of the pole in the u channel with r espect to the position of the pole in the s channel [see Sec. 3, (iii)] might be considered also in the exchange of bosons—in particular, in the vector-meson-dominance model for the electromagnetic form factors and in the one-boson-exchange baryon-baryon potentials.

ACKNOWLEDGMENTS

The author would like to thank Professor Abdus Salam and Professor P. Budini as well as the IAEA for the hospitality kindly extended to him at the International Centre for Theoretical Physics, Trieste. He is also grateful to Professor C. Fronsdal and Professor I.T. Grodsky for valuable discussions.

¹¹ A. Ashmore et al., Phys. Rev. Letters 19, 460 (1967).

¹² D. Cline, C. Moore, and D. Reeder, Phys. Rev. Letters 19, 675 (1967).

PHYSICAL REVIEW VOLUME 169, NUMBER 5

25 MAY 1968

Determination of the Nucleon-Nucleon Scattering Matrix. VII. (p, p) Analysis from 0 to 400 MeV*

MALCOLM H. MACGREGOR, RICHARD A. ARNDT,[†] AND ROBERT M. WRIGHT Lawrence Radiation Laboratory, University of California, Livermore, California (Received 23 October 1967)

All of the available (p, p) scattering data from 1 to 400 MeV have been analyzed, and a self-consistent set of 839 data has been chosen. Using this data selection, we investigated a number of different forms for the phase-shift energy dependence. The correct number of free parameters to use with each form was studied. The most suitable form, form A, gave the least-squares values $x^2 = 810$ and $x^2 = 858$ for 30- and 23-parameter solutions, respectively. A subset of 588 data in six narrow energy bands was used to obtain single-energy solutions. It is shown that this subset contains most of the physical content of the full set of 839 data. The value $g^2 = 14.72 \pm 0.83$ was obtained for the pion-nucleon coupling constant.

I. INTRODUCTION

 $'N$ previous papers in this series, I^{-6} we have discussed \blacksquare phase-shift analyses of (p,p) and (n,p) data from 25 to 350 MeV. Subsequent to the publishing of these papers, a considerable amount of new data has become

 a vailable,^{$7,8$} both in the energy range we had previously considered and also at the higher energies. Thus it seemed to us worthwhile to update the previous analyses and to extend them to higher energies.

The (p, p) data in the elastic energy range up to about 400 MeV are now reasonably complete and accurate. Thus the isotopic spin $I=1$ scattering matrix can be reliably determined in this energy range. The aim of the present paper (paper VII) is to give the best possible values for the $I=1$ phase shifts from 0 to 400

1128

^{*}Work performed under the auspices of the U. S. Atomic Energy Gommission.

t Present address: Virginia Polytechnic Institute, Blacksburg, Va.'M. H. MacGregor, R. A. Amdt, and A. A. Dubow, Phys. Rev.

^{135,} B628 (1964). ² M. H. MacGregor and R. A. Arndt, Phys. Rev. 139, B362

^{(1965).&}lt;br>- ⁸ H. P. Noyes, D. S. Bailey, R. A. Arndt, and M. H. MacGregor

Phys. Rev. 139, B380 (1965).

⁴ R. A. Arndt and M. H. MacGregor, Phys. Rev. 141, 873 (1966).

⁶ R. A. Arndt and M. H. MacGregor, Phys. Rev. 154, 1549

^{(1967).} R. M. Wright, M. H. MacGregor, and R. A. Amdt, Phys. Rev. 159, 1422 (1967).

[~] The current status of the nucleon-nucleon experimental situation was reviewed by a number of speakers, in Proceedings of the International Conference on Nucleon-Nucleon Interactions, Uni-
versity of Florida, Gainesville, 1967 [Rev. Mod. Phys. 39, 495–717 (1967)). A summary of the conference is given by M. H. Mac-Gregor, Phys. Today 20, 111 (1967). '

⁸ The existing (p, p) and (n, p) experimental data from 0 to 400 MeV are illustrated in graphical form in Figs. 1 and 2 of M. H. MacGregor, Rev. Mod. Phys. 39, 556 (1967).

1129

MeV that we can obtain from the existing data. At energies above 400 MeV inelastic effects become important, and an accurate (p, p) phase-shift analysis is not yet possible. The existing data sets are not complete. However, a qualitative determination of the elastic scattering phase shifts can be made over the energy range 400—750 MeV. These results are presented in paper VIII. Finally, in paper IX we shall present the results of the (n, p) phase-shift analyses from 0 to 750 MeV. Since the (n,p) data are still woefully incomplete, this last analysis can be carried out only by first using (ρ, ρ) data to essentially fix the I=1 scattering matrix, and then using the corresponding (n, p) data to determine the $I=0$ scattering matrix. Charge independence provides the justification for setting the $I=1$ phases the same for (p, p) and for (n, p) scattering. The $I=0$ elastic scattering matrix thus determined is only qualitatively correct in the energy range from 0 to 400 MeV. Above 400 MeV the (n, p) data are so scarce that even a qualitative determination of the phase shifts is dificult to achieve.

169

In Sec. II, we discuss the (p, p) data selection from 1 to 400 MeV. We have examined essentially all of the available (p, p) data points and have selected the ones that form a self-consistent data set. Section III gives a discussion of the energy parametrization that we employ for the phase shifts. Section IV lists the phaseshift results. Section V gives the value for the pionnucleon coupling constant g^2 that we obtain from this analysis. Section VI contains our conclusions.

II. DATA SELECTION

A. Compatibility of the Data

We attempt to answer in a reasonable and semimathematical way the question as to whether or not a specihc experimental result is to be considered as "compatible" with other experiments. There are, of course, certain obvious criteria which are considered in such a judgment. If, for instance, two identical experiments are compared, then compatibility consists of the "overlapping" of the error bars. It is the nature of existing proton-proton scattering data, however, that such direct comparisons can in general seldom be made such direct comparisons can in general seldom be made
—the data tend to differ in type, energy or angle Therefore we adopt as a general criterion for compatibility the ability of various experiments to be described by the same phase-shift representation (or in terms of a representation which is closely related to the phase shifts).

In making the compatibility study, the parameters are first adjusted to give a minimum least-squares value (X_D^2) to some relatively complete and self-consistent subset D of the data. We now add an experiment E , which was not included in D , and readjust the parameters to obtain a new minimum (x_{D+F^2}) . We define a figure of compatibility f_c as

$$
f_c = \frac{(\chi_{D+E}^2 - \chi_D^2)}{N_E},
$$
 (1) $\frac{t^{io}}{p}$.

where N_E is the number of experimental points in E. Thus f_e includes not only the χ^2 increase due to the points E , but also the X^2 increase due to any readjustments forced on the data set D . For a compatible data set E , f_c must be of order unity.

It should be recognized that f_c is a measure of compatibility between \overline{D} and E only within the constraints of our model. The comparison can only be as reasonable as the model. The model we use in the present paper is described in detail in Sec. III. It is chosen to produce a "smooth" energy dependence of the phase shifts, and to satisfy very general physical constraints such as correct threshold behavior and proper singularity structure. The model is sufficiently flexible, we believe, that "form-limiting" effects are unimportant in fitting to the existing nucleon-nucleon data.

The testing of large numbers of data for compatibility is speeded up tremendously if, instead of using the data set D directly, we replace it by a "reduced" matrix representation in the space of the parameters of the model. This requires that the data set D be large enough and complete enough to accurately fix the parameters (p) of the model. (The reduced matrix representation refers to the intrinsic minimization of the functional X^2 with respect to the experimental normalization parameters.^{4,9})

The detailed procedure for obtaining f_c is as follows. If p_0 is the phase-shift parameter column vector (in a vector notation) that gives the minimum value x_{p^2} for the data set D , then in the neighborhood of this vector, $\chi^2(p)$ is approximately

$$
x^2(p) = x^2(p_0 + \Delta p) \simeq x_D^2 + (\Delta p)^T \alpha(\Delta p), \qquad (2)
$$

where ()^{r} = transposed (row) vector, and we use the matrix

$$
\alpha_{jk} = \frac{1}{2} \left(\frac{\partial^2 X^2}{\partial \rho_j \partial \rho_k} \right) \Big|_{\text{po(reduced)}} \tag{3}
$$

We can now add the X^2 sum coming from experiment E to obtain

$$
\chi^2(p_0 + \Delta p) \approx \chi_D^2 + (\Delta p)^T \alpha (\Delta p)
$$

+
$$
\sum_{i=1}^N \left(\frac{X \theta_i (p_0 + \Delta p) - \theta_i^{\text{expt}}}{E_i} \right)^2 + \left(\frac{X - 1}{\Delta X} \right)^2, \quad (4)
$$

where θ_i^{expt} is the experimentally measured quantity N is the number of data in E , X is the normalization parameter for E , E_i is the error on *i*th data point, ΔX is the normalization error, and $\theta_i(p)$ is the value of the observable predicted by p . Δp is now adjusted to minimize χ^2 . This gives χ_{D+E}^2 , from which f_c can be derived.

In Kq. (4), some people associate the normalization constant X with the quantities θ_i^{expt} and E_i , rather

⁹ R. A. Arndt and M. H. MacGregor, in *Methods of Computational Physics* (Academic Press Inc., New York, 1966), Vol. 6, p. 253,

than with $\theta_i(p)$ as we have done. However, computationally the form we use (which is also used by the Yale group) is much simpler. For values of X near unity, the two methods are essentially identical.

B. Final Data Selection

In making a data selection, we started, with the set of data from paper IV as a reference set, and with a Q-function expansion (see Sec. III) for the energy dependence. Using the data-compatibility procedure outlined above, we examined essentially all of the available (p, p) data from 1 to 400 MeV. The sets of data having an M value (x^2 average per datum) of one or less were combined to form a new reference set, and all of the data were reexamined. Second and third data selections were made that included sets with $M<1.5$ and then $M<1.6$. Using the $M<1.6$ reference set, we made one final compatibility study of the data to obtain the 6nal data selection. In this process any individual data points that deviated from the predicted values (based on our reference set) by three standard deviations or more were discarded. In the final data selection, sets of data having M values greater than 2 were discarded.

Table I summarizes the results of the data compatibility studies. All of the (p, p) data that we examined are described in Tables I and II in the accompanying references. The final data selection includes all independent data points that are within three standard deviations of the theoretical values plus all data sets (two or more points taken from a common experiment) that have M values less than 2. Some experiments below 5 MeV were arbitrarily discarded, even though they met our M -value test, because our vacuumpolarization corrections are only approximate. Out of a total of 1084 (p, p) data considered, 839 were selected for the final set of data.

Using the 6nal data selection, we obtained 20-parameter, 23-parameter, and 30-parameter phase-shift solutions, as described in Sec. III. The M values shown in Table I are based on the 30-parameter solution. The M values for the excluded data were obtained by comparing these data to the 30-parameter solution, with the normalization constants of the excluded data allowed to vary, but with no searching on the phase-shift parameters. The least-squares value x^2 for the 30parameter solution was 810. Although normalization contributions were included in the \overline{x}^2 sum [see Eq. (4) , the normalization errors were not counted as data.

Out of the 839 data in the complete selection, we selected 588 points in six energy bands for "singleenergy" analyses and for constructing phase-shift matrices to use as a representation of the data. As we shall show in Sec. IV C, these 588 data contain essentially the full physical content of the information embodied in the larger 839-datum set. The subset of data contained in the 588-datum set is indicated in Table I by asterisks in front of the energies. The data contained in the full 839-datum set are all the data sets listed in Table I that do not have parentheses around the M values.

After this work was completed, we received some new (p, p) polarization data from Slobodrian and coworkers. '0 After a number of phase-shift analyses of the data at 19.7 MeV, we concluded¹¹ that they are not consistent with nearby R and A values at 27.6 MeV (see Table I). They are also not consistent with the type-I solution of Stapp¹² and of MacGregor¹³ that is required to fit our 839-datum selection. For this reason, we have not incorporated them into the present paper. It is obviously of considerable interest to have this experimental puzzle resolved. Note added in proof. P. Catillon, J. Sura, and A. Tarrats [Phys. Rev. Letters **20,** 602 (1968)] have measured the (p, p) polarization at 20 MeV and obtained results that agree with the phase-shift analyses and that disagree with the Slobodrian measurements.

III. ENERGY PARAMETRIZATION

In our previous energy-dependent analysis,⁴ we chose the energy-dependent phase-shift forms to be the onepion-exchange (OPE) phase shift plus a sum of terms representing two-pion, three-pion, and so on, exchanges. As a basis set of functions for the representation of the higher-order meson exchanges, we chose Legendre functions of the second kind, $Q_{i}(x)$. These functions, which arise naturally from the partial-wave projection of pole terms ("driving forces") in crossed channels, have proper threshold behavior and can be made to have a singularity structure corresponding to the location of the cuts for two-pion exchange, three-pion exchange, etc. Of course these functions do not have the proper discontinuities across the cuts, and thus they are, strictly speaking, chosen phenomenologically. However, the facts that the functions thus chosen give good fits to the data with a small number of terms and that they give a good extrapolation to higher energies indicate that they are a reasonable basis set.

The phase shifts are written in the general form

$$
\delta_l^{(S,J)}(T) = \delta_{l0}^{(S,J)}(T) + \sum_{i=1}^{N} \alpha_i^{(S,J)} F_{li}(T). \tag{5}
$$

Here l is the orbital angular momentum, J and S are the total momentum and total spin, and T is the laboratory kinetic energy. For the ${}^{1}S_{0}$ phase, δ_{00} is taken from effective-range theory¹⁴:

$$
C^{2}K \cot \delta_{00} + 2K\eta h(\eta) = -(1/a) + \frac{1}{2}r_{0}K^{2}, \qquad (6)
$$

¹⁰ R. J. Slobodrian, J. S. C. McKee, H. Bischel, and W. F. Tivol, Phys. Rev. Letters 19, ⁷⁰⁴ (1967). "M. H. MacGregor R. A. Amdt, and R. M. Wright, Phys.

¹² H. P. Stapp, T. Ypsilantis, and N. Metropolis, Phys. Rev. 105, ³⁰² (1957 .

¹⁸ M. H. MacGregor, Phys. Rev. 113, 1559 (1959).
¹⁴ H. P. Noyes, Phys. Rev. Letters **12,** 171 (1964); M. H. Mac-Gregor, M. J. Moravcsik, and H. P. Stapp, Ann. Rev. Nucl. Sci. 10, 291 (1960); 10, 325 (1960).

Energy (MeV)	No., type datab	Angular range (c.m.)	Data std. err.	Norm. std. err.	Deleted anglesb	M value ^c	Predicted	norm. ^d Comment	Reference	
1.397	11σ	$12^{\circ} - 70^{\circ}$	$\sim 0.2\%$			(5.9)		e, f	Wisconsin	(1966)
1.855	13σ	$12^{\circ} - 90^{\circ}$	$\sim 0.2\%$			(3.1)		e, f	Wisconsin	(1966)
2.425	14σ	$12^{\circ}-100^{\circ}$	$\sim 0.2\%$			(0.7)		e, f	Wisconsin	(1966)
3.037	13σ	$12^{\circ} - 90^{\circ}$	$\sim 0.2\%$			(0.6)		e, f	Wisconsin	(1966)
9.68	1σ	90°	1.2%			1.2		g	Minnesota	(1959A)
9.69	$26\,\sigma$	$10^{\circ} - 90^{\circ}$		0.73%		0.7	1.015		Minnesota	(1959B)
		$27^\circ - 112^\circ$	1%					g e, h	Berkeley	(1954)
9.73	9σ		3%	Unknown		(\cdots)			Saclay	(1966)
11.4	$1 C_{NN}$	90°	2%			0.6		i, j		
11.4	$1 A_{xx}$	90°	1%			0.0		i, j	Saclay	(1966) (1960)
14.16	17σ	$18^{\circ} - 114^{\circ}$	\sim 3%	10%		0.1	0.991		Tokyo	(1959)
16.2	1P	50°	\sim 100%			0.7		g	Princeton	
18.2	8σ	$30^{\circ} - 90^{\circ}$	1%	1.5%		0.7	1.001	g	Princeton	(1954)
19.2	$1 C_{NN}$	90°	2%			0.3		i, j	Saclay	(1966)
19.2	$1A_{xx}$	90°	2%			0.1		i, j	Saclay	(1966)
19.8	15σ	$14^{\circ} - 90^{\circ}$	3%	2.5%		(1.1)	0.999	e, h	Los Angeles (1955A)	
19.8	7σ	$18^{\circ} - 36^{\circ}$	3%	2.5%		(1.8)	1.005	e, h	Los Angeles (1955A)	
20	$1\sqrt{C_{NN}}$	90°	6%			(2.2)		e, h	Saclay	(1962)
21.95	1σ	90°				(>10)		e, k	Rutherford	(1964)
823.5	$1 C_{NN}$	90°	3%			0.0		i, j	Saclay	(1966)
^a 23.5	$1A_{xx}$	90°	3%			0.5		i, j	Saclay	(1966)
25.62	$1\,\sigma$	90°	0.5%			(5.7)		e, k	Rutherford	(1964)
$* 25.63$	23σ	$10^{\circ} - 90^{\circ}$	0.8%	0.93%		0.6	1.009	$\mathbf g$	Minnesota	(1960A)
$*26.5$	$1 C_{NN}$	90°	2%			0.1		i, j	Saclay	(1966)
$*26.5$	$1 A_{xx}$	90°	2%			2.9		i, j	Saclay	(1966)
827		90°	10%			0.1			Los Alamos	(1967)
27.4	$1 C_{NN}$ 1 P	45°	\sim 150 $\%$			(\cdots)		e, 1	Harwell	(1963A)
427.6	3 A	$23^{\circ} - 55^{\circ}$	$>40\%$	3%		1.4	0.997		Rutherford	(1965B)
827.6	2R	23°, 55°	15%	3%	39°	0.5	0.991		Rutherford (1965B)	
828.16	1σ	90°	2%			1.4		g	Minnesota	(1959A)
30	1P	45°	Large			5.2			Rutherford	(1963A)
30.33	1σ	90°	0.6%			(7.0)		e, k	Rutherford	(1964)
31.15	1σ	90°	${<}2\%$			0.2		g	Minnesota	(1959A)
34.2	1σ	90°	${<}2\%$			0.3		g	Minnesota	(1959A)
34.27	1σ	90°	0.6%			(26.1)		e, k	Rutherford	(1964)
36.8	1P	60°	30%			(\cdots)		e, l	Harwell	(1963A)
36.9	1σ	90°	${<}2\%$			0.0		g	$\label{min:1}$ Minnesota	(1959A)
38.3	1 P	70°	50%			(\cdots)		e, l	Harwell	(1963A)
39.4	27σ	$8^{\circ} - 90^{\circ}$	$<$ 1%	0.93%		0.9	0.988	g	Minnesota	(1958)
39.6	1σ	90°	${<}2\%$			0.1		g	Minnesota	(1959A)
	$1\,\sigma$	90°	0.6%			(14.3)		e, k	Rutherford	(1964)
40.75	1σ	90°	7%			0.8			Harvard	(1956)
41		90°				1.3			Minnesota	(1959A)
44.66	1σ	90°	2%			(36.0)		g e, k	Rutherford	(1964)
45.04	1σ		0.6%						Harvard	(1958)
46	1σ	45°	5%			(3.1)		e, m	Harvard	(1958)
^a 46	1 P	45°	\sim 100%			1.6		$\mathbf n$		(1965A)
^a 47.5	5A	$23^{\circ} - 87^{\circ}$	\sim 50%	5%		1.6	0.982		Rutherford	
^a 47.8	5 A	$23^{\circ}-87^{\circ}$	\sim 50%	5%		0.5	1.019		Rutherford	(1965B)
^a 47.8	5R	$23^{\circ} - 87^{\circ}$	\sim 10%	5%		1.1	1.004		Rutherford	(1965B)
^a 49.4	28σ	$13^{\circ} - 90^{\circ}$	0.5%	0.4%	14°, 17°	1.1	0.999		Rutherford	(1967)
49.7	1 P	45°	16%			(10.7)		e, b, n	Harwell	(1963A)
* 49.9	1 P	45°	6%			0.0			Rutherford	(1963A)
^a 50	1 D	70°	30%			1.3		\mathbf{o}	Rutherford	(1963B)
50.02	1σ	90°	0.6%			(11.2)		e, k	Rutherford	(1964)
\$50.17	1σ	90°	2%			0.3		g	Minnesota	(1959A)
851.5	1σ	90°	7%			1.0			Harvard	(1956)
851.5	9σ	$16^{\circ} - 35^{\circ}$	4%	4.5%	12°	0.9	0.941		Tokyo	(1961)
851.7	1 P	60°	25%			0.6		$\mathbf n$	Harwell	(1963A)

TABLE I. (p, p) data from 1 to 400 MeV.

a140

20P

 $16^{\circ}\text{--}107^{\circ}$

 0.85%

1.0

1.005

 ${\bf H}$ arwell

(1966)

Energy (MeV)	No., type datab	Angular range (c.m.)	Data. std. err.	Norm. std. err.	Deleted anglesb	\boldsymbol{M} value ^c	Predicted	norm. ^d Comment	Reference	
^a 51.8	9σ	$35^{\circ} - 90^{\circ}$	2%	2.5%		1.7	0.950		Tokyo	(1961)
^a 52	$1 C_{NN}$	90°	Large			2.6			Tokyo	(1963)
852	$1 C_{KP}$	90°	\sim 100%			2.9			Tokyo	(1963)
^a 52.3	25σ	$14^{\circ} - 90^{\circ}$	0.5%	0.5%	16°, 18°,	1.1	1.003	p	Tokyo	(1967)
					20°, 26°					
853.2	1P	75°	100%			1.8		$\mathbf n$	Harwell	(1963A)
56	2σ	45°	5%			(1.1)		e, m	Harvard	(1958)
856	1 P	45°	14%			0.1		$\bf n$	Harvard	(1958)
856.15	1σ	90°	${<}2\%$			0.0		g	Minnesota	(1959A)
8.58.5	1P	45°	25%			0.7		n	Harwell	(1963A)
61.92	1σ	90°	${<}2\%$			0.1			Minnesota	(1959A)
	$10\,\sigma$	$25^{\circ} - 71^{\circ}$			20°			g		
66			${<}2\%$	Float		0.1	1.043	${\bf m}$	Harvard	(1958)
66	11P	$20^{\circ} - 71^{\circ}$	15%	2.8%		1.0	1.031	n	Harvard	(1958)
68.3	26σ	$10^{\circ} - 90^{\circ}$	${<}1\%$	1.1%		1.0	1.015	g	Minnesota	(1960B)
68.42	1σ	90°	${<}2\%$			0.4		g	Minnesota	(1959A)
69.5	1σ	90°	6%			0.0			Harvard	(1956)
70	6σ	$25^{\circ} - 90^{\circ}$	Unknown	Float		(\cdots)		e, q	Harvard	(1956)
70	1 P	45°	10%			2.4		$\mathbf n$	Harwell	(1963A)
71	1σ	45°	6%			3.0		e, m	Harvard	(1958)
71	1P	45°	11%			0.5		$\mathbf n$	Harvard	(1958)
73.5	$1 C_{NN}$	90°	25%			0.1		j	Harwell	(1965B)
78	1σ	45°	6%			(0.8)			Harvard	(1958)
78	1 P							e, m		
		45°	8%			0.7		$\mathbf n$	Harvard	(1958)
78.5	1σ	90°	7%			0.0			Harvard	(1956)
86	1σ	45°	5%			(0.4)		e, m	Harvard	(1958)
86	1P	45°	7%			0.0		$\mathbf n$	Harvard	(1958)
^a 93.2	9P	$20^{\circ} - 80^{\circ}$	5%	0.85%	90°	1.3	1.001	r	Harwell	(1967)
* 95	6σ	$40^{\circ} - 90^{\circ}$	4%	Float		0.1	0.997		Harvard	(1956)
^a 95	6σ	$25^{\circ} - 90^{\circ}$	3%	Float		0.5	1.018	${\bf S}$	Harvard	(1956)
* 95	1σ	90°	6%			0.0			Harvard	(1956)
95	4σ	$40^{\circ} - 90^{\circ}$	4%	Float		(\cdots)		e, t	Harvard	(1956)
^a 95	13σ	$25^{\circ} - 86^{\circ}$	${<}2\%$	Float	20°	0.2	0.979	${\bf m}$	Harvard	(1958)
^a 95	14P	$20^{\circ} - 86^{\circ}$	7%	2.8%		1.2	0.994	n	Harvard	(1958)
897	1P	45°	5%			3.2			Harwell	(1963A)
98	10σ	$10^{\circ} - 41^{\circ}$						$\mathbf n$		(1960A)
			3%	Float		(65.4)	0.927	e, c	Harwell	
98	9σ	$20^{\circ} - 81^{\circ}$	2.5%	Float		(4.5)	0.918	e, c	Harwell	(1960A)
^a 98	14P	$10^{\circ} - 81^{\circ}$	20%	2%		1.0	0.979	n, u	Harwell	(1960A)
98	$1 C_{NN}$	90°	8%			0.3		j	Harwell	(1965B)
^a 98	5R	$31^{\circ} - 72^{\circ}$	30%			1.3			Harwell	(1965A)
^a 98	4R'	$31^{\circ} - 62^{\circ}$	40%			0.2			Harwell	(1965A)
^a 98	5 D	$20^{\circ} - 61^{\circ}$	100%			1.2			Harvard	(1960B)
8102	3σ	30° - 66°	2%	${\bf Flaat}$		2.1	0.991	m	Harvard	(1958)
$*102$	3P	$30^{\circ} - 66^{\circ}$	5%	2.8%		0.9	1.021	$\mathbf n$	Harvard	(1958)
107	3σ	$31^{\circ} - 67^{\circ}$	2%	Float		0.1	0.934	${\bf m}$	Harvard	(1958)
107	3P	$31^{\circ} - 67^{\circ}$	5%	2.8%		(3.3)	0.980	e, c, n	Harvard	(1958)
118	15σ	$20^{\circ} - 88^{\circ}$	$<$ 2 $%$	Float	86°	1.2	0.953	${\bf m}$	Harvard	(1958)
118	15P	$20^{\circ} - 87^{\circ}$	5%	2.8%		(2.6)	0.949	e, c, n	Harvard	(1958)
127	3σ	$31^{\circ} - 67^{\circ}$	2%	${\bf F}$ loat		0.0	0.955	${\bf m}$	Harvard	(1958)
127	3P	$31^{\circ} - 67^{\circ}$	4%	2.8%		(3.0)	0.976		Harvard	(1958)
		$20^{\circ} - 82^{\circ}$						e, c, n		
130	4P		15%	3.3%		0.7	0.981	$\mathbf v$	Rochester	(1957)
8137	3σ	$31^{\circ} - 67^{\circ}$	2%	Float		0.1	0.978	${\bf m}$	Harvard	(1958)
^a 137	3P	$31^{\circ} - 67^{\circ}$	3%	2.8%		1.8	0.967	$\mathbf n$	Harvard	(1958)
^a 137.5	5 R'	$43^{\circ} - 82^{\circ}$	20%			0.1			Harvard	(1963B)
^a 138	4D	$31^{\circ} - 82^{\circ}$	50%			1.2			Orsay	(1963)
138	21P	$20^{\circ} - 88^{\circ}$	3%	2.3%		(\cdots)		c, w	Orsay	(1963)
^a 139	6 A	$31^{\circ} - 82^{\circ}$	10%	4%		0.5	0.973		Harvard	(1963A)

TABLE I. (Continued).

	Energy	No., type	Angular range	Data	Norm.	Deleted	M	Predicted			
	(MeV)	datab	(c.m.)	std. err.	std. err.	anglesb	value ^c		norm. ^d Comment	Reference	
8140		6R	$31^{\circ} - 82^{\circ}$	20%			1.1			Harwell	(1960C)
	$*140.4$	6 R'	$31^{\circ} - 82^{\circ}$	15%			1.0			Harwell	(1964)
142		7σ	5° - 10°	5%	Float		(6.8)	1.070	e, c	Harwell	(1960A)
142		7σ	$10^{\circ} - 31^{\circ}$	5%	Float		(3.7)	1.020	e, c	Harwell	(1960A)
142		9σ	10° - 41°	2%	Float		(9.3)	0.953	e, c	Harwell	(1960A)
142		9 $\pmb{\sigma}$	$20^{\circ} - 90^{\circ}$	2%	Float		(11.1)	1.026	e, c	Harwell	(1960A)
242 8142		27P	$5^{\circ} - 82^{\circ}$ $24^{\circ} - 90^{\circ}$	5%	2%	$6^\circ, 78^\circ$	1.4	1.044	n, u	Harwell	(1960A)
a142		8R 8D	$12^{\circ} - 82^{\circ}$	20%			1.4			Harwell Harvard	(1960B) (1960A)
8143		$7\ D$	$31^{\circ} - 92^{\circ}$	20% 50%			1.5 $0.4\,$			Harwell	(1961)
^a 143		6 A	$32^{\circ} - 85^{\circ}$	15%			$1.0\,$			Harwell	(1963B)
^a 143		$2 C_{NN}$	60°, 90°	8%			0.1			Harwell	(1965B)
	a144.1	6σ	$16^{\circ} - 36^{\circ}$	0.7%	0.9%		0.7	1.000	j	Harwell	(1966)
	8144.1	15σ	$41^{\circ}-112^{\circ}$	0.5%	0.6%		1.1	0.998		Harwell	(1966)
147		8σ	$12^{\circ} - 31^{\circ}$	3%	Float	$4^\circ, 6^\circ,$	(0.6)	1.094	e, h, m, x	Harvard	(1958)
						$8^{\circ}, 10^{\circ}$					
147		19σ	$20^{\circ} - 88^{\circ}$	2%	Float		(1.2)	1.064	e, h, m, u, x	Harvard	(1958)
a147		28P	$6^{\circ} - 88^{\circ}$	4%	2.8%		1.0	1.005	n, u	Harvard	(1958)
$*155$		23σ	$10^{\circ} - 90^{\circ}$	2%	4%	8.4°	1.3	0.971		Orsay	(1961)
	170	7P	$31^{\circ} - 82^{\circ}$	5%	3.3%		0.5	0.973	u	Rochester	(1957)
	170	6σ	$10^{\circ} - 62^{\circ}$	3%	Float		(6.2)	0.933	e, t	Berkeley	(1956A)
	174	7σ	$9^{\circ} - 62^{\circ}$	3%	Float		(5.8)	1.043	e, t	Berkeley	(1956A)
	174	5P	$20^{\circ} - 72^{\circ}$	15%	6.6%		0.9	0.930		Berkeley	(1955)
210		9 P	$13^{\circ} - 83^{\circ}$	4%	3.3%		(1.8)	0.998	e, h, v	${\bf \textcolor{red}{Rochester}}$	(1957)
210		9 P	$21^{\circ}-113^{\circ}$	10%	3.5%		(\cdots)		e, h, t	Rochester	(1957)
210		4P	$31^{\circ} - 71^{\circ}$	15%	3.3%		(\cdots)		e, h, t	Rochester	(1957)
210		6 P	$30^{\circ} - 80^{\circ}$	3%	3.6%		0.4	0.976	у	Rochester	(1967)
a210		7σ	$30^{\circ} - 90^{\circ}$ $9^{\circ} - 39^{\circ}$	1.5%	Float		0.7	0.979		${\bf \textcolor{red}{Rochester}}$	(1967)
a213		13σ	$9^{\circ} - 39^{\circ}$	2%	1.3%		1.3	1.002		Rochester	(1967)
^a 213 a213		13P $7\ R$	$30^{\circ} - 90^{\circ}$	5%	3.1%		0.8 $0.6\,$	0.999	$\mathbf y$	Rochester	(1967)
a213		5 R'	$30^{\circ} - 90^{\circ}$	20% 20%		60°, 70°	1.2		z, aa bb	Rochester	(1967) (1967)
^a 213		7D	$30^{\circ} - 90^{\circ}$	10%			0.6			Rochester Rochester	(1967)
^a 213		5E	$30^{\circ} - 70^{\circ}$	10%		80°, 90°	0.7		$\mathbf z$	Rochester	(1967)
^a 213		2Λ	80°, 90°	100%			0.9		aa, cc	Rochester	(1967)
217		6 P	$60^{\circ} - 80^{\circ}$	6%	2.2%		(3.3)	0.946	e, c, h	Rochester	(1967)
	259	6σ	$10^{\circ} - 64^{\circ}$	3%	8%		(\cdots)		e, t	Berkeley	(1956A)
	260	6σ	$9^{\circ} - 63^{\circ}$	3%	8%		(\cdots)		e, t	Berkeley	(1956A)
	276	6 P	$19^{\circ} - 77^{\circ}$	10%	7.5%		1.5	0.882	dd	Berkeley	(1957)
305		$14 C_{NN}$	59°-104°	15%	9.6%		1.6	0.764		Chicago	(1967)
^a 310		7 $\pmb{\sigma}$	6° - 22°	7%	Float		1.8	1.192		Berkeley	(1958)
^a 310		7 P	$6^{\circ} - 22^{\circ}$	20%	4%		$0.6\,$	0.989	dd, ee	Berkeley	(1958)
^a 310		6 P	$33^{\circ} - 79^{\circ}$	3%	Float	83.7°	1.3	0.964		Berkeley	(1967)
^a 310		6 R	$22^{\circ} - 80^{\circ}$	30%			1.8			Berkeley	(1957)
^a 310		6D	$23^{\circ} - 80^{\circ}$	15%			0.7			Berkeley	(1957)
^a 315		7σ	$21^{\circ} - 90^{\circ}$	2%	Float		1.1	1.060		Berkeley	(1957)
^a 315		6 P	$21^{\circ} - 76^{\circ}$	7%	4%		1.1	0.930	dd	Berkeley	(1957)
^a 315		$1 C_{NN}$	90°	20%			0.5			Dubna	(1964)
^a 315		$1 C_{NN}$	45°	60%			0.0			Dubna	(1965)
^a 315		$1 C_{KP}$	45°	70%			0.0			Dubna	(1965)
^a 316		3A	$25^{\circ} - 76^{\circ}$	20%			0.2			Berkeley	(1956B)
^a 320		$1 C_{NN}$	90°	15%			1.3			Liverpool	(1961)
^a 328		13P	$49^{\circ} - 89^{\circ}$	10%	6.2%	85°	0.6	0.954		Berkeley	(1966)
^a 330		17σ	5° – 30 $^{\circ}$	10%	Float	4°, 5.8°, 11.1°	1.0	1.066		Berkeley	(1958)
*330		13 C_{NN}	$59^\circ - 100^\circ$	20%	10.9%	57°	0.6	0.833		Chicago	(1967)
^a 345		10σ	$15^{\circ} - 53^{\circ}$	5%	Float	$11^{\circ}, 11^{\circ}$	1.2	1.008		Berkeley	(1951)

TABLE I. (Continued).

Energy MeV	No., type datab	Angular range (c.m.)	Data std. err.	Norm. std. err.	Deleted angles ^b	М value ^o	Predicted norm. ^d	Comment	Reference	
*345	17σ	$35^{\circ} - 89^{\circ}$	3%	5%	44°, 88.6°	1.7	1.117		Berkeley	(1951)
358	$14 C_{NN}$	$58^\circ - 102^\circ$	20%	9%		1.1	0.896		Chicago	(1967)
380	26σ	$4^{\circ} - 90^{\circ}$	2%	1.6%		(41.6)	1.185	e, ff	Liverpool	(1958)
380	$1 C_{NN}$	45°	50%			(31.8)		e, b	Liverpool	(1966)
380	$1 C_{KP}$	45°	80%			(29.8)		e, b	Liverpool	(1966)
382	$1 C_{NN}$	90°	20%			0.6			Liverpool	(1961)
382	$1 C_{KP}$	90°	20%			3.2			Liverpool	(1961)
386	$14 C_{NN}$	$58^{\circ} - 101^{\circ}$	15%	8.6%		1.6	0.889		Chicago	(1967)
400	$2 C_{NN}$	$60^{\circ}, 90^{\circ}$	60% , 15%			1.7			Princeton	(1963)
400	$2 C_{KP}$	60° , 90 $^{\circ}$	$60\%, 30\%$			0.6			Princeton	(1963)
400	7 P	$33^{\circ} - 83^{\circ}$	3%	3%		0.8	1.045		Berkeley	(1967)
400	7 P	$33^{\circ} - 83^{\circ}$	6%	3%		1.6	1.010		Berkeley	(1967)

TABLE I. (Continued).

a These energies show data used for single-energy calculations and for
the matrix representations of the data. The landard deviations from the theoretical
values were deleted. The number of data points shown does not incl

^k C. Batty (private communication) suggested considering these data being one set. Since $M > 2$ for the set, we have deleted all of the points. I Excessive energy spread.

^m Early Harvard cross-section normalizations were withdrawn.

n Renormalized as suggested by O. N. Jarvis and B. Rose [Harwe] [1965C].

The correct value is $D = -0.241$.

& J. Sanada (private communication) assigned preliminary absolute

where $a = -7.815$ F, $r_0 = 2.795$ F, and K is the c.m. momentum of a nucleon. For $l\neq 0$, we set¹⁵

$$
\delta_{l0}{}^{(S,J)} = \text{OPE}.\tag{7}
$$

The Q-function forms are written as

$$
F_{1i}(T) = \frac{1}{2} \left[(\beta_{i}\mu)^{2} / M \right] (T^{2} + 2MT)^{-1/2} \times Q_{l} \left[1 + (\beta_{i}\mu)^{2} / MT \right], \quad (8)
$$

where $\beta_i = 2, 3, 4, \cdots$ for $2\pi, 3\pi, 4\pi, \cdots$ exchange, and (μ, M) = (pion, nucleon) mass. For the analysis used in paper IV, we chose $\beta_1 = 2$, $\beta_2 = 3$, $\beta_3 = 5$, and $\beta_4 = 9$.

In the Q-function expansion just described, the free parameters are the coefficients α_i in Eq. (5). However, the β_i are in a sense hidden parameters. It is possible to write a form that avoids the β parametrization. If we start with a generalized Yukawa function

$$
f(t) = \int_{4\mu^2}^{\infty} \frac{dt'}{(t'-t)} \rho(t'),
$$
 (9)

¹⁵ P. Cziffra, M. H. MacGregor, M. J. Moravcsik, and H. P. Stapp, Phys. Rev. 114, 880 (1959).

errors of 0.7% to these data. We have arbitrarily set the normalization
error as 0.5% and the statistical error as 0.5% (0.6% for the smallest angle).

Trial data by M. R. Wigan and P. Marini (private communication)

have

"Independent measurements of data at the same angles have been

averaged. + These data should probably be renormalized, but are included here as originally published. The effects of renormalization are slight for imprecise

data.

w Data not symmetric about 90[°].

x Large data renormalization.
 x Large data renormalization.
 y Renormalized as recommended by Thorndike [Rochester (1967)]. Express changed as recommended by Thorndike [Rochester (1967)]. E

data are A, R combinati

in the analysis.

oe These points replace the E data at 80° and 90°.

dd Beam polarization error removed from individual errors.

^{oe} Normalization uncertainty from O. Chamberlain *et al.* [Berkeley] (1957) ¹.

 $^{\circ}$ if A phase-shift study showed that these data are inconsistent in shape with nearby cross sections at higher and lower energies. (But see paper VIII.)

where t is the s-channel momentum transfer variable $\left[t=-MT(1-\cos\theta_s), \text{ with } \theta_s \text{ the s-channel c.m. scat-} \right]$ tering angle], then a partial-wave projection gives

$$
f_l(t) = \frac{1}{MT} \int_{4\mu^2}^{\infty} Q_l \left(1 + \frac{t'}{MT} \right) \rho(t') t' dt'.
$$
 (10)

Putting $x = 1 - 4\mu^2/t$, $x_0 = 1 + 4\mu^2/MT$, we have

$$
f_l(x_0) = (x_0 - 1) \int_0^1 Q_l \left(\frac{x_0 - x}{1 - x} \right) \frac{\rho(x)}{(1 - x)^3} dx.
$$
 (11)

To obtain s-wave $(l=0)$ convergence, we require

$$
\rho(x) \underset{x \to 1}{\to} (1-x)^2. \tag{12}
$$

Thus we can take

$$
\rho'(x) = \rho(x)/(1-x^2). \tag{13}
$$

(11) ℓ Then Eq. (11) becomes

$$
f_l(x_0) = (x_0 - 1) \int_0^1 Q_l \left(\frac{x_0 - x}{1 - x} \right) \frac{\rho'(x)}{(1 - x)} dx. \tag{14}
$$

 \equiv

Rutherford	(1964) (1965A)	C. J. Batty, G. H. Stafford, and R. S. Gilmore, Nucl. Phys. 51, 225 (1964). A. Ashmore, M. Devine, B. Hird, J. Litt, W. H. Range, and M. E. Shepherd, Nucl. Phys. 65, 305 (1965).	Tokvo	(1963)	K. Nisimura, J. Sanada, P. Catillon, K. Fukunaga, T. Hasegawa, H. Hasai, N. Ruy, D. C. Worth, and H. Imada, Progr. Theoret. Phys. (Kyoto) 30, 719 (1963) .
	(1965B)	A. Ashmore, B. W. Davies, M. Devine, S. J. Hoey, J. Litt, and M. E. Shep- herd, Nucl. Phys. 73, 256 (1965).		(1960)	S. Kikuchi, J. Sanada, S. Suwa, I. Hayashi, K. Nisimura and K. Fuku- naga, J. Phys. Soc. Japan 15, 9 (1960).
	(1967)	C. J. Batty, T. C. Griffith, D. C. Imrie. G. J. Lush, and L. A. Robbins, Nucl. Phys. A98, 489 (1967).		(1967)	J. Sanada and Y. Nojiri (private com- munication); J. Sanada, K. Kuriyama, Y. Takeuchi, Y. Nojiri, N. Ryu, H.
Saclay	(1962)	A. Abragam, M. Borghini, P. Catillon, J. Coustham, P. Roubeau, and J. Thirion, Phys. Letters 2, 310 (1962).			Hasai, M. Ikeda, S. Kobayashi, K. Nagamine, D. C. Worth, and T. Yamaya, Tokyo University Report
	(1966)	P. Catillon, D. Garreta, and M. Chapel- lier, Nucl. Phys. B2 , 93 (1967).			No. TUENS-1 (unpublished); Progr. Theoret. Phys. (Kyoto) 38, 1202
Tokyo	(1961)	K. Nisimura, J. Sanada, I. Hayashi, S. Kobayshi, D. C. Worth et al., Institute for Nuclear Studies Japan Report No. INSJ 45 , 1961 (unpublished).	Wisconsin	(1966)	(1967) ; Nucl. Phys. B 4, 379 (1968) . David J. Knecht, Per F. Dahl, and S. Messelt, Phys. Rev. 148, 1031 (1966).

TABLE II. (Continued).

This gives so that we must have $\rho'(x) \propto x^{1/2}$. Thus we have finally

Im
$$
f_l(x_0)
$$
 = $\int_0^{\frac{1}{2}(x_0+1)} P_l\left(\frac{x_0-x}{1-x}\right) \frac{\rho'(x)}{(1-x)} dx$,
-1 < x_0 < 1. (15)

As the left-hand discontinuity threshold $(x_0=-1)$ is approached, we require¹⁶

$$
\mathrm{Im} f_i(x_0) \to (x_0+1)^{3/2}, \qquad (16)
$$

TABLE III. χ^2 values for several energy-dependent forms. A matrix representation of 515 data at six energies was used in the fitting. The forms are explained in the text. Results obtained with redundant parameters (upper part of table) or with excessive form limiting (lower part) are set in italics.

Energy form No. of free	A	Q1	02	О3 Pion-mass values	Q4
parameters		2,3,5,9	1,2,3,5	2,4,7,13	5,10,15,20
38	<i>510</i>	<i>510</i>	<i>510</i>	518	546
37	511	511	<i>510</i>	518	546
36	512	511	<i>510</i>	519	546
35	512	512	511	519	547
34	512	512	511	520	550
33	513	512	512	520	550
32	514	512	515	522	551
31	516	513	518	523	552
30	517	513	524	527	554
29	517	516	535	530	563
28	519	518	552	532	565
27	523	521	562	550	568
26	525	523	592	551	579
25	530	534	592	571	598
24	538	550	620	590	644
23	544	566	638	636	684
22	549	569	653	642	692
21	559	589	698	656	720
20	565	697	775	763	722
19	637	745	854	768	783
18	673	843	976	851	842
17	722	894	1205	891	861
16	838	1016	1320	941	939
15	945	1016	1636	996	1161
14		1256	2778	1172	1573
13		1417			2167

¹⁶ R. A. Arndt, R. A. Bryan, and M. H. MacGregor, Phys. Rev. 152, ¹⁴⁹⁰ (1966), Appendix I.

 $x_0-x\lambda x^{i-1/2}$ $F_{li}(x_0) = (x_0-1) \int_0^1 Q_l \left(\frac{x_0-x}{1-x} \right) \frac{x^{l-1/2}}{(1-x)} dx.$ (17)

As i increases, the factor $x^{i-1/2}$ weights the integral towards the values $x \sim 1$, which corresponds to highenergy t in the crossed channel. Thus increasing i in Eq. (17) has the same general effect as increasing the values β_i in Eq. (8).

To study the effect of different energy parametrizations, we chose a number of different forms, as summarized in Table III. Form A is the one using Eq. (17). Forms $Q1 \cdots Q4$ use Eq. (8) and have different choices for the set $\beta_1 \cdots \beta_4$, as noted in Table III. Since all of these forms have roughly the same theoretical framework, it is not surprising that they give rather similar results. As the number of free parameters is increased to the point of redundancy, forms A , $Q1$, and $Q2$ all give essentially the same fit to the data. As the number of parameters is decreased, A emerges as the best parametrization. Since we have taken account of OPE

TABLE IV. Breakdown of free parameters for form-A solutions.
The χ^2 values shown are for a fit to the full set of 839 (p, p) data.

\sim					v. 11. 1
	χ^2 No. of	810	858	874	
	parameters	30	23	20	
		4	4	4	
	$^{15}_{1D_2}$ $^{10}_{4G_4}$ $^{3}P_0$		2	2	
		$\frac{3}{2}$			
		2	2		
	$^{3}P_1$	$\begin{array}{c}\n43 \\ 33 \\ 22\n\end{array}$	$\frac{2}{3}$	$\begin{smallmatrix}2\2\3\3\end{smallmatrix}$	
	$^{3}P_{2}$				
			2		
	$\epsilon_2 \epsilon_F$				
	${}^{3}\bar{F_{3}}$				
	3F_4				
	ϵ_4				
	$^{3}H_{4}$				
	$^{3}H_{5}$				
	H_6				

TABLE V. Phase-shift values from the 23-parameter form-A solution. The errors are calculated from the parameter error matrix. All phase shifts in this paper are Stapp muclear-bar phase shifts in the parameter state in Fig

169

1137

 \sim

FIG. 1. Phase shifts from the single-energy solutions (Table VI), from the 20-, 23-, and 30-parameter form-A solutions, and from the OPE calculation with $g^2 = 15$. These curves are taken directly from computer cathode-ra

FIG. 1. (Continued).

 $\overline{400}$

 $\frac{1}{300}$

 $\frac{1}{400}$

 $\frac{1}{100}$

200

ENERGY-MeV

 $\overline{0}$

200
200
ENERGY-MeV

 $\overline{\circ}$

 $\frac{1}{100}$

 $\frac{1}{300}$

FIG. 1. (Continued).

 $(\beta_i=1)$ explicitly in the δ_i [Eq. (7)], we would expect $Q1$ to be superior to $Q2$. We would also expect to see $Q3 \sim Q1$ and to see $Q4$ as the poorest form. These expectations are more or less borne out in the results shown in Table III. This gives some credence to the argument, which has been made elsewhere,¹⁷ for using a form that has the correct singularity structure. Form A has singularities starting from the 2π discontinuity $(\beta_i=2)$, as can be noted in Eq. (9).

The results shown in Table III were based on a set of 515 (p,p) data, and were obtained by using a preliminary six-energy matrix representation of these data. With each form, the number of parameters was initially set at 38, and after each x^2 minimization the leastsensitive parameter, as determined by the computer, was deleted. As the result of these calculations, we selected A as the most suitable form for the phase-shift energy dependence.

After completion of Table III, the data set included in the matrix representations was expanded to include a total of 588 (p,p) data. When the study shown in Table III was repeated for the form-A energy dependence, the 30-parameter and 20-parameter solutions appeared as the limiting parameter choices. Thirty free parameters give a solution that has enough flexibility to permit a precision 6t to the data. Twenty free parameters give a solution in which form-limiting is still small, and in which an excellent fit to the data is still maintained (x^2) per data point=1.04 for the entire set of 839 data). Thus for those who fit potential models to phase shifts, the 20-parameter solution is by all standards a completely adequate representation. The 30 parameter solution gives $\chi^2/[(\text{No. of data}) - (\text{No. of})]$ parameters) $]=1.00$ for the 839 data. From a statistical point of view, this is as good a value as we should hope to obtain if the experimenters have been accurate in their statements of experimental errors. Also, as Table

III shows, increasing the number of parameters beyond 30 does not decrease X^2 appreciably, and the redundant parameters increase the error limits, particularly for the high-l phase shifts.

I I

I

OPEC

Table IV shows how the free parameters are distributed for 20-, 23-, and 30-parameter form-A solutions. The values in Table IV can be taken as a rough measure of the "non-OPE contribution" to thee nergy dependence of the phase shifts. In particular, ${}^{3}P_{2}$, which receives a large contribution from the $I=0, J=0, 2\pi$ channel, exhibits large deviations from the OPE phase shift. It is interesting to note that the 30-parameter solution includes all phases through H waves in the free parameters, and the 20-parameter solution has all H waves set equal to the OPE value. The 23-parameter solution differs from the 20-parameter solution in that it includes one free parameter for each of the H waves.

When the energy-dependent form Q1 from Table III (which is the form we used in our previous work'), was fitted to the full set of 839 data, the x^2 value for a 30parameter 6t was 882, as compared to the value 810 for the 30-parameter form A fit. Thus form A is clearly a better parametrization than Q1, and it is used in all of our final energy-dependent analyses.

The results shown in Table III were run in a few minutes on the computer, since we used a matrix representation for the data. Direct use of the data would have involved a prohibitive amount of computer time. We show in Sec. IV that the subset of 588 data used for the matrix representation includes most of the physical content contained in the entire data set, and that the matrix representation of the data is an accurate description of the data.

IV. PHASE-SHIFT RESULTS

A. Energy-Dependent Analyses

Our final data selection was described in Sec. II and Tables I and II. Of some 1084 (p, p) data considered,

400

¹⁷ R. A. Arndt and M. J. Moravcsik, Nuovo Cimento 51A, 108 (1967).

 (0.11)

 0.32

 (0.22)

 0.59

 (0.08)

TABLE VI. Single-energy analyses. The phases at each energy were given a fixed energy derivative as determined on the computer from the energy-dependent solutions.

 (0.008) • The phases in parentheses are OPE contribution phases with $g^2 = 15$ and $M_{\pi} = 135.04$ MeV.

 (0.03)

 0.10

839 were included in the final set. The energy parametrization selected was form A , as described in Sec. III and Tables III and IV. A total of 30 free parameters gives a X^2 value of 810. Since, with 839 data points and 30 adjustable parameters we expect a χ^2 of 809 for an ideal statistical fit, the 30-parameter solution is flexible enough that form-limiting does not occur, a conclusion that was also illustrated in Table III.

 (0.005)

 (0.02)

 (0.001)

 $3H_4$

 $\overline{H_5}$

 $3\overline{H}$

When the number of free parameters is reduced from 30 to 20, as selected by the computer, a solution is obtained in which some form-limiting occurs, but which is nevertheless a very precise fit to the entire data set. For this solution, the average M value for the entire data selection is 1.04. Since the solution contains only S-G waves, it is a convenient one to use. The addition of H waves gives the 23-parameter solution listed in Table IV.

The phase-shift values for the 20-, 23-, and 30parameter solutions, and also the OPE phase-shifts for comparison, are illustrated in Fig. 1. As can be seen, the 20- and 23-parameter phases are very similar, and the agreement with the 30-parameter solution is good. Tabulated values for the 23-parameter solution, together with the phase-shift errors as deduced from the 23-parameter correlation matrix, are given in Table V. Figure 2 shows the phase shifts and error corridors, as plotted by the computer, for the 23-parameter solution.

B. Energy-Independent Analyses

As a further check on the subject of form-limiting, we carried out phase-shift analyses in six narrow energy bands centered around 25, 50, 95, 142, 210, and 330 MeV. The data used for these analyses are indicated in Table I. Energy-dependent phase-shift slopes were assigned in each energy band as determined by the computer from the energy-dependent analyses.

The single-energy phase shifts are listed in Table VI. They are also shown on the phase-shift plots in Fig. 1. The general agreement between the energy-dependent and energy-independent phases is good, which indicates again that form-limiting is not an important factor in the energy-dependent solutions. There is some scatter at the highest energy, 330 MeV. The second-derivative matrices for the six energy-independent solutions are given in Table VII, and the corresponding error matrices are given in Table VIII.

 $0.10 + 0.23$

 $1.00 + 0.20$

 $0.07 + 0.14$

 $1.23 + 0.34$

 1.92 ± 0.52

In the present "single-energy" analyses, a total of 588 data were used. This compares to the total of 365 data used in our previous single-energy analyses.¹⁻⁶ As discussed in Sec. IV C, these 588 data contain most of the physical content that is inherent in the full set of 839 data.

C. Validity of the Matrix Representation

As a test of the validity of using a matrix representation of a set of data, we carried out the calculations summarized in Table IX. Selecting first the 588 data used in our six single-energy analyses, we obtained a matrix representation^{4,9} of these data, labeled matrix A in Table IX. These are the matrices given in Table VII. Then, using form A with 20 and with 30 parameters, we obtained solution A by fitting against matrix A . Solution A was first tested against the actual data, set A , and then allowed to be searched against set A . As can be seen, the decrease in x^2 (641-631 for 20 parameters, and 609-571 for 30 parameters) was quite small, showing that matrix A is a "faithful representation" of set A. In general, x^2 is a very sensitive function of the phase-shift parameters. Thus the change in the actual phase shifts as obtained from matrix A and then from set A is miniscule.

Table IX illustrates another important fact, which is shown by the continuation of the above process with data sets B and C , namely, that the subset of 588 "single-energy" data contains virtually the entire physical information content that is included in the complete set of 839 data. This is shown by the excellent fit of solution A against sets B and C . Set B contains 207 data that were not contained in set A, and yet the X^2 change for the unsearched solution A with 20 parameters on set B as against the searched solution on set B is only from 840 to 823. A solution that gives a good fit to set A will also give a good fit to set B .

The difference between sets B and C is that the latter contains 44 data above 360 MeV. Since this lies beyond the energy range in which solution A was obtained, the solution- A fit to these data is not as precise as at the lower energies. In particular, the 30-parameter solution does not extrapolate as well as does the 20-parameter solution. This confirms our expectation that the smallerdimensional representation should extrapolate more smoothly. The extra flexibility in the 30-parameter solution allows it to develop wiggles that are often only of local significance. However, the extrapolations to 400 MeV are reasonable qualitatively, even for the 30parameter solution. This was not true of early forms used for energy-dependent phase-shift representations.¹⁸

D. Recommended Phase-Shift Solutions

From our energy-dependent analyses, we have selected the 23-parameter solution as being the most useful representation of the (p,p) scattering data from 9 to 400 MeV. The M value for this solution is 1.02 for the entire set of 839 data. Although the lowest energy included in the data set is at 9.68 MeV, the solution gives precision fits $(M<1)$ to the Wisconsin differential cross-section data at 2.425 and 3.037 MeV (see Table I). Thus the solution can be used with confidence at energies well below 10 MeV. This is, of course, a consequence of the fact that we have chosen a form for the S wave that has the correct effective-range expansion [see Eq. (6)]. The single-energy solutions of Table VI were selected from studies using different choices for the free phases. The parametrizations given in Table VI appear to us to be the most useful ones.

E. Use of the Matrix Representations

For a fit to potential models, it is often accurate enough to make a fit to phase shifts in "diagonal form." In this approximation, we have

$$
\chi^2 = \sum_{T,\,l} \left(\frac{\delta_m^{T,\,l} - \delta_0^{T,\,l}}{\Delta \delta_0^{T,\,l}} \right)^2,\tag{18}
$$

where T is the energy, l represents the phase-shift index at this energy, δ_m is the phase shift calculated

¹⁸ M. J. Moravcsik, *The Two-Nucleon Interaction* (Oxford University Press, New York, 1963), Figs. 34-47.

Frg. 2. Computer-calculated plots of the corridor of errors for the 23-parameter form-A solution of Table V.
The phase-shift error limits were obtained from the parameter error matrix.

FIG. 2. (Continued).

from the model, and δ_0 and $\Delta \delta_0$ are the phase shift and its associated error as given in the present paper. The set δ_0^T and $\Delta \delta_0^T$ can be selected either from the energydependent values given in Table V, or else as the set of single-energy phase shifts and errors given in Table VI. Since the diagonal errors $\Delta \delta_0$ only partially reflect the correlations among the phase-shift uncertainties, x^2 as calculated from Eq. (18) will differ by roughly a factor of 2 from the X^2 obtained by fitting the set of phases $\delta_m^{T,l}$, obtained from Eq. (18), directly against the data However, the model parameters will be quite accurately determined by the minimization of X^2 as given in Eq. (18).

For a precision fit, it is necessary to use the full correlation matrices of Table VII. In Table VII we have given the values for the matrices $a_{l, l'}^{T}$, where

$$
\alpha_{l,l'} = \frac{1}{2} \partial^2 X^2 / \partial \delta_l \partial \delta_{l'}.
$$
 (19)

The units for $\alpha_{l,l'}$ in Table VII are deg⁻². A model fit

that minimizes
$$
\chi^2
$$
 in the equation
\n
$$
\chi^2 = \sum_{T,\,l,\,l'} \alpha_{l,\,l'}^T (\delta_m^T, l - \delta_0^T, l') (\delta_m^T, l' - \delta_0^T, l') \tag{20}
$$

will give a precision fit to the actual data. This follows from the facts (a) that the matrix $\alpha_{l, l'}$ is a good repre sentation of the data from which it was determined, and (b) that the subset of 588 data which are represented by the matrices of Table VII includes most of the physical content of the entire set of 839 data. These points were discussed in detail above.

In addition to the second-derivative matrices of Table VII, we have given the corresponding inverse matrices (the conventional error matrices) of Table VIII. These are the matrices $(\alpha^{-1})_{l,l'}$ in units of deg². These matrices are useful in calculating the theoretical errors for any observables. If we dehne

$$
\beta_l = \partial O / \partial \delta_l \tag{21}
$$

for an observable O , then the theoretical uncertainty in that observable, as given from the present analysis, is

$$
\Delta O = (\beta^T \alpha^{-1} \beta)^{1/2},\tag{22}
$$

where β and β^T are the observable derivative vector and its transpose, respectively. If O represents one of the phase shifts δ_l , then (21) and (22) show immediately that

$$
\Delta \delta_l = (\alpha_{li}^{-1})^{1/2},\qquad(23)
$$

which is a well-known result. More usefully, O can represent any one of the many different kinds of (p, p) observables.

V. VALUE FOR PION-NUCLEON COUPLING CONSTANT q^2

In previous papers (see Refs. ¹—⁶ and 15), we have published a number of determinations of g^2 , the pionnucleon coupling constant. Since the present analysis is based on a fit to 839 selected (p, p) data, and since the energy-dependent parametrization includes the OPE contribution in a very plausible manner, we believe that the g^2 determination from this analysis is the most accurate one that we know how to obtain from the existing nucleon-nucleon data.

In Table X are listed the values for $X^2(g^2)$ obtained from the 20-, 23-, and 30-parameter solutions. It is a somewhat empirical fact that as the number of phaseshift parameters is reduced, or more precisely, as the OPE contribution is used at lower and lower l values, the minimum in the $\chi^2(g^2)$ curve tends to shift to lower values for g^2 . The trend can be noticed in Table X, although the shift is rather erratic. On the other hand, as more and more freedom is given to the phases, the OPE contribution dependence decreases and the $X^2(g^2)$ parabola flattens out. The error in the g^2 determination increases. The 30-parameter solution shown in Table X probably represents a good compromise between the

	$1S_0$	$^{3}P_{0}$	${}^{3}P_1$	$1D_2$	${}^{3}P_{2}$	ϵ_2	3F_2	${}^{3}F_{3}$	3F_4	${}^{1}G_4$	ϵ_4
$1S_0$ 3P_0 3P_1 $1D_2$ \mathbf{P}_2	0.0679 -0.0165 0.0194 -0.0031 -0.0105	0.2006 0.0255 -0.0020 -0.0497	0.0442 -0.0011 -0.0256	0.0011 0.0019	0.0250			25 MeV			
1S_0 $\begin{array}{c} {}^{3}P_{0} \\ {}^{3}P_{1} \\ {}^{1}D_{2} \end{array}$ $3P_2$ $\overset{\epsilon_2}{\circ} F_2$ $3F_3$ 3F_4	0.2121 -0.1833 0.0558 -0.0108 -0.0427 0.0585 -0.0993 0.1401 -0.0296	0.4692 0.0820 0.0311 0.0463 -0.0744 0.0814 -0.1569 -0.0294	0.0966 0.0156 0.0019 -0.0136 -0.0322 0.0055 -0.0325	0.0094 0.0066 -0.0123 -0.0069 -0.0056 -0.0060	0.0228 -0.0105 0.0179 -0.0277 -0.0073	0.0448 -0.0258 0.0656 -0.0158	0.0847 -0.0974 0.0254	50 MeV 0.1516 -0.0340	0.0315		
$1S_0$ $^{3}P_{0}$ \bar{P}_1^{ν} ${}_{3}^{1}P_2^{\nu}$ $\overset{\epsilon_2}{\textbf{^{3}}F_2}$ $\overline{^3F_3}$ 3F_4	2.081 -0.093 -0.045 0.030 -0.222 0.121 -0.769 0.715 -0.153	4.622 0.674 0.154 -0.090 -0.369 -0.205 -0.179 -0.121	0.441 0.050 -0.069 0.007 -0.306 0.253 -0.103	0.066 -0.042 -0.046 -0.132 0.027 -0.049	0.252 -0.039 0.354 -0.306 -0.063	0.105 -0.051 0.200 0.014	0.846 -0.628 0.218	95 MeV 0.841 -0.093	0.080		
$1S_0$ $^{3}P_{0}$ $^{3}P_1$ $1D_2$ $^{3}P_{2}$ $\begin{array}{c} \epsilon_2\\ {}^3F_2\\ {}^3F_3 \end{array}$ ${}^{3}F_{4}$ ${}^{1}G_{4}$ ϵ_4	0.3362 0.1477 0.0356 -0.0540 0.0014 0.0214 -0.0943 0.0570 -0.0402 0.0032 0.0066	0.2956 0.0536 -0.0087 0.0205 0.0060 -0.1101 0.0429 -0.0547 -0.0051 0.0085	0.0287 -0.0012 0.0132 0.0015 -0.0237 0.0056 -0.0152 -0.0002 0.0016	0.0291 0.0008 -0.0072 -0.0053 0.0033 -0.0042 -0.0071 -0.0021	0.0117 0.0005 -0.0058 -0.0013 -0.0060 0.0007 0.0003	0.0046 -0.0042 0.0039 -0.0019 0.0012 0.0006	0.0705 -0.0344 0.0326 0.0065 -0.0029	142 MeV 0.0291 -0.0128 -0.0018 -0.0007	0.0184 0.0038 -0.0012	0.0043 -0.0006	0.0012
	$1S_0$	${}^{3}P_{0}$ ${}^{3}P_1$	D_2	3P_2	ϵ_2	3F_2 3F_3	1G_4	3F_4	$^{3}H_{4}$ ϵ_4	$^{3}H_{5}$	3H_6
$1S_0$ P_0 3P_1 $1D_2$ $^{3}P_{2}$ ϵ_2 3F_2 ${}^{3}F_{3}$ 1G_4 $^{3}F_{4}$ ϵ_4	0.281 0.053 -0.024 -0.072 0.002 0.001 -0.018 0.062 0.023 -0.008 -0.004 $^{3}H_{4}$ -0.011 $^{3}H_{5}$ -0.008 $^{3}H_{6}$ -0.005	0.298 0.028 -0.010 0.034 0.001 -0.115 -0.025 -0.004 -0.038 -0.007 -0.040 -0.020 0.022 -0.001 0.021 -0.025 -0.002	0.102 0.035 0.084 0.023 0.025 0.028 0.020 -0.003 0.003 0.000 -0.019 -0.006 -0.005 -0.038 0.040 0.032 $0.004 -0.009 -0.024 -0.002$	0.052 0.014 -0.036 0.003 -0.004 -0.030 -0.005 -0.007 0.018	0.026 -0.012 0.011 -0.005 -0.010 -0.001 -0.019 0.017	0.095 -0.019 0.042 0.004 -0.001 0.045 -0.004 -0.004 -0.001 -0.016 -0.012 -0.007 0.001 -0.009 -0.012 -0.010	0.010 0.001 -0.002 0.007 -0.006	0.034 0.005 -0.010 -0.004 $0.006 - 0.010$	210 MeV 0.008 0.001 0.000 -0.036 -0.001	0.053 0.041 0.029	-0.018 0.021
$1S_0$ $^{3}P_{0}$ $^{3}P_{1}$ $1D_2$ $^{3}P_{2}$ ϵ_2 3F_2 $^{3}F_{3}$ 1G_4 3F_4 ϵ_4 $^{3}H_{5}$	2.125 0.286 -0.511 -0.033 -0.117 -0.063 0.010 0.447 -0.093 -0.032 -0.125 $^{3}H_{4}$ -0.159 $0.085 - 0.301$ $^{3}H_{6}$ -0.097	2.451 0.097 -0.128 0.310 -0.139 -0.485 -0.033 0.534 -0.287 -0.002 -0.084 -0.055 0.019 0.079 -0.044	1.436 0.050 0.271 0.164 -0.009 0.124 0.086 -0.032 -0.039 0.111 -0.034 -0.032 -0.083 0.031 -0.058 0.052 0.032 0.125 $0.052 - 0.024$	0.317 -0.047 -0.019 -0.036 0.024 -0.024 -0.001 0.017 -0.107 -0.017	0.192 0.003 -0.034 -0.017 -0.029 -0.046 -0.077 -0.013	0.319 -0.139 0.368 0.013 -0.020 0.073 0.011 -0.024 -0.028 -0.024 -0.003 $0.137 - 0.009 - 0.112$ $-0.011 - 0.030$	0.061 -0.005 0.002 0.004 -0.017 0.016	0.059 0.025 0.024 -0.053 -0.002	330 MeV 0.085 0.070 -0.047 -0.105 0.021	0.112 0.271 0.029	0.003 0.025

TABLE VIII. Error matrices for the single-energy solutions of Table VI. The units for this table are deg².

Scylla of systematic error and the Charybdis of large for g^2 from the existing nucleon-nucleon data. This experimental error. Thus the value $g^2=14.72\pm0.83$ is value for g^2 corresponds to the value $f^2=0.0762\pm0.0043$ believed to be the most accurate value we can obtain which is (just barely) in agreement with the value for

1148

TABLE IX. Check on the validity of the matrix representation. Solution A was obtained by fitting to matrix A, and then was tested against sets A , B , and C , first unsearched and then searched

 \triangle Matrix A is the matrix representation of the 588 data comprising the

six single-energy analyses.
 \degree Set A is the 588 data described in footnote a.
 \degree Set A is the 595 data extending from 10-360 MeV.
 \degree Solution A is the 20(30)-parameter solution O420.
 \degree Solution A is the 20(30

 f^2 obtained from pion-nucleon scattering,¹⁹ $f^2 = 0.0822$ $\pm 0.0018.$

VI. CONCLUSIONS

The present paper represents the conclusion of a decade of effort at Livermore to determine the (p,p) elastic scattering matrix. Our belief is that the data are now complete enough to definitely point to a unique type-I solution and to define quite accurately the scattering amplitudes over the whole elastic energy range. It is unlikely that any future experiments will cause more than slight modifications in the phases we have presented here, although, from the discussion at the end of Sec. II, one is never sure of this fact.

We have been in direct contact with the principal experimental groups all over the world, and Tables I and II include all of the data that we could obtain as of July 1967.The recent Gainesville conference on nucleonnucleon interactions' gave us an opportunity to meet

TABLE X. Values for $\chi^2(g^2)$ and the values for g^2 , the pion-nucleon coupling constant, obtained from the 20-, 23-, and 30parameter form-A solutions. The value $g^2 = 14.72 \pm 0.83$ is in our opinion the best value that we can obtain from the 839-point (ρ, p) elastic data collection.

\mathfrak{g}^2	20 parameter $14.27 + 0.47$	23 parameter 13.64 ± 0.52	30 parameter 14.72 ± 0.83	
13 15 17 19	878.4 873.6 904.8 970.3	853.0 858.4 893.5 959.5	814.1 809.9 817.3 837.1	
10a	(975.0)	(969.7)	(836.4)	

 $\star \chi^2$ predicted by fitting a parabola through the points at g^2 =13. 15, and 17.

» V. K. Samaranayake and W. S. Woolcott, Phys. Rev. Letters 15, 936 (1965).

personally with many of the workers in this 6eld and to update our knowledge of each other's activities. Some of the pioneer experimental groups in this area, notably at Harvard and at Rochester, are discontinuing such work. Since we expect to do no further analyses of these data at Livermore, and since we have considerable con-6dence in the present results, we have presented the results in Sec. IV in more detail than would otherwise have been the case.

We have made no effort in this paper to compare our phase-shift results with those carried out recently at Yale, Harwell, Dubna, and Kyoto. Our belief here is that all groups are in essential agreement with regard to the (p,p) elastic scattering matrix. It should be emphasized that with the accuracies now obtainable it is important to pay careful attention to details such as data normalization constants and matrix search procedures.

Note added in proof. Final C_{NN} data from the Chicago Group give normalizations that agree with the phase shift predictions at 305 and 330 MeV, but a discrepancy still remains at 386 and 415 MeV (see Paper VIII).

ACKNOWLEDGMENTS

The first energy-dependent phase-shift analyses at Livermore were carried out as the MIDPOP program by M. J. Moravcsik, H. P. Noyes, and H. P. Stapp. Although the results of these investigations were reported at the High-Energy Conferences of 1960 and 1962, they were never published. The present work (papers I-IX in this series) was conceived and executed independently of the MIDPOP program. However, we have benefitted considerably from the experience gained by the Mmpop workers, particularly with respect to the problems encountered in carrying out many-dimensional search procedures. Since our present work has now superseded the results obtained in the munrop program, we have been asked by the MIDPOP workers to announce here that the MIDpop results will not be published.

We would like to thank many experimentalists for sending us data, often before publication, and for discussing these data in detail with us. R. Slobodrian and J. S. C. McKee at Berkeley; A. Beretvas and N. E. Booth at Chicago; Yu. M. Kazarinov at Dubna; A. Ashmore, C. Batty, O. N. Jarvis, B. Rose, A. E. Taylor, and J. K. Perring at London, Harwell, and Rutherford; J. Simmons at Los Alamos; E. Thorndike at Rochester; P. Catillon at Saclay; J. Sanada at Tokyo; and D. J. Knecht of Wisconsin have all given assistance in our final data updating. Conversations with G. Breit, N. Hoshizaki, H. P. Noyes, and P. Signell were helpful. Finally, we would like to thank Dr. S. Fernbach for his support of this work at Livermore.