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carried out elsewhere. "The parity-violating amplitudes
are dominated by the octet and decuplet poles. The
small scalar-meson couplings, which result from the
t-channel pole in the parity-violating amplitudes, are
compensated in the parity-conserving amplitudes by an
enhancement of the f(: —+ vacuum coupling. Therefore,
we maintain the previous predictions and success' "of
the tadpole model for the nonleptonic decays.

In conclusion, we would lik.e to point out again that
the tadpole model does allow one to explain the ratios
of the parity-violating amplitudes and the vanishing of
V(Z++) in a natural way. These conclusions are based

~~ D. Loebbaka, thesis, University of Maryland Technical Re-
port No. 624 (unpublished).

on the strong-interaction coupling constants and there
are no fitted parameters in these results. To the extent
that there is a nonzero Ei-+ vacuum coupling, the suc-
cess of the tadpole model has to be considered in any
analysis of the nonleptonic decays. "
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Within the framework of a model based on the noncompact group II(3,1), scattering amplitudes are
calculated in the Born approximation using a phenomenological propagator in which an infinite number
of one-particle states are exchanged. The amplitude is found to be nonanalytic at the point where the
squared mass of the internal line changes sign (u=0). The possibility of testing such anomalous behavior
in pion-nucleon backward scattering and in other processes is discussed.

1. INTRODUCTION

KCENT work on current algebra and supercon-
vergent amplitudes' has suggested that in order

to saturate such relations with a 6nite or infinite number
of one-particle states, the crossing symmetry of the
theory must be different from the crossing given by the
ordinary local 6nite-component field theory. (In a
dispersion language, one needs different assumptions
about the behavior of the kinematical singularities. )
It is well known that in the in6nite-component field

theory with "local" coupling, such "anomalous" cross-

ing is present, ' ' and that the only known examples of
consistent saturation of the current-algebra commuta-
tion relations have been obtained by the use of unitary
representations of a noncompact group. ' The lack of
conventional crossing in the in6nite-component field

theories leads us to think that in such theories the
scattering amplitude might be nonanalytic wherever

the squared mass of an internal line changes sign. In
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this work we compute scattering amplitudes in the
Born approximation in a model based on the non-
compact group U(3,1), and we find such a lack of
analyticity.

Born diagrams including the exchange of an in6nite
number of particles have been discussed by Van Hove, 5

and in the framework of the noncompact group 0(3,1)
by Cocho and Harum Ar-Rashid' and by Fronsdal. ~ In
this work, we will compute Born approximations in-
cluding the exchange of an infinite number of particles
in the framework of the relativistic harmonic-oscillator
model discussed in a previous work. '

Although U(3, 1) might not be the right group for
elementary particles Land in particular the extensive
work of Barut et al.s seems to suggest that 0(4,2) might
be a better candidatej, the calculations are simpler in
U(3,1), it is easier to obtain answers in a closed form,
and we believe that such a possibility is worth explor-

' L. Van Hove, Phys. Letters 24$, 183 (1967).
6 G. Cocho and Harum Ar-Rashid, Nuovo Cimento 47, 874
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ing. Also, as has been suggested by Nambu, " if one
considers the baryons as built out of three quarks
interacting through harmonic-oscillator forces, then
after extracting the motion of the center of mass, the
system is described by two independent harmonic
oscillators, and the content of such a pair of U(3, 1)
representations is the same as that of the 0(4,1)
H-atom-like representation used for elementary parti-
cles. Hence, the question is still not settled.

In this work we shall compute Born diagrams with
"local vertices" and a phenomenological propagator
which includes the linear mass spectrum suggested
by the nonrelativistic harmonic oscillator. %e 6nd a
discontinuity in the derivatives of the scattering ampli-
tude when the four-momentum of the internal line
changes from spacelike to timelike. However, even if
our model is the correct one, such a Born approxima-
tion is not going to give the whole scattering amplitude.
As the kinematics of our examples is the same as in
meson-nucleon elastic backward scattering; we suggest
looking at pion-nucleon and kaon-nucleon backward
scattering to see if "cusps" of such a kind are present.

C„, =C„„. (2)

The symmetry algebra is the compact subalgebra
U(3), and f„„=i(C„„C„„)is iso—morphic to the homo-
geneous Lorentz group. The states are described by an
inf'mite set of 6elds )P,(x), where x„is the center-of-mass
coordinate whose conjugate momentum is the total
momentum p„, and o is an index that takes on an
in6nity of values. The operators of S act on the" index
only, not on the argument.

A local nonderivative interaction between two, three,
or more fields is an S-invariant coupling of the form

p )p.(x) p), (x)x, (x)C.)„.

2. RELATIVISTIC HARMONIC OSCILLATOR

Let us consider the U(3,1) algebra S with generators
C„„satisfying the commutation relations

$C„.,C),)]= g,)C„—p+ g„),C)„ (1)

and the Hermiticity condition

where p (p') is the four-momentum of the incoming
(outgoing) particle, m is its mass, and S is a negative
real number which labels the U(3,1) unitary repre-
sentation.

If

then, as C~ ~,
2@07

(4)

k'
p p) = (1—

) exp~ —-),

which is the form factor of the nonrelativistic harmonic
oscillator.

3. BORN DIAGRAMS

In this section we shall compute scattering and an-
nihilation Born diagrams in which a scalar particle S
(1)))'=0) of mass tu and the ground state of a U(3,1)
tower (%&0) of mass )N interact. We shall use the
local G)p(p')$(p)S(p' p) and a p—henomenological prop-
agator. In order to build such a propagator we shall
assume: (i) The propagator includes the linear mass
spectrum suggested by the nonrelativistic harmonic
oscillator. (ii) It will be built with the operators p„
and C„„,with p„ the four-momentum operator and C„„
as given in the previous section. (iii) Such a phenomeno-
logical propagator will be valid both for spacelike and
timelike momenta.

For the nonrelativistic harmonic oscillator, we have
the mass spectrum

m=ep+Br, e'= (mp+Br)s, r=0, 1, ~ ~ . .

If we remember' that the eigenvalues of Coo are T S,
we may write the preceding equation as

ms = (r)sp+BX+BCp p)'
I

which can be written in an invariant way

pC"p" '
p'=

~
r)sp+B1V+B

2

In a previous work, the "degenerate" U(3,1) "repre-
sentations, "which are realized by the three-dimensional

p
harmonic oscillator, were discussed, and the scalar
form factor which appears in the coupling of the ground
state of two of these towers to a scalar Geld Etrival Therefore, we will assume the phenomenological prop-
representation of U(3,1)] was computed.

%e obtained for such a kinematical form factor the
expression

M Y. Nambu (to be published).

(3)
p' —[A+Bp„C .p"/p']'

with A=sr)p+BS. If p„ is spacelike, we may take
pp=pq=ps ——0. In order that the denominator of the
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r FIG. i. Born diagrams
for the scattering of a
scalar particle (E=O) by
a tower particle (EWO).

propagator vanish, one needs

—pp —(A —BCgg)'= —pp —(A —Br)'= 0

N

GV~(P')A=(t)IY"

A. Comyton-Like Scattering

(p+k)'
which is not possible. There are no poles for spacelike
momentum transfer. (P+k) —[A (P+k) + B(P+k) (s„a/a.„)(P+k)„)

Note the difference between the brackets in the time- y (p„s )&+ (p+ k) (p k') =—N, +—M„(6).
like and the spacelike cases. That is the origin of the F th ~ l;t„d p+k; t, l;ke For ~„
discontinuities which we shall compute next. p —k' may be timelike or spacelike. For the timelike

case, the expression (6) may be evaluated in the center-
of-mass system (p+k= 0 for Mz and p —k'=0 for Mzz).

If p —k' is spacelike it is better to evaluate Mzz in
Let us compute the Compton-like Born diagram of the Breit system po=ko'. Qne obtains ~=+ M;, with

Fig. 1. The expression to compute is

3E;= —,r —,7

m= Gy(p)

(p+k)'
X 4(p)

(p+k)' —[A (p+k)'+B(p+k) "C„"(p+k)„j'

+ (p+k) —+ (p —k') =3fz+3fzz. (5)—

When the incoming and outgoing particles are in the
ground state, Eq. (5) may be formally written as

where
fz= (s—[A+B(r—E)$'} '

f2 (u [A——+—B(r E)]'—} '0'(u), (8)

fg (u —[A———Br]'}—'0~ (—u)

where p= p~p~, y'= p,
' p,+y, ', and 0 is the unit step

function. (Note that
~ p3p3/pppo ~

is always less than 1.)
As a function of the Mandelstam variables

s= (p+k)', t= (p' p)', u= (p ——k')',

3f may be written as

—(s+m2 u2)2-N
G 'M=

m+s't' m+s't'

4m's 2S'" m+s'I' k B

1 t' m+u'" m+u"' 1 (+1;1—y-
m+u'I' 4

'
B

'
B

'
m

m —s'" m —s'" (u+m' —ts')'-" 1
2Fz —X, ; +1; 1—~ +0~(u)

m —s»2 8 ' 8 4m2N

+0(—u)
m+ BE+u'" m+ BE+u'~'s t (m' —p')'/u —1— 1

2~X —%, —
4m& 2uz&2 m+BQ+uz/2 1—yi

1 ( m+BX u't' m+. Bc@ uzt2

sFz~ —X, —— — y1 (9)
m+BE uzt2—

. 1—p
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s(4nP —2t) N(4' —2t)
g- y—

Ls+ep —Ip]' Le+ep —p']'
(10)

Note that the conventional crossing relation Mr (s,e)=Mzr (N, s) is valid only if in Mzz, I)0. By using transforma-
tion formulas of the hypergeometric functions, M becomes

QFJ E)
m —E'~'

+1'

(
2m' —t" 1- 1

~J —N, 1;—
2N~12 ~+ BN+~'12

m+BN+u'" 1
+1 )8

sPg N, 1;——
m+ BN I"—

yg+BN —I"' 1 — L4m'm/(I+eP —p,')'j ~
+1 — +O(N) (1-y) "'s

8 I'(—N) 2e"'

—I" —E— &—y
--"'~~—r r —E—m —I'"

(1—y)"'"~s . (11)
8

From Eq. (11) it is possible to see the following:
(i) If B -+ 0 (equal-mass limit), then

(12)

Note that in such a limit the scalar form factor dis-
cussed in Sec. 2, Eq. (3) appears as a multiplicative
factor.

(ii) For small I, the discontinuity term D(u) in (11)
may be written

O(m) I
D(N) H(0),

I'(—N) m' —p'

S. Annihilation Diagram

r—2m' ~

2s'" 2nz' m+BN+s'"

m+ BN+s"' 1
+1' ——

8 s m+BN s'12—
m+BN s"' 1—

+1;—,(14)
8

X2~& —&, &;—

XP,(
—N, 1;—

In a similar way one may compute the annihilation
Born diagram of Fig. 2. One obtains

I'(m/B) P (nz/B) I'( N m/B)—P ( —N m/B)— —
a(o) =

B[4m'/ (m,'—p')]"

If N is a positive integer (in such a case the repre-
sentation is not unitary), the discontinuity term van-
ishes and we have ordinary crossing. If N&0 (unitary
representation), there is no discontinuity in the ampli-
tude in N=O, but there is a change in the derivatives.
(Such an effect will be easier to see if —1&N&0 than
if N& —1.) If we allow N to be positive but not an
integer (in such a case the representation is not unitary)
there will be a discontinuity in the amplitude itself.

(iii) If I is small, but y large (such is the case if
m'~y or if s is large), the second term in expression
(11) becomes

2'—t ~
+o(~) .

2m' I—m 8E '

s(2t 4m')—
3= f = (P+P')' &= (P—&)'.

Ls+m' —p']'

k
4I~ ~y

m ee k'

Note that the I pole is not in the same place as the
s pole. If we remember that 1V is negative we see that
the nearest pole at I= (n+BN)' is shifted to a lower
value than that of the lowest mass m.

FIG. 2. Born diagram for the annihilation of two tower particles
into two scalar particles.
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If J3-+0,

4. DISCUSSION

It follows from the previous example that in in6nite-
component theories with nondegenerate mass spectra
one might hand discontinuities in the amplitude or in
some of its derivatives whenever the four-momentum
condguration of the external lines allows the four-
momentum of an internal line to change from spacelike
to timelike.

Although our result depends on the model we ha, ve
used, and although the Born approximation (which
is real in our case) is not the whole scattering amplitude,
we believe that it is worth while to look at processes
where the kinematics is the same as in our example,
to see if cusps near 1=0 are present. In particular,
in meson-nucleon elastic backward scattering the
kinematics is similar. Although preliminary evidence

seems to show peaks near N=O in pion-proton" a,nd
kaon-proton" elastic backward scattering, better data
are needed.

Finally, it is worth remarking that the shifting of the
effective position of the pole in the N channel with
I'cspcct to thc posltloI1 of tllc pole II1 tllc s cllallncl Lscc
Sec. 3, (iii)j might be considered also in the exchange
of bosons —in particular, in the vector-meson-domi-
nance model for the electromagnetic form factors and in
the one-boson-exchange baryon-baryon potentials.
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Determination of the Nucleon-Nucleon Scattering Matrix.
VII. (p,p) Analysis from 0 to 400 MeV*

MALcoLM H. MAcGRzooRI RIcHARD A. ARM3T~) AND RQBERT M. WRIGHT

Lawrence Radiation Laboratory, Un& ersity of California, Livermore, California

(Received 23 October 196/)

All of the available (p,p) scattering data from 1 to 400 MeV have been analyzed, and a self-consistent set
of 839 data has been chosen. Using this data selection, we investigated a number of di8erent forms for the
phase-shift energy dependence. The correct number of free parameters to use with each form was studied.
The most suitable form, form A, gave the least-squares values X~= 810 and X'= 858 for 30- and 23-parameter
solutions, respectively. A subset of 588 data in six narrow energy bands was used to obtain single-energy
solutions. It is shown that this subset contains most of the physical content of the full set of 839 data. The
value g'=14. /2&0. 83 was obtained for the pion-nucleon coupling constant.

I. HTTTRODUCTIOg
""N previous papers in this series, ' ' we ha,ve discussed
& - phase-shift analyses of (p,p) and (rt, p) data from 25
to 350 MeV. Subsequent to the publishing of these
papers, a considerable amount of new data has become

*Work performed under the auspices of the U. S. Atomic
Energy Gommission.
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available, ~' both in the energy range we had previously
considered and also at the higher energies. Thus it
seemed to us worthwhile to update the previous anal-

yses and to extend them to higher energies.
The (p,p) data in the elastic energy range up to

about 400 MeV are now reasonably complete and ac-
curate. Thus the isotopic spin J= 1 scattering matrix
can be reliably determined in this energy range. The
aim of the present paper (paper VII) is to give the best
possible values for the I= 1 phase shifts from 0 to 400

~ The current status of the nucleon-nucleon experimental situa-
tion was reviewed by a number of speakers, in Eroceefjings of the
Internatsonal Conference on Nncleon Nncleon Int-eractsons, Uns
verssty of Florsda, Gasneseslte, 1967 LRev. Mod. Phys. 39, 495-717
(1967)). A summary of the conference is given by M. H. Mac-
Gregor, Phys. Today 20, 111 (1967).' The existing (p,p) and (n,p) experimental data from 0 to 400
MeV are illustrated in graphical form in Figs. 1 and 2 of M. H.
MacGregor, Rev. Mod. Phys. N, 556 (1967).


