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Approximations for Calculating Radiative Corrections
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We discuss a new approximation for calculating the radiative correction due to the emission of real
photons. This approximation is an improvement on the previously used approximations, namely, the soft-
photon and peaking approximations, both of which are also discussed.

INTRODUCTION
' 'F we were to calculate exactly the radiative correc-
t - tion to a scattering process due to the radiation of
undetected photons we would be faced by a double
O'Rlculty. First we would have to calculate the di6er-
ential cross section do"s/dledQ for the radiation of a
photon in a given direction and with given energy /0.

This task is usually extremely involved and the result
inelegantly complicated. Secondly, we would have to
integrate this complicated result over the photon angles
and energy subject to specidc kinematic restrictions,
depending on the particular experimental situation at
issue. This integration would most certainly be im-

possible to perform except by numerical methods.
Faced with such difhculties, it is natural to look for

simplifying approximations. In the past, two such ap-
proximations have been used, namely, the soft-photon
approximation' ~ and the peaking approximation. ~'
Since in most experiments the maximum energy of the
radiated photon is restricted to be much less than the
energy of the radiating particles, it is useful to expand
do"s/dlsdQ in ls In the so. ft-photon approximation, only
the 6rst term in this expansion is kept. It is of order /0

The integration over d/OdQ is then trivial, except for the
infrared divergence at /0=0 which must be treated
appropriately. The peaking approximation is an im-

provement of the soft-photon approximation in that it
treats the terms of order /0 ' as above and adds, in addi-
tion, an estimate of the higher-order terms in /0. This
estimate relies on the fact that a highly relativistic
particle radiates dominantly in the direction of its mo-
tion. By considering only the dominant part, the inte-
gration over dQ can be performed simply, leaving only
the anal integration over d/0.

In this paper we present a new approximation which
is an improvement on the above two approximations.
It treats do'" /dlsdQ exactly to order /s' and estimates
the higher-order terms by way of the peaking approxi-
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mation. It is an essential part of this approximation, as
it is of the others, that the relevant part of d&r"~/dlsdQ

can be written down by inspection in a simple form.
Thereby the first difficulty mentioned above of finding
da"~/dlsdQ is eliminated ancl the second difhculty of
integrating over the photon angles and energy is
simplified.

In the discussion below, we treat first the radiative
correction to scattering processes involving two charged
spin-zero particles. Thereafter, in Sec. II, we discuss
spin-~ particles, and finally in Sec. III we show how the
results are easily generalized to scattering processes in-
volving four charged particles.

%e are using the conventions of Bjorken and Drell. '
The metric is gpp= 1, g

' = —1.

Pi

(a)

Pi PP Pl

~ ~ ~

Pa Pl Pz

FIG. 1. (a) A general scattering process involving two charged
particles and any number of incoming and outgoing, real, and
virtual photons with total momentum k; and (b) its radiative
corrections due to the radiation of a real photon.

J.D. Bjorken and S. D. Drell, Retutivistic Quuntlm MecItunics
(McGraw-Hill Book Co., New York, 1964).
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I. SPIN-ZERO PARTICLES

Consider a scattering process and its first-order real-
photon radiative correction shown in Fig. i. The scatter-
ing process involves an incoming and an outgoing pion
of momen. turn pt and ps, respectively, and any number
of photons of total momentum k. Some of these photons
may be virtual, as long as they connect to near static
potentials which do not radiate significantly. Thus we
are considering, among many others, such processes as
Compton scattering aDd, at low momentum transfers
to the nucleus, nuclear scattering and bremsstrahlung.
Pair production at low momentum transfers is also in-
cluded by way of the simple transformation p& ~ —pt.
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The matrix elements corresponding, respectively, to
the three diagrams of Fig. 1(b) are

2p2'8 2pi'8
M'«= M(pi, p2+/) — M(pi —/, pg)+e"A„.

2p2 / 2pi /

(1)

Here M(pi, pq) is the matrix element corresponding to

scattering without radiation I Fig. 1(a)$, /= (/o, l) is the
four-momentum of the ladlRtcd photon, Rnd 8 its polall-
zation vector. 2 „is of order lo' or higher and, by gauge
invariance, satishcs the following equality:

/"A. =M(pi —/, pm)
—M(pi, p2+/) . (2)

Squaring M"~ and summing over the polarizations of
the radiated. photon we get

SP 111S
I
Mr«I2

m' eP 2pi'pR

, IM(p /, p )—I'—,IM(p, p +/) I'+ R LM(p /, p )—M*(p, p +/) j
(p /)' (p /)' (p /)(p /)

2p2 2p]
ReLM(p, , p,+/)A„*i+ — ReI M(p, —/, p,)A *]—g~"A„A„* . (3)

2'l yl

The first three terms are of ord.er lo ' or higher, the next
two terms of order lo ' or higher, and the anal term of
order lt)' or higher.

Before considering Eq. (3) in detail, we want to dis-

cuss brie6y the infrared divergence. The cross sections
are connected. to the matrix elements as follows:

In the limit that (2p, p,)/yP)) 1 (where m is the mass of
the pion), we have

2p&' p&
F(pi, p~) =ln —1.

~ o(p.,p.)=(k ) IM(p. ,p) I'~'(p —p —&)

)(L(tun) Q,o, , IM' ~I'b'(pi —pg —k —/)j.

%e are now in a position to consider exactly what is
meant by the soft-photon approximation and the peak-
ing approximation. In the soft-photon approximation
we keep only terms of order /0 ~ in Eq. (3) and, in addi-
tion, ignore the / in the 5 function of Eq. (4). The result

(4) is then simply

d00 is the cross section for the basic scattering process

Fig. 1(a). We have expressed as (kin) the kinematic

factors which are the same for dg"~ and do.o. These

factors of coUlsc depend on thc particular scRttering

process considered. The integral in Eq. (4) over d/o is

cut OB at lo ——5, where 5 is arbitrarily small. For the re-

maining integration over dlo we follow lennie, Fraut-

schi, and Suura. ' We give the photon a small mass X

Rnd CRnccl thc 'tcDl18 dlvcrgcnt Rs A ~ 0 RgRlnst similar

terms in the radiative correction d.ue to the exchange of
virtual photons. From such a procedure wc 6nd. a num-

ber of terms, some of which are appropriately includ. ed

with the virtual-photon radiative corrections. Finally,

wc may write the 6nite result

~ '"(so«)=-F(p p.)»Lio(-)'/& & )d 0, (&)

here lo( ) ls the maximum energy of the radiated
photon allowed. kinematically. The essential assumption
involved in the soft-photon approximation is that
doo(pi —/, p2) and. doo(pi, p2+/) are not significantly de-
pendent on l for l in the kinematically allowed region.
We will see this more clearly in what follows.

The peaking approximation has not been treated in a
general manner in the literature, although variations of
it have been used in particular situations. 4 ~'0%e will

therefore treat it in some d.etail here.
The approximation relies on the fact that the factors

1/(pi. /) and 1/(p& /) in Eq. (3) peak strongly for
lIIyi and 1IIy~, respectively, provided the pions are highly
relativistic. Thus near lIIyi we have

$2

d, «=hm -p(p, ,p,) ln d~o+do «, (5)

where
2pi' p'R

p(p, ,p,)= C ln
(pi+ pm)'

2p, /=&, /, Le»r"+~'/~, 'j,

where cos8»~=(yi. l)/IyiI/o and. m'/Eim((1. To take
(g)

advantage of this peaking, let us rewrite Eq. (3) as

'0 E. L. Lomon, Phys. Letters 21, 555 I'1966).

c=L(pi+ p2)'/ —(pi—pm)'j'".

9 D. R. Yennie, S. C. Frautschi, an(I H. Suura, Ann. Phys.
(N. Y.) 1S, 379 (1961)
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follows usillg Kq. (2):

m2 m2 2pl' p2
{I~(P-~, p) I')—,{I~(p,p.+~) I')+ Re{IM(p„p2+l) I

(Pl ~)' (P2 1)' L(Pl+P2) ~7(p'~)

(Pi+P2) I 2pl p2
p. A, -~A. 3f*(P, P.+1)&+ R {13 (P -~, P.)l

p 'p — L(P+P )'G(p '1)

(Pl+P2) &

+ Pl"A. — —~"A ~*(pi E, P2—)) g""A—A * (1o)
Pl'P2

Tl e term P,"A,(Pi &)/(Pl P2) —~"A, is « t~««««

the order of 2222/(pl p2) for lllyl. We now assume t"at
because of the strong peaking of the factors in front of
the curly brackets in Eq. (10), we may set III pi or III y2

inside the brackets. In the same approximation we
would ignore the g&"A„A„* term, since it contains no
peaking. Thus we get

Zspins I

3f'

Ei-+ El—4 and E2 —2 E2+4 in the basic cross section
«o(El, E2) change the factors (kin). LSee Eq. (4).7 The
change is cancelled out by the above factors, as it
should be. Upon integration of the third term of Kq.
(11), we find finally that a necessary condition for the
peaking approximation to be valid is

2Pl. P2 4(El+E2)2
ln &&ln

222 2pl ' P2

jpl ' p2 222

IM(E1, E2+4) I'
-(P2+Pl) ~P2 ~ (P2 1)'-

2pl ' p2 222

IM(El—4, E2) I'
(p+p) fp-~ (P ~)'-

+O 13'(p,p.)l' (»)
(Pi+P2) .L-

The third term indicates the order of magnitude of
the ignored terms. %e have assumed implicitly that
1/I (Pi+P2) 17 does 220k peak. Upon performing the
angular integration in Eq. (4), using the approximate
expression of Kq. (11),we get

2Pi P2«-s (peal ing) =- ln —1
I

2222

lp(max') dl
«0 (Ei 4 E2) (Ei 4)/El

lp

lp(max 2) d'l—«0(Ei, E2+4)E2/(E2+10) (12)
lp

The notation lp( ~~ or lp( ~) indicates that, in gen-
eral, the maximum energy of the photon depends on its
direction of motion, which has been taken here to be
dominantly parallel to yi or p2. The factors (El—4)/El
and E2/(E2+4) are included because the substitutions

This condition is rather restrictive. However, the peak-
ing approximation is really only applied to terms in
Kq. (3) of order 4 ' or higher, thereby somewhat re-
laxing the condition of Eq. (13).To see this, let 4~ 0
in Eq. (12) except in the factor 1/4. Then Eq. (12) re-
duces to the soft-photon approximation. I See Eqs.
(5), (7), and (8).7 Thus we have also shown that the
soft-photon approximation depends essentially on
«0(El )0~ E2) and «0(El, E2+4)7 val'ylllg slowly
with l,.

Let us now proceed further in improving our approxi-
mation of p I

M"0 I' by noting that A „may be written
as follows:

835(Pl,P2) 83f (Pl,P,)-+ +O(1p) . (14)
()pi gp p

This is a result of the %'ard identity. The term e"A„
corresponds to the third diagram of Fig. 1(b); and, to
order lpp, we may think of it as equal to the diagram of
Fig. 1(a) with insertions of zero-energy photons into
every internal propagator. There is no contribution
from making such insertions into closed loops, and
therefore only insertions along the pion line originating
in the incoming pion and terminating in the outgoing
pion are necessary. Every propagator along this line
contains either Pl or P2. Therefore, by the Ward
identity, the differentiation of Kq. (14) inserts a zero-
energy photon into every one of these propagators.
From Eqs. (3) and (14) we can now write JIM"aI2
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as follows, good to order lp
—'.

spln8
l ra@

I2— l~(p.-/, p.) I

(Pi /)'

, l~(p, p.+/) I'
(P2 /)'

2PI'P2
+ Re M (Pi /, P2—)M*(PI, Pg+/)

(Pi /)(P2 /)

+(
'- ')~(~,.~.)

&~(PI,P2) ~~(PI,P2)
X + +o(/0') (15)

~PI

Expanding 3f(Pi /, P2)—and M(PI, P2+/) by means of
the Taylor series and recombining terms, we get

Applying the peaking approximation to Eq. (16), we
find, using Eq. (19), that the answer reduces to Eq.
(11).From this we conclude that the terms of order /0'

ignored in Eq. (16) must be zero in the peaking approxi-
mation. Therefore, we have found a simple approxima-
tion which reproduces P I

M ~ I' to order /0
' and auto-

matically estimates the terms of higher orders in lp

by means of the peaking approximation. This expression
must be substituted into Eq. (4) and the required inte-
grations performed. These integrations are, in general,
dificult, and must sometimes be performed numerically.
Apparently, we must pay for each improvement in the
approximation by having to perform a more di6icult
6nal integration. This is hardly surprising. Nonethe-
less, Eq. (16) is still remarkably simple, considering
the general complexity of calculating the radiative
correction exactly.

II. SPIN-~2 PARTICLES

, l~(p -/, p.) I'
(Pi /)'

m2

l~(PI, P2+/) I'
(P2 /)'

(p
—

) I,+o(/, ) (16)
~"'=U(P )'(P2+/ —~) '~(PI, P2+/) U(pi)

(pi /)(pm /) +U(P2)I" (pi—/, pm) (pi—/ —m)-'eU(PI)
+e"U(P2)I/„U(PI). (20)

In this section we extend our results to the case of
lepton scattering. Consider again the diagrams of I'"ig. 1
where now the charged particles are leptons. The corre-
sponding matrix elements are

By the Ward identity

Bps

U(pm)&(ps+/ —~) '=(2pm /) 'U(p2)(2pm e+e/).

PI——Pi—k/ —2PI(P2 /)/(Pi P2)

+lP~(PI /)/(Pi P2) ~f'(PI P~) ~l'(PI, P~)

p, =p,+ /+-p. (p /)/(p p.) -'=- + +'(')
8—2PI(p~ /)/(Pi P~).

We now square M", and sum over the polarizations
of the radiated photon and over the spins of the lep-

F toIls UBIIlg Eq (21) alld 'tllc Iden'ti'ties
two pomts to be IIlade about tile substltutlons of Eq.
(l7). First, they reproduce the kinematics exactly

(p / ) I U(p ) (2p /) i(2p / )U( )
s (p,—p,-~)-~ (p -p.-&)=~'(p.-p.-/ —/). (»)

and
Second, in the limits of lllpI and lllym, we have

pi ~ pi —/) ps ~ pm fol ill/Il,
(19)

pm~ pm+/; PI~ pi «»llyn. we obtaHl after soDle manipulation

p I~-'I'= —L~'/(PI /)'j»{(p.+~)1'(PI—/, P~)DI—/+v'(PI —/)'jf(PI —/ P2))
SPins

—L~'/(P2 /)'j»(EP~+/+v'(Ps+/)'X(PI, Pm+/) (PI+IN) f'(Pi P~+/))

Pi'P2+»I:(ps+v'p~')1'(pi, A) (PI+v'7 I') f'(pi, Ps)j+o(/0'). (22)
(Pi /)(P2 /)

pi snd p2 arc given by Eq. (17).Notice that

t)' /' pg
pI2= Ia'I 1— +o(/02),

Pi P2

/p ~p'=m'(1+ ~jO(lg').
pi pa&

(23)
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Squaring the matrix element corresponding to dia-
gram Fig. 1(a), and summing over spins, we get

X&(pi,p2) (Pi++pi')r(pi, p2)$ (24)

Now, writing P I
3II"~I' in terms of the known function

J.(pi,p2) we have

l~~alu
SPinS

L(pi —i, p2)
(p~ ~)'

J-(pi, P2+i)
(p'i)'

I"Io.2. A general scattering process involving four charged parti-
cles and any number of photons of total momentum k» and ky
are shorn.

2pl' pm+ 1.(p&,p2)+0(l00). (25) g I~-elm
(p~ i)(p~ i) I-(P~—~, P2)

(pi i)'

This is the same result as for pions, Eq. (16). H m'
terms are important in 1,(p~, p2) it is necessary, when
calculating I.(p~,p2), to discriminate between pp, pp,
and m2 if the above substitutions are to give the correct
answer. This is obviously true since

while m2 —+ m2. The same statement hoMs for pions.
However, if nP terms in 1.(p&,p&) are negligible, as they
must be if the peaking approximation is to be used, then
we need not concern ourselves with this problem.

Next we might hope to prove that the terms of order
lo in Eq. (25) are zero in the peaking approximation
just as in the pion case. Unfortunately, this is not so.
In the Appendix we consider the peaking approxima-
tion for leptons and 6nd the following, slightly modi6ed
form of Eq. (12):

ID{max»} gp ~p

dg "~ (peaking) =— —da.o(E&—l0, Ea)
lp

tn' 2pl'PR
J-(p~, P2+f)+

(p i)(p'i)

, (p'~)'+(p'i)
XI 1+l 1(P,P )+0(V), (2~)

(P~ P2)(Pi P.)
where now the ignored terms of order lpP or higher are
zero in the peaking approximation.

For an example of the application of Eq. (27), see
Ref. ii.

HI. FOUR CHARGED PARTICLES

Consider now the diagram of Fig. 2 involving four
charged particles and any number of photons. To calcu-
late the radiative correction to this diagram, we must
consider the possibility of the photon radiating from
any of the four external lines or from either of the two
vertices. For simplicity, let the charged particles be
pions. The extension to leptons is simple, from what
has been said above. The calculation proceeds as in
Sec. I; here we merely state the result. De6ne the
following functions:

j' 2

X I
1+-', Iln

Ez(Eg—4)I m'

~0{max Q} gp EQ
+ «0(Ex, Em+4)—

&0 Ex+4

I jf (p;+~) I,
(p' ~)'

= 'p' p'
l&(p', p;) I',

(p; &)(p-~)

$ 2 2pl' PQ
X 1+g ln

E2(Eg+lo) m'
—1, (26)

where dao(pq, pm) is the basic cross section corresponding
«»ig. 1(a).We may incorporate this modi6cation into
Eq. (25) as follows:

P'=P'+lt+sp'(P' f)/(P' P )
~.p~(p' 0/(p' p'),

p'= p'~li~lp;(p' I)/(p' p;)
~2P'(P "~)/(p*'P~)

"&.«M, P&ys. Rev, 168, 1'/82 (1968).

(29)
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Here [(p,—pp
—ki)-'7M(pi, p„p„p4) is the matrix ele-

ment corresponding to Fig. 2. The substitutions of
Eq. (29) always occur in pairs. In the expression for
X;;,we show only the pair of momenta in M (pi, pp, pp, p4)
which is modified. The choices of signs in Eqs. (28)
and (29) depend on whether the momentum being modi-
Qed belongs to an incoming or an outgoing particle, the
top signs corresponding to the outgoing case. %ith
these dehnitions we may write for the radiative correc-
tion to the process of Fig. 2.

SPins

= —(I'i+ I"p)[1/(pi —Pp —&i—l)'7—(I'p+ I'p)

X[1/(Pi—Pp—&i)'7+Xip[1!(Pi—Pp —&i—l)'7

+Xp4[1/(p, —p,—ki)'7+((X14 X13+Xpp X24)

X[1/(p,—p —l —l) (p,—p,—u,) 7}+O(l,o). (30)

In the peaking approximation, the term in the curly
brackets goes to zero. The ignored terms are then zero
in the peaking approximation for pions. For electrons,
we wouM make the appropriate modi6cation of Xj2
and X34 while if pi and pp were electrons and pp and pp
pions, we would modify only X». In the curly brackets of
Eq. (30), the exact denominator (pi —pp —ki—l)'
X (pi —pp

—l&i)' is not the same as we would obtain by
applying the substitutions of Eq. (29) to (pi —pp

—ki)'
even to order lo. Thus, in applying the work of this sec-
tion to such complicated processes as trident produc-
tion, care must be taken to treat the various momentum
transfers correctly.

The fact that the problem of calculating the radiative
corrections is separable into parts involving pairs of
charged particles, facilitates a combined use of the vari-
ous approximations discussed in this paper, depending
on the behavior of the cross section with respect to each
separate pair. This may help somewhat in doing com-
plicated problems, such as trident production.

Consider the first term of Eq. (20), and write it
as follows:

Ut»(pp)el'U~»(p, ) m (A2)

Now expand Pp+ l+m' in terms of spinors, and write

Mi"':—
I 1/( Pp l)7U"'(Pp)«'»(Pp+l) U'"(Pp+l)

Xr(p„p,+l)U& (p,), (A3)

where we have ignored only terms of order mP/(pp l)
and mm'/(pp l). Here U'P& (pp+l) has the same helicity
as O'P&(pp). Eq. (A3) mav be rewritten as

Mi"'=fi(Pi, Pp)M(Pi, Pp+l), (A4)

~her~ M(pi, pp) is the matrix element corresponding to
scattering without radiation, and fi(pi, pp) is a known
factor. In order to calculate fi, we write it as follows:

fi(Pi Pp) = U"'(Pp)«»(pp+l) U" (Pp+l)
XypU&'&(pp)(2pp l[U&p&(pp+l)ypU&'&(pp)7} ' (AS)

We are interested in fi(pi, pp) only in the peaking
approximation. Therefore we expand fi in 8, the angle
between yp and 1, and keep only first-order terms in 8.
Using the expressions e l=0, e pp Ep8, and —2p—p l
~Eplp[8'+m'/Epp7 we get (up to an over-all phase)

Ep8 (2Ei+lp) —alp

1) 2=
2pp, .l [Ep(Ep+lp)7'~'

and squaring,
2E l 2

(A6)

M "'=U"'(p )e([p +1+m'+( m —m')7/2p, l}
XI'(Pi,Pp+l) U'" (Pi), (A1)

where (m')'= (pp+l)'. Let pi and pp be highly rela-
tivistic. Then we may ignore the mass of the leptons in
Eq. (A1), which implies that UiP&(Pp) and U"&(Pi)
must have definite relative helicities, either the same
helicities or opposite helicities, depending on the num-
ber of y matrices in I'(pq, pp). Then we know, for
example, that

APPENDIX
I fi(pi, pp) I'—= 1+l

lp(pp l) Ep(Ep+lp)
(A7)

In this Appendix we want to consider Kq. (20) in the
peaking approximation, in order to demonstrate the
validity of Kq. (26). Our proof here will follow a differ-
ent path than the proof used for pions in Sec. I. An
essential difference is the use of a different gauge for the
radiated photon. Since the individual terms of Kq. (20)
are not separately gauge invariant, a change of gauge
will change the contribution from each separate term,
though the total will, of course, remain the same. Thus,
for transversely polarized photons used here, the main
contribution will arise from the square of each of the
6rst two terms of Eq. (20), rather than from the inter-
ference between the two as in Eq. (3)."

» D. R. Yennie, Lectures on Strong aug E/ectromagnetic Inter-
actions. Brand@is Summer Institute, 1963 (Brandeis University,
Waltham, Mass. , 1903), Vol. 1.

It remains to be shown that no other terms
enter for 1 Ipp as long as the condition of Eq. (13) holds.

I fi(P&,Pp)
' goes like [8'+(mP/EpP)7-' near 1IIyp, and,

when integrated over the direction of 1 [see Eq. (4)7,
-'" goes like in(Ep/m). The terms neglected above go
like m'/(8P+m'/Epi) and mm'/(8'+m /E PP) pThese
terms can indeed be ignored in the peaking approxima-
tion Eq. (13).The interference terms between M, '~e and
other terms in Eq. (20), go like 8/(8'+mP/Epi) near
1IIpp, and can also be neglected.

A similar argument applies near 1IIpi. Then Eq. (26)
is proven.
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