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of
~
LL.) ~SS,) states. If the resonance belongs to a 56

representation of SU(6), we then symmetrize ~LL,).
The 56 spin-isospin wave function is next constructed
by taking linear combinations of product states Lsuch
as ts(1)P(2)u(3)P'(1)n'(2)n'(3) j and requiring sym-
metry under exchange of any two quarks. The result
for S=S,=+-', and I=I,=+-, has been given [see
Eq. (5)j.This yields the total wave function for the 56
case.

If the resonance belongs to a 70 representation, then
instead of completely symmetrizing

~
LL,), we form the

analogs of I, and Nq.'

Q, = (Qo)[q4 (1)go(2)obo(3) go(1)4 (2)4o(3)]

and

yb= (gie)t tt. (1)turbo(2)4o(3)+go(1)q4 (2)4o(3)
—24 o(1)do(2)4-(3)j

(g, denotes an excited state. ) These functions are then
multiplied by appropriate 70 spin-isospin functions
When S=S,=I=I,=+-sofor example, the result is

+= (V'-') L4-(N.fo+»f.)+4»(l.f.—»fo)j.
(This function is totally symmetric under interchange
of any two quarks. )

After obtaining the wave functions, we remove any
c.m. motion, as described in the text.
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The analytic properties in momentum transfer of a class of three-particle scattering amplitudes are
investigated in this paper. The amplitudes considered are those in which there is a two-particle bound
state in both the initial and 6nal state. The following results are obtained: (1) The amplitudes are analytic
inside a Lehmann ellipse in the scattering angle for all real energies. (2} For real energies below the three-
free-particle threshold, the amplitudes are analytic in the momentum transfer plane except for real left- and
right-hand cuts.

I. INTRODUCTION

A KNOWLEDGE of the analytic properties of
multiparticle scattering amplitudes is central to

a complete 5-matrix theory calculation of hadron
parameters and also to the extended phenomenological
analysis of their reaction processes. While no dispersion
relations for relativistic multiparticle scattering ampli-
tudes have been rigorously established, some progress
towards this goal has been made in the laboratory of
potential scattering. In particular, dispersion relations
in the total energy for 6xed directions of the individual
momenta have been proved for nonrelativistic three-
particle scattering amplitudes. '

In this paper, we investigate the analytic properties
in the momentum transfer variable of a class of three-
particle scattering amplitudes. The class of amplitudes
we consider are those which describe the elastic scat-
tering of a single particle from a bound state and those
which describe rearrangement collisions in which two
of the initial and final particles are in a bound state.
We will refer to these as "bound-state amplitudes. "

* Supported in part by the National Science Foundation.' M. H. Rubin, R. L. Sugar, and G. Tiktopoulos, Phys. Rev.
146, 1130 (1966); 159, 1348 (1967); 162, 1555 (1967). These
papers will be referred to as I, II, and III, respectively.

This class of processes is distinguished by having a
single well-defined momentum transfer. The present
study is restricted to the study of spinless, nonrela-
tivistic particles which interact via two-body central
potentials, which can be written as a superposition of
Yukawa potentials.

In Sec. II we extend a result of Immirzi' to show that
the bound-state amplitudes are analytic functions of
the scattering angle inside a Lehmann ellipse for all
real values of the energy E. In Sec. III we study the
analytic properties in the scattering angle of all per-
turbation-theory diagrams. For real energies below the
three-free-particle threshold we 6nd that each of the
perturbation-theory diagrams is analytic in the entire
scattering-angle plane with the exception of cuts along
the positive and negative real axes. In the remaining
sections we show that these analytic properties are
enjoyed by the full amplitude as well. In Sec. IV we
prove this result for the individual terms in the Fred-
holm expansion of the Faddeev equations, and in Sec.
V we show that this expansion converges uniformly in
the domain of analyticity. Thus, the result holds for the
full scattering amplitude. The conclusion of this paper
is that the nonrelativistic scattering amplitudes with a

~ G. Immirzi, Nuovo Cimento 34, 1361 (1964).
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bound state in the initial and Anal states are analytic
in the cut momentum transfer plane for all real ener-
gies below the three-free-particle threshold and inside
a Lehmann ellipse for all real energies.

g

g, g

gs

q -q„

II. LEHMANN ELLIPSE

In this section, we show that the bound state
scattering amplitude is analytic inside an ellipse in the
scattering-angle plane. This result was obtained by
Immirzi' for the particular case when the initial and
anal bound states are spinless. The result is generalized
here to bound states of arbitrary spin following his
method of proof closely. The representation of the
scattering amplitude obtained in the course of the
demonstration is useful for the later proof of analyticity
in a larger domain.

For simplicity in the following discussion, we consider
only the scattering of particles of equal mass M and
choose a system of units in which l'22/2M=1. The
generalization to the case of unequal masses is straight-
forward. We shall also take the two-body potentials
between the particles to be the same, but this is not
essential to our argument. Since we are dealing with
a superposition of Yukawa potentials, we have the
momentum-space representation

(k'
~
V

~
k) = de 42(P) [(k'—k)2+/2] —' (2.1)

The letters 42' will label the three scattering
particles and 8, 8', 8", . the two-body bound states
of the potential V. If the bound state is between
particles p and p we will denote it by 8„,where 42 is the
particle not in the bound state. The bound-state
scattering amplitudes are thus written

(8 'k'i T(E) iBpk), (2.2)

T&~~l(k'k E). (2.2')

where k is the initial momentum of the free particle P,
and k' the 6nal momentum of the free particle o.. Often
we will abbreviate this to

FIG. 1. The contribution to the amplitude T&"&(k',L,B) arising
from the Green's function g11. The low-order perturbation-theory
diagrams which together with this diagram make up 7&33& are
shown in Fig. 8.

tions) and particle P does not interact last. The bound-
state scattering amplitudes may then be written in a
form of which the following expressions are typical:

Tipp&(k', kE)=(82'k'~ g T.P~B pk), (2.4)
a, py@

Ti»)(k', k,E)=(@2k
~
Vp+ P T.,~a kp), (2.5)

a~, p+2

" o (~)
f~l-(P) =&4"(12)

K+ 2p
(2 7)

Here, Hl (y) =
~ p~ 'I'4 (p) is a harmonic polynomial in

the components of p of order /. The weight function
has a 8-function contribution at ~=8 and a continuum
beginning at 44= (ilp+8'12)2, where pp is the minimum
range of the potential. To simplify the derivation, we
will consider only a single Yukawa potential of range p
and unit coupling. We then have for J,

where Vs is the potential between particles j. and 2.
It is convenient to write

T-p= V &-s+l'-g-ill'p (2 6)

The various types of terms which can occur are shown
diagrammatically in Fig. 1. We will now prove analy-
ticity in a Lehmann ellipse for each of the terms con-
tributing to Eqs. (2.4) and (2.5). We consider 6rst the
contribution to T(33) of the form VIgqIV~ illustrated in
Fig. 1(a) which we will here denote as J. To evaluate
J we use the representation proved in Appendix A for
the wave function of a bound state with binding energy
8&0, angular momentum /, and angular momentum
projection m.

The Faddeev equation may be written in the no-
tation of Ref. 3 as

T 2=f 6 4+t Gp(Tpp+T~p). (2.3)
d3qa deq2 dsq3 dsq ap(14')d~' op(14)d14

Here, Go is the free three-particle Green's function and
t is the off-energy-shell two-body amplitude in which
particle n does rot participate in the scattering. The
amplitudes T p are those for the scattering of three
free particles in which particle n does not interact first
(in the sense of the diagrams corresponding to an
individual term in the iteration of the Faddeev equa-

X&4 "'(—«2+2k')*&4"(—qp+2k)gll(ql «2 «3 «4)

x{["+2(-,'k' —«,)'] [(k'—«2)2+~2]

, [(k q )2+i42][&+2(lk q )2]) 1 (2 Q)

In order to rewrite this integral for J, we employ the
coordinate system originally used by Lehmann,

' This representation has been previously obtained for the case
of S-wave bound states by A. Martin, Nuovo Cimento 14, 403
(1959); R. Blankenbecler and L. F. Cook, Phys. Rev. 119, 1745
(1960); and L. Bertocchi, C. Ceolin, and M. 'ronin, Nuovo
Cimento 18, 770 (1960),

k= k(0,0,1),
k'= k'(0, sin8, cos8),

q;= q;(cosp;, sinp; cosl2;. sinP; sin424) .
(2.9)
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We may then write

J= IIdpq, d/4 d/4'H/ "'(—q +-,'ir')*

XHl ( 413+214)gll*L(~l cos431) (X2—cos432)

X(X —cos( +0))(X —cos( +0))] ', (2.10)

where g»* is a new function of k, k', and the qi but not
of 0; and the Xi are

We have already argued that the terms S; —8'j+
produce no singularities when they vanish. Terms like
lV; —8';+ contribute factors of e i&i which can be
taken into the numerator. Therefore, the only singu-
larities which arise from the vanishing of the denomi-
nators come from the term II; (W; —W4+).

When I is substituted into J, the numerator of Iwill
have a number of factors of e" coming from the de-
nominator of I and also a number of factors of cos0 and
sin0 coming from the harmonic polynomials. Thus, J
can be written

Xl——(/4'+2ql'+-'2k")/2qlk' slnpl )

X2
——(/42+ q22+k")/2/t2k' sinp, ,

X3——(/4"+2g32+-2'k2)/2qpk sinp„
X4——(/42+ g42+ k2)/2g4k sinp4.

4 4

J(t/) =II dX; II dn, E(sint/, cosa)
2.11 4=1

X(II P & +(& 2 1)l/2(& 2 1)l/

As a consequence of the rotational invariance of the full
Green's function, a rotation of all vectors gi about the
s axis leaves g»* unchanged. Hence, g»" depends only
on the differences of the ai and one angular integration
can be performed, say 423 If one. puts W= exp(2'423) and
expresses g11* so that it is independent of 0.1, then the
integration over n1 reduces to the evaluation of

1 4

dW W II e '&*'P(w—W,+)
27ri i=1

X (W—W,—)]—', (2.12)

where the contour runs around the unit circle and

W;+=P.d= (X,'—1)'/']

73=8+433 433)

'y2= 432 433 p
'y4= 0+434 431 ~

(2.13)

It suKces to consider the case u&0. The entire 0 de-
pendence of the integral J is contained in the integral
I. Noting that only the poles 8"; lie inside the unit
circle, the integral may be evaluated by the calculus
of residues to give

—cos(e+& )]}', (2.16)

where X „is linear in the nj and I' is a polynomial in
sin0 and cos0 whose coeKcients depend on the Xi and
+i ~

Each denominator in Eq. (2.16) can not vanish if
s=cos0 is inside an ellipse whose semimajor axis lies
along the real axis and is of length X X„+(X '—1)'/'
X (X„'—1)'/'. We then conclude that J may be written
as

J(e)= Jl(z)+sine J,(z), (2.17)

where Jl(z) and J2(z) are analytic in z inside an ellipse
whose semimajor axis is

zp ——min min LX~g„+ (X„2—1)'/2(&~2 —1)'/2]. (2.18)
m'en qi

The minima of the X; are

1/2

min X1= 1 k'
2 1/2

minX2= 1
k'

I=P (W,-) e-' '(W;——W,+)-'

XII [(w,--w, -)(w,--w,+))- -'». (2.«)
~2) l/2

1TQDX3= 1 — =X3
k2)

(2.19)

From Eq. (2.14) it is clear that there are no singularities
in s= cos0 arising from the vanishing of the denominator
of the form 8'; —8"j because a singularity of this form
in one term of the sum is cancelled by that arising from

in another. If we clear fractions in the sum
of Eq. (2.14), we have in the denominator

. 2fi) 1/2

msnX4= 1 =—X4 .
k2i

The minimum is obtained by inserting the combination
of X4 which minimizes the bracket in Eq. (2.18). For
instance, for elastic scattering on the mass shell we have

LII (w'- —w )(w,——w )]LII (w;--w, -)] zp
——1+48/E. (2.20)

x LII (w,——w,+)]. (2.15)

We must still consider the number of factors of sin0
in J. To do this we show the following: (1) For the
amplitude J ~ in which the initial and final bound
states have projection quantum numbers m and m',
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respectively,

J', ( 8)=( 1)t~'-~IJ, (8) (2.21)

(2) J„.„(8)—+ const)&8~"' ~ as 8 —& 0. The properties
(1) and (2) suffice to show that

J .„(8)= (sin8) ~~'—"~j .„(z), (2.22)

where 7 ~ (z) is analytic inside the Lehmann ellipse
whose size we have just discussed.

To prove (1) we return to Eq. (2.8) and make the
substitution 8~ —8. From Eq. (2.9) this amounts to
sending k„'~ —k„'. If at the same time we rotate the
integration variables q; by an angle m about the s axis
(i.e., send q;, -+ —q,, and q;v~ —q;„), then the de-
nominators in Eq. (2.8) are left unchanged. The factor
g» is also left unchanged by this rotation.

The II& may be written

Hg (v)=(v+) Xg (v~, v,), m&0 (2.23)

III. PERTURBATION-THEORY DIAGRAMS

In this section, we will show that the individual
terms in the perturbation expansion of the bound-state
amplitudes are analytic in the scattering-angle pl.ane
except for cuts along the positive and negative real
axes, provided the ertergy E is below the tkree parti-cle

threshold (i.e., E= —X'(0). A term in the perturbation
series is represented by a diagram typified by Fig. 2.
If we let q;, i=1 ~ E be the loop momenta with q;
the first and qN the last, and denote by I ~ a general
diagram for an amplitude, where the projection
quantum numbers of the initial and final bound states
are m and m', respectively, we have

I, (k,k', z,E)=g d'q, da dk'o (~)ae(~')

= ("—) && (»»*) ~
~&0 (2 24) The A;are denominators whichmaybe from apotential

4= k (0, sln8, cos8—1). (2.25)

For small 8, ch is a small vector. We may then write,
in Eq. (2.8),

when v~ ——v,+ivv The n. umerator of Eq. (2.8) is, there-
fore, multiplied by ~m —m'~ factors of —1, which
demonstrates Eq. (2.21). To show (2) we write
k'= ([k'(/[k()k+a, where

from a Green's function

or from a bound-state wave function

2;=~+2p'.

(3.2)

(3.3)

(3 4)

[z+2(kk' —«1) ] [&+2(2k k q&) 2 2 {4«&

[p~+ (k' —«2)2] r= [y2+ (k'k —q2)2j ~ P {2q2
n=O

In each case y is some linear combination of the q, , k,
and k'. Use may be made of the Feynman identity to
combine the M denominators. After making a trans-
lation and rotation of the q;, the integral can be written
in the form

For small 8, we have q 4=-,'i8(q+ —
q ). Now make a

rotation of the variables q; about the s axis by an angle
y. The denominators remain unchanged. A term in the
numerator which goes like (q+)&(q )" will be multiplied
by exp[i(p —v) p]. All the integrals will vanish, there-
fore, except those in which the number of q+ factors
exactly equals the number of q factors. It is then easy
to see that the lowest terms which contribute in the
sum are proportional to 8~ "'~ which proves (2).

It remains to be shown that the other terms which
contribute to T'& && are analytic inside the Lehmann
ellipse. The analysis of terms like V g pVp is exactly
the same as the one given here and will not be repeated.
The low-order perturbation-theory diagrams which are
not included in these terms will be treated explicitly in
Appendix B. When these are included we have shown
that the bound-state amplitudes Tt"e'(k,k', z,E) are
analytic inside a Lehmann ellipse whose major axis is
given by Eqs. (2.18) and (2.19).

yH, m'o(pi)H m(p)D-M (3 5)
where

D=Q C,qP+okm 2Pkk'z+uk"+a—E2+bt12

+cB+dB', (3.6)

with C;, n, P, y, a, b, c, d being functions of the Feynman
parameters x;. The terms involving q;, k, and k' arose
from the momentum terms in the denominators. They

FIG. 2. Typical perturbation-theory contribution to the ampli-
tude T(33). The horizontal wavy lines represent' bound states.
The vertical wavy lines represent potentials.
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are therefore of the form

P x;pP=Q(q;, k,k', x;), (3.7)

the p; being some linear combination of q;, k, and k'.
Since Q is a positive-definite quadratic form, one finds

by setting k and k' equal to zero Q (q;, k, k'= 0, x;)&nk'. (3.18)

x;. A crude bound on this quantity may be obtained
in the following way. From Eq. (3.10) with k= k' and
s=1, one has ~P~ &~(n+y). To obtain a bound on n
and y, we consider the quadratic form Q. The minimum
of Q with respect to the q; is clearly nk' 2—Pkk's+yk"
Setting k'=0, we have then for any choice of the g;,

Q CqP)0 (3.8)
In order to get a crude bound on Q we can set all of the

q; equal to zero. One then has

for any values of the q;. Similarly, one also has Q =-,'xlk'+xmk'&nk' (3.19)

0&0, y&0, (3.9) which implies 0.&1. Similarly, we have &&1. Thus

and finally

a&0, b&0, c&0, d&0,

a+b+c+d=1.

(3.11)

(3.12)

The denominator D cannot vanish for physical s
because for these values it is positive. The condition
that it vanish is

1
s(II;,x;)= (Q C,qP+nk'+yk "+aK'

2Pkk'
+bII'+cB+dB'). (3.13)

nk' —2Pkk's+yk") 0 for —1 &~ s &~ 1. (3.10)

The numbers u, b, c, and d are all positive, being of the
fol'm xII+xI2+ ' +xIII.

II1111(K P B B )
I sol &1+

kk'
(3.20)

~= LII dq-dqw'(q+')"'(q ')-'3D " -(3.»)

The bound obtained here is sufhcient to show that the
right- and left-hand cuts begin a finite distance outside
the physical region.

The kinematic singularities which arise from factors
in the numerator of Eq. (3.1) must now be considered.
Vkite the factors of B~ '* and H~ in the form given
in Eqs. (2.22) and (2.23). If we consider for a moment
only the integrations over q„and q„;, then the integrals
to be evaluated are of the general form

Now make a rotation about the s axis by an angle p
of the integration vector q;. Because it depends only
on the q,&, the denominator is unchanged. One then has

This is clearly satisfied only for real s. Since P can be
positive or negative, D can vanish for positive or
negative s. The vanishing of the denominator can,
therefore, contribute cuts only along the positive and
negative real axes. The position of the branch points
is bounded below by the value so given by

J—gi(ns —ms) yJ (3.22)

Thus, J is nonzero only if e;=m;, i.e., if the number of

q+ factors equals the number of q factors.
In order to see what this implies for the amplitude,

we will argue through the example m'&m&0; the
results for other values of m' and nz are obtained in the
same way. We wiB work in the coordinate system given

by Eq. (2.9) so that

[so/ =min/s(q;, x;) /
(3.14)

Since every term is positive in the above expression
the minimum is assumed when all the qi vanish. Further,
from property (3.10) it follows that

(~e+&km)P ~P~kk &1 kg= k,+ik„=0,

S,'= ~is' sine.
(3.23)

and, therefore,
aK'+blI'+ cB+-dB'

(so( &1+min
2)P[kk

(3.15) The factor of interest in the basic integral (3.5) is

(p ')"'(p+)", and we see that, in general,

min(K', ll', B,B')

2)P[. kk
(3 17) where

where (P~ is the maximum value of )P) over all the

Making use of properties (3.11) and (3.12), one has

min(K' 1Is B B')= (a+b+c+d) min(K', p', B,B')
&~ aK'+by'+cB+dB', (3.16)

so that (p-') '= (—~k'»n~)"" II (q-')"",

N

Q n;= I, P n =In'.

(3.24)

(3.25)
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Ti, ~(8)= Z dv '(8)T i,
tn=ll

(3.27)

Since the integral of Eq. (3.21) vanishes unless n;= e,
we have f0= m' —m. We therefore conclude that there
are m' —m factors of sing multiplying an integral which
is analytic in s except where the denominator D van-
ishes, i.e., except for the real axis outside of the limits
given by Eq. (3.20). The argument for the other values
of m and m' follows in the same way and we have for
every diagram I (8),

I„„(8)= (sin8) ~"'—"~I„.„(s), (3.26)

where I (s) is analytic in the s plane cut along the
real axis at least outside the limits of Eq. (3.20) for
energies E below the three-particle threshold.

A few remarks on this result are in order. First, the
bound obtained in Eq. (3.20) is not the best obtainable.
However, we have already established analyticity in
the Lehmann ellipse which intersects the real axis at a
larger value of 2' than that given by the bound in Eq.
(320).

Second, we have derived the analyticity properties
of diagrams which contribute to amplitudes describing
transitions between states in which the bound states
have definite projections of angular momentum along
some 6xed s axis. From these properties we can
easily derive the analytic properties of the helicity
amplitudes. In the coordinate system given in Eq.
(2.9), the helicity amplitudes arise by rotating the final
s axis by an angle 8 about the x axis. If d ~ '(8) is the
matrix for this rotation, the helicity amplitudes T&, z(8)
are related to the fixed-axis amplitude T ~ (8) by

holm solution to the Faddeev equation for the scat-
tering amplitude, (2) show that each individual con-
tribution to the Fredholm series has the desired analytic
properties (since the Fredholm denominator is inde-
pendent of s, we need only concern ourselves with the
numerator series; we shall refer to it as the Fredholm
series), and (3) show that the series converges uni-
formly in the scattering angle s. The proof of the con-
vergence is given in the following section, while steps
(1) and (2) are treated here.

A general term in the Fredholm numerator series is a
6nite sum of terms arising from the perturbation
expansion of the Faddeev equation. ' lt is, therefore,
sufficient to study the analytic properties of a general
term in the perturbation expansion. A typical term is
shown in Fig. 3. In order to study the analytic properties
of the diagram shown in Fig. 3 we shall make use of the
Fredholm solution for the two-particle t matrices and
write each of them in the form t=E/D. We then write
an integral representation for 1/D and expand each IiI

in its Fredholm series. The diagram in Fig. 3 will then
be expressed by a multiple sum. In this section, we
shall show that each term in this sum has the desired
analytic properties and in the next section we shall
show that the sum converges uniformly in s.

It is not straightforward to follow this procedure
directly, because the vanishing of D at the two-particle
bound-state poles gives rise to denominators which are
not easily handled by our previous techniques. We,
therefore, first rewrite the two-body t matrices in a
way which explicitly displays their bound-state poles.
If there are S bound states with wave functions ~B;),
then t can be written in the form

We have shown that

T y(8)= (sin8)~~ "~T i, (s), (3.28)
i=t+ Q ~~B;)B;;(B;~~=i+~,. (4.1)

where T z is analytic in the Lehmann ellipse, and that
term of the perturbation series for T„„~is analytic in the
larger region discussed above. Now

Here, the matrix 8;; is the inverse of the EXP matrix
(B;~ t~ B,), and f is the two-body t matrix arising from
the potential

di~ '(8)=(sin-,'8)~"' ~~(cos-'8)~"'+"~P&,~ '(s) (3.29) V= U—Q ViB;)2;,(B;i V, (4.2)
where Pz '(s) is a polynomial in s.~ It then directly
follows that

Ti,~i, (8)= (cos-', 8) ~
"+"'~ (sin-', 8) ~" "'~Ti,.i, (s), (3.30)

where Tz &, (z) is analytic in the same region of the z
plane that T„q is.

IV. FREDHOLM-SERIES DIAGRAMS

With this section we begin the proof that the analytic
properties previously exhibited for the individual terms
in the perturbation series hold for the full scattering
amplitude. To do this, we will (1) write out the Fred-

Ag being the inverse of the matrix (B;t V ~B;). T»s
decomposition is proved in Appendix C. It is clear from
formula (4.1) that t has no bound-state poles, so the
only singularity of 1/D(E) is a cut running along the
positive E axis. If we substitute Eq. (4.1) for each
occurrence of t in Fig. 3, the resulting terms can be

4 A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, N. J., 1957).

FrG. 3. An individual term in the Predholm expansion of the
Faddeev equations made up from two-body t matrices, t.
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represented diagrammatically by Fig. 4. For each
occurrence of t and t we now substitute the Fredholm
expansion

t=g X~/D, t=P E;/D. (4.3)

FIG. 4. An individual term in the Fredholm expansion of the
Faddeev equation rewritten. in terms of t and t, =t—t. An occur-
rence of t, is shown by a double line to emphasize its separable
character.

P@, it contributes, therefore, a denominator of exactly
the same form as. an energy denominator arising from

the Green's functions.

(b) The potential V consists of V plus a separable

part V,. The matrix element of V, between free states is

&p I
v. lp&=Z &p I vlB'»"&B'I vip&

Now,
&pl VIB;)=—(2p'+B')(plB'), (4g)

so that the analytic properties of (pl V IB,) in p' a«
the same as those of the bound-state wave function.
In particular, we can write the representation

The diagram shown in Fig. 4 can now be written in
the form

"v(~)de

v& K+2p
(4.9)

d'k, d3u, " d'&~ E
'
F';, (k', lrt; E)

Jl .Jllf 2

The matrix A;; is diagonal in the angular momentum

quantum numbers l, nz, so that we can write

XB,„;(E——,'ki )F;,„,(k„k,; E)

XB,„,(E——;1,) .FJ,„;(k„,k,E). (4.4)
&p'I v. lp&=Z (PP')'I' 9'f) 2'

"
v(lr)dry

2p +K

Here, 3f is the number of occurrences of t, in the
diagram,

B;,=D(E) 'B;,(E),
and F,,(k', k,E) is a diagram of the type shown in Fig.
5. In Fig. 5 the circles labeled t/" stand for the potential
V multiplied by appropriate factors of (D) ' and
oN= tr[(GoV)~]. To prove the analyticity of diagrams
like that of Fig. 4, we now proceed in two steps. (1) We
show that each of the diagrams Ii;; have the desired
analytic properties; (2) we combine them to show that
these analytic properties are preserved when the dia-
grams are combined to form those of Fig. 4.

To prove the erst of these assertions we note the
following facts:

(a) The quantities o;(B) and 1/D(E) sa. tisfy the
dispersion relations (see I, II, III)

o'(E) =
"Imo. ,(E')

8E
p

E'—E
(4.5)

1+
D(E)

"Im[1/D (E')]
dEI. (4 6)

(Recall that the potential V has no bound states. )
Whenever one of these factors appears in a diagram,

Fxc. 5. The diagram corresponding to F;;(k',R,E). V™denotes an
occurrence of t7' multiplied by a number of factors of D(B) ' and
av(E) =tr(GOY)v.

"v(a')dz'

fX, (4.10)
v~ 2p +K

where P' indicates the sum over bound states with a
given angular momentum /. From Eq. (4.10) it is clear
that as far as the denominators are concerned (which

. are the factors significant for the analytic properties)
an occurrence of V, contributes denominators of exactly
the same type as a bound-state wave function.

Properties (a) and (b) discussed above show that
the denominators which occur in a diagram Il;; are no
di6erent in character from those which occur in a per-
turbation-theory diagram. Since the considerations of
Sec. III in no way depended on how these denominators
occurred or in what numbers, it follows that the
analytic properties of the diagrams I',; are the same
as those of the perturbation-theory diagrams.

The second step in the argument leading to the
analytic properties of a general term in the Fredholm
solution for the Faddeev equations is to combine the
diagrams F;; through Eq. (4.4). To do this we 6rst
write the diagrams in their Feynman parametrized form

p"=g d'q dh f(x,q)Hi "'(p')*Hi" (p)
fS$ 0

X[so(*,q) —.]-~, (4»)

where f and so are rotationally invariant functions of
the x; and q;, and p and p' are linear combinations of
the q;, h, and k' with coefEcients depending on x. The
basic integral to be used in combining two Ii's is

(P n)a(P 11)P

I~~ao = dQg- „„„„.(4.12)
[sp' —k'k"]~[so—k" k]~
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We can obtain I~N & from I» ~ by differentiation with
respect to zo and zo'. 'If n and P were zero, this would

just be the integral relevant to the proof of the Lehmann
ellipse in two-particle potential scattering. ' The argu-
ment given in Ref. 5 can be generalized to the case
when spin is present by the techniques given in Sec.
III. Indeed, the method is so similar to that of Sec. III
that we will only quote the answer here:

~,m'
(Iis)8~ m (Ii)

i'(z,n) (4 13)
z)M+N —1

Here, s=k k', p and y' are linear combinations of k
and lr' with q-dependent coefficients, and I' is a poly-
nomial in s with g-dependent coefficients. The factors
of II& follow from the transformation property of the
original integral under rotation.

The result given in Eq. (4.13) can be used to show
that the amplitude resulting from combining two E's
according to Eq. (4.4) has the same analyticity domain
as the perturbatioD-theory graphs. The arguments for
determining the number of factors of sino are identical
with those previously given in the discussion of the
Lehmann ellipse.

Equation (4.13) gives the result of combining two
of the F's according to Eq. (4.4). This result, however,
has the same general form as the original integral for
one F given in Eq. (4.11).We can, therefore, proceed
by induction to show that the combination of an
arbitrary number of E's has the analytic properties of
the perturbation-theory graphs. This completes step
(2) of the proof.

V. PROOF OF CONVERGENCE

In the previous section, we obtained the analyticity
domain for each term in a series expansion of the
scattering amplitude. In this section, we will show that
the series converges uniformly in the domain of analy-
ticity, so that the amplitude itself has the analyticity
properties of the individual terms in the series.

The outline of the proof is as follows. We write the
amplitude in the form used in deducing the Lehmann
ellipse I Eq. (2.8)j, so that it is expressed as an integral
over g;;. We next expand g;, in its Fredholm series. (By
Fredholm series we again mean the Fredholm numerator
series. The Fredholm determinant is independent of the
scattering angle, so it never really enters the problem. )
Each term in the Fredholm series is expressible as an
integral over two-particle t matrices, ' and we expand
each of these t matrices in its Fredholm series as was
discussed in Sec. IV. g;; is now given by a multiple sum.
When we substitute it into Eq. (2.8) the on-energy-
shell scattering amplitude is given by a series of dia-

5 R. Blankenbecler, M. L. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. (N. Y.) 10, 62 (j.960).

FIG. 6. A typical term in the Fredholm expansion of g». The
initial and anal interactions are (1+Got) because one potential
rung has already been subtracted out in the definition of g». The
box labeled N denotes the numerator in the Fredholm expansion
of t which is part of t,.

grams of which Fig. 5 is typical. We have proved the
analyticity of these diagrams in Sec. IV, so it only
remains to show that their sum is uniformly convergent
with respect to the scattering angle s.

A series of functions of momenta will be said to have
the property 5 if the following conditions are satisfied:

(a) Every term in the series is bounded by a constant
and is separately square integrable in all the momenta
which are its arguments.

(b) The sum of the functions converges to a function
which is separately square integrable in all of the
momenta.

(c) The derivative of the series with respect to any
momentum component p; satisfies properties (a) and
(b)

The proof now proceeds in three steps: We show
(1) that each term in the Fredholm series for g,, is
itself given by an infinite series which has property S;
(2) that the Fredholm series for g„has property S; and
(3) that (1) and (2) imply that the series for the on-
energy-shell amplitude converges uniformly with
respect to s.

We start with part (1) of the proof. A typical term
in the Fredholm series for g;; is shown in Fig. 6. We
wish to show that after replacing each t and E by its
Fredholm series, the diagram in I"ig. 6 is given by a
series which has property S. The proof is made by
induction. Let us focus our attention on a particular t
(or E), for example, the one in the dashed box in Fig. 7.
We assume that all of the t's and E's to the left of the
one we are studying have been expanded in their
Fredholm series, and we denote their contribution to
Fig. 7 by J'(q&', q&',.qi', y,'). The f's and E's to the
right of the one we are studying have not yet been
expanded. We denote their contribution to Fig. 7 by
J'(qi",y&,

'
qi, q3). The whole of the diagram in Fig. 7 is

L

Fxo. T. One term in an expansion of a diagram like that shown
in Fig. 6. Everything to the left of the dashed box has been ex-
panded while everything to the right has no&,



iii2 J. B. HARTLE AND R. L. SUGAR 169

denoted by B and given by

+(ql qs qlqs) Q+'(q1 qs qlqs)

dsq //dsP dsP /J/(q /q /.
q

//
p /)

Equation (2.8) is a representation for the scattering
amplitude in terms of g;; and low-order perturbation-
theory diagrams whose analyticity is explicitly dis-
cussed in Appendix B.I et us use the coordinate system
for k and k' discussed in Sec. II and fix on a particular
complex s in the domain of analyticity. Further, let us
imagine that the integrations over q1 and q2 have been

X(ps'~f/Go~ps)&(qs", ps', qs, qs), (5.1) performed. The amplitude is then a polynomial in sin8
and cos8 with coeScients which have the general form

where t; is the ith term in the Fredholm series for the
under consideration.

It follows directly from the results of II that J and
J' are bounded. and square integrable in each of their
arguments. Because of the simple form of the derivative
of the Yukawa potential with respect to momentum,
it is straightforward to use the results of II to shower that
the derivatives of J and J' are also bounded and square
integrable.

We can obtain a bound on the general term in the
series for II by making use of the Schwartz inequality.
We find

ia, )&
-1I2

d'qs"d'qs"
) I'(qs, qs' qs" qs") I'

d'qi"'d'qs"'I ~(qs, qs; qs'",qs"') I'
—1/2

X d'f s»s l(~s(&.Go)»' -siss ) I

—1I2

(5 2)

In obtaining Eq. (5.2) we have made use of that fact
that t,GO depends on q1" only through Green's functions
and the two-particle Fredholm determinant. Since the
total three-particle energy is negative, we can obtain
a bound by setting q&"=0 everywhere in f;Gs. (See II
for the details of obtaining such bounds. ) Since it was
shown in II that the series P; s" (it;Gs~( converges, it
follows at once that the series for B satisfies property
S. By induction it also follows that the series obtained
by replacing each t and S in Fig. 6 by its Fredholm
series satisfies property S.

Part (2) of the proof, the fact that the Fredholm
series for g;; satisfies property S, follows immediately
from the results of II and our discussion of the proper-
ties of J above.

We have thus reached the result that g;; can be
expanded in a series which has property S and which,
when substituted into Eq. (2.8), generates a series for
the an-energy-shell amplitude each term of which is a
diagram of the type discussed in Sec. IV with a known
domain of analyticity. We now complete the proof by
showing step (3), that the series converges uniformly
in the joint domain of analyticity of the individual
diagrams. We do this by a generalization of the method
used by Blankenbecler, Goldberger, Khuri, and, Treiman
for a similar problem in the two-body case. '

E=P d'qsdsqsda'g" (qsq4) L2k "qsq4 sinPs sinP»j '
n

X(L~(q)—o (8+ )3

XP s(qs) —cos(8+ns)$)-'. (5.3)

The series of the g" has property S because to obtain
the g" one only has to integrate the g;p with a potential
or a bound-state wave function, either of which is a
square integrable function. Ke now show that the fact
that the series for g" has property S implies that the
series for E converges uniformly in s.

For f xed complex 8 the denominator in Eq. (5.3)
can vanish only for a limited range of ~qs( or j q4~.
Divide the q3 integration into time regions: S3, a
sphere enclosing the region of possible singularity, and
83, the region outside. Similarly, introduce regions S4
and S4 for the q4 integration. We now divide the six-
dimensional space of integration into four regions:

E»=SsQS4/ Es=S»QS4/
(5.4)Es——Ss+Ss, R»=Ss+8».

In the region R4 we use the Schwartz inequality to
write

—1/2

d" d'q d q l
g" (qs, qs) Is

X d'qsd'q»t-(qs —&')'+p'j '
1/2

XL(qs+ —k)s+s sj s . (5 5)

The second integral exists because the integration
region does not contain the parts where the denomi-
nators could vanish. The first series of integrals exists
and converges because of property S.

Consider next the region Zs. The singularity of the de-
nominator with qs is a curve described by qs ——qso(Ps, ns).
Imagine now that the q4 integration over this region is
done. By the same arguments as before, this leads to
a series

g"(qs)I=+ d'qs , (5.6)
kqs sinP»L/S. s(qs) —cos(8+ns) )

where the series g"(qs) satisfies property S. Now

g"(q4~s) =g"(qp~s) g (qs psns)+g (qs psns) (5 ~)
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So using the fact that

If(*)—f(y) I
&

I ~f (*)I I
—yl,

we can write a bound for the series given in Eq. (5.6).

gI&+ max'- ~ps 83

Aqua slnP3P, 3
—cos{8+a~)]

dgag 3+ &Pa«al g"(qa') I (5.8)
83 SI kl hg COS(8+ay)]

In Eq. (5.8) the 6rst series converges because of
property S. The integral exists because the numerator
vanishes when the denominator does. In the second term
the 6rst series converges because of property 8 Lproper-
ties (1) and (2) imply that g" can be bounded by a
series of convergent constants and 81 is 6nite]. The
second integral converges because the series is
integrable.

The arguments for the regions Ej and R~ are based
on the same principles. Ke will not give them here.
The conclusion is then that for any 6xed value of s the
series of diagrams can be bounded by a converging
series of constants. Inside of an arbitrarily large circle
we can take the maximum of these constants to shovr
that the series of diagrams of Sec. IV converges uni-
formly 1n their mutuRl domRin of RnRlyt1c1ty. Th1s
completes the proof.

APPENDIX A: REPRESENTATION OF THE
BOUND-STATE WAVE FUNCTION

In this section we prove the representation of the
bound-state vrave function given in Sec. II.

The wave function for a bound state of binding energy
8 and angular momentum l is given in momentum
space by

&flu»-) = (»'+B)-'&pl I'la»-&
—= (2u'+21) 'HP(11)Ce(u'), (A1)

where Hp(y) is the harmonic polynomial

Hp(11) =
I II I

'I'p(P). (A2)

&pl Vlf»~& is related to the off-energy-shell two-
particle t matrix t(y, y'; E) by

,»m, (E+B)t(p,p'; E)=
&pl I'Ilail-&&0»-I I"lp'& (A3)

If we write the Fredholm solution for t{y,y'; E) in
the form

t(u, p'; E) =lq(p, p'; E)/D(E), (A4)

then the pole in t at E=—8 arises from the zero of
D(E) at that point. As a result, one can determine the
analyticity properties of CII(p') by studying those of

E(y, 0; 8—). To this end we expand E(y, 0; J3—) in
its Fredholm series. The eth term in thc series is a
6nite sum over terms of the form'

&plL1"Go(—B)1"I'I0&= d'ql" d'q-

X IL(u—qI)'+t '1I:2ql'+BjL(e—q.)'+t '3"
XL211 '+B)LII '+tl'1] ' (AS)

where for simplicity we have taken the case of a single
Yukavra potential of inverse range p. None of the
denominators in the integrand of Eq. (AS) vanish for
values of p=

I y I
in the strip

[Imp l &tI. (A6)

It is then clear that each term in the Fredholm series
for N(p, 0; 8) is anal—ytic in this strip. It is shown in
II that the Fredholm series converges uniformly with
I'espect to p 111 tlm strip, so E(p, 0; 8) ls als—o allalytlc
here.

In order to study 1V(y, 0; —8) in the rest of the
upper-half p plane we use the rotation of contours
argument introduced in II. Let us consider the integral
of Eq. (AS) for a 6xed value of p on the imaginary axis
between the points Nip, . %e can simultaneously rotate
the contours of integration of RH of the q variables
through an angle 8, I8I(-', m, without crossing any
singularities of the integrand. The resulting integral
de6neS a fullCtloll Of p wlllC11 ls allalytlC 111 'tile Stl'lp

IIm(Pe")I (tI cos8. (A7)

Since all of the strips of Eq. (A'I) include the imaginary
axis betvreen Nip, , the integral on the rotated contour
de6nes an analytic continuation of the original integral.
By letting 8 vary from —~s to +~a, we see that the
integral of Eq. (AS) is in fact analytic in the entire p
plane vrith the possible exception of the imaginary axis
above the point ip and belovr the point —ip..It is shown
in II that the Fredholm series dined by the integrals
on the rotated contours converges uniformly in p, so
E(y, 0; 8) has the sam—e analyticity domain as the
integral of Eq. (AS).

From the above discussion vre see that the function
pICe(p1) is analytic in the upper-half p plane with the
possible exception of a cut running from ijj, to iao. In
order to complete our proof of the integral represen-
tatloII fol' @II(p )~ we must sllow tllRt (1) @II(p) 11RS 110

pole at p=0 and (2) C'e( —p)=C'II(p). These results
follow at once from the Schrod. inger equation for the
radial wave function in momentum space:

00

4eI(P) = (2P'+B) ' &q—
0 2pq

p+q+II 'l

XQI I/el(q) (A8)
2pq i
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or, using Eq. (A1),

"dq p'+q'+p' c»(q)q' I

@'s(p)=p ' ' —
Q~ '. '.(A~)

2q 2pq 2q'+8

Thus Cs(p') is analytic in the p' plane with the
exception of a cut from —p' to —~

l actually the cut
starts at —(IJ+QB)27, and our proof of the integral
representation of Eq. (2.7) is completed.

I-q-k

I-k-k

—q-k

-q-k

APPENDIX B: LOWEST-ORDER DIAGRAMS

In this section, we calculate the bounds on the domain
of analyticity for the lowest-order perturbation-theory
diagrams. In Sec. III it was shown that all diagrams are
analytic except on the real axis. It is therefore only
necessary to establish the minimum value of lsl at
which the Feynman parametrized denominator can
vanish.

There are three types of lowest-order diagrams shown
in Fig. 8. There is only one type (A) contributing to the
elastic amplitude and two types (3) and (C) con-
tributing to the amplitude for rearrangement collisions.
The denominators for the three diagrams are

D~ ——[jP+ (k—k')']l z'+ 2 (q+-,'k')']
X L~+2(q+-', k)']

Ds = Lp'+ (q—k)']l g'+ 2 (k+-'k')'7
+2(q+

Do =+2+ (q+k+k')27[g'+2 (q+xk')2]
XL.+2(q+ -,'k)&7.

Diagram (A) requires only one Feynman parameter, and
the minimum value of

l
s

l
is easily established as

$2+/&2 (gl(2++/ 1/2)2

min
2kk' kk'

since the minimum value of the f~: integration is B.The
diagram (8) is of the same form as (A) if we make the
substitution k~ ——,'k', p'~~', x'~ p2 and so the
minimum is expressed by the above formula with these
substitutions.

Diagram (C) can be Feynman-parametrized by three
parameters whose sum is restricted to unity. The
minimum value of s will eventually be expressed as the
minimum of a certain expression of these three param-
eters subject to this restriction. A bound on the mini-
mum value of lsl can be obtained by setting the

(8)

I-q-k

(C)

-q-k

FIG. 8. The low-order perturbation-theory diagrams which to-
gether with the amplitude from Fig. 1 make up T(33&(k',h,Z).

I'"eynman parameter multiplying the first bracket equal
to zero. The resulting bound is then identical with Eq.
(a2).

(a l vG,R=Q (a-'x)„(a;l VG,R, (C3)

where the matrices A and 8 are de6ned in Sec. IV.
From this relation and Eq. (C2), one then has

(C4)

Writing out Eq. (C1), the decomposition follows.

APPENDIX C: DECOMPOSITION OF THE
TWO-BODY f MATRIX

To prove the decomposition given in Eqs. (4.1) and
(4.2), we denote V—V by V, and write

t= V+VGDf=t+RV, +RV,Got. (Ci)

Here Go is the two-particle free Green's function and
It'. is the resolvant for V:

R= (1—VG0) '=R—RV,GOR, (C2)

with R the resolvant for V. Multiplying Eq. (C2) on
the right by (Bkl VGp one 6nds after some rearrange-
ment


