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Inelastic Electron Scattering in the Symmetric Quark Model*
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In this paper we use the nonrelativistic symmetric quark model to compute form factors for the process
e+p ~ e+E*,where S*is one of nine nucleon resonances. We assume a harmonic-oscillator potential and
obtain Gaussian-type form factors. Center-of-mass motion is separated out, and 1/tides corrections are
discussed. Plots are made of the form factors and transition probabilities; the theoretical numbers generally
agree with the existing experiment when g'(1, but the predicted magnitudes are too small for g'&1.

1. INTRODUCTION investigate 1/M, ' corrections to the Coulomb form
factors. The theoretical cross sections agree with the
existing experimental va1ues for g'(1, but are too sma11

for larger q'.
The plan of this paper is as follows. In Sec. 2, we

review the formalism needed to calculate form factors
for the process of' Eq. (1) in the symmetric quark model.
Section 3 contains a discussion of our results. These
results are listed in Tables II—V and are plotted in
Figs. 2—16. In Sec. 4, we then compare our results with
experiment. Section 5 discusses related theoretical
work.

l
'HE nonrelativistic quark model' can be used to

study many diAerent aspects of high-energy
physics. In particular, one can examine the production
of nucleon resonances via inelastic electron scattering.
In this paper we shall apply the symmetric quark model
to the process

e+p —+ a+St,
where e is an electron, P is a proton, and 1Ve denotes a
nucleon resonance. Six I=-', and three I=—', resonant
states will be considered.

The symmetric quark model gives us a picture of the
nucleon as a bound state of three quarks in a potential
well; a nucleon resonance is viewed as an excited state
of the three-quark system. We shall adopt this model
and shall choose the potential well to be that of a
harmonic oscillator; our total wave functions will be
made symmetric under exchange of any two quarks. We
then calculate the form factors associated with the
process of Eq. (1) and obtain predictions for differential
cross sections in inelastic electron scattering.

Each of our form factors is proportional to an ex-
ponential e &""i', where q*' is the square of the three-
momentum transfer as seen from the isobar rest frame;
b2 is a parameter. This type of behavior is to be ex-
pected from our (Gaussian) harmonic-oscillator wave
functions, since the Fourier transform of a Gaussian is
just another Gaussian. Two of our three parameters
(the harmonic-oscillator parameter b' and the ratio of
quark g factor to quark mass) are determined by a
comparison with elastic scattering (for small q ); the
third parameter Me (quark mass) is free. In finding
numerical values of the form factors we choose two
values: Mq= 35$pro&on and M, = ~.

Spurious c.m. motion is separated out of the wave
functions; it is seen that this can restrict the SU(6)
representations to which the particle can belong. The
vanishing of various form factors is discussed. We also

2. FORMALISM

In this section we shall review the formalism needed
to calculate form factors for the process

e+p -+ e+ 1''a

(p is a proton and 1V" is a nucleon resonance) in the
symmetric quark model. This process is assumed to
proceed via the one-photon exchange diagram (shown
in Fig. 1). The cross section has been derived by
Bjorken and Walecka. ' The result is

80 0.2 cos2—0

dQ t b 4c' sin4-,'ftL1+ (2e/trt) sin'-', 8j

g' qs M'
x lt. l'+ + «Ae)(It+I'+lt I'), I2)

q*' 2q*' eP

where 0 is the electron scattering angle, ~ is the incident
electron energy, and m and M are the nucleon and E*
masses. g' is the invariant four-momentum transfer, q*'

is the square of the three-momentum transfer in the

FIG. 1. Inelastic electron
scattering.*Research sponsored by the Air Force Ofhce of Scientific

Research, OfIjlce of Aerospace Research, U. S. Air Force, under
AFOSR Contract No. AF49(638)1389.' G. Zweig, CERN Reports Nos. Th. 401, 1964, and Th. 412,
1964 (unpublished); M. Gell-Mann, Phys. Letters 8, 214 (1964);
G. Morpurgo, Physics 2, 95 (1965):Y. Nambu, in Proceedings of
the Second Coral GabLes Conference on Symmetry PrincipLes at Hi h
Energy, 1964, edited by B. Kursunoglu, A. Perlmutter, a
Sakmar (W. H. Freeman and Co., San Francisco, 1965).

nd I. 2 J. D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
i1966l.
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c.m. system of the N* resonance, and f„f+, and f are
form factors. The quantities [f,~s and

~
f+(I'+

~ f I'
will be calculated using the symmetric quark model.

In this model the nucleon is pictured as a system of
three noninteracting quarks bound in a potential well
(which we take to be a harmonic oscillator), and each
E*resonance is viewed as an excited state of the three-
quark system. Since the calculation is done in a non-
relativistic framework, we will have wave functions for
the proton and the E~ resonance. We require that each
total wave function (with space, spin, and isospin
variables) be totally symmetric under exchange of any
two quarks, and we assign the proton to the 56 repre-
sentation of SU(6). The N* resonances considered are
the 1525(s ), 1570(—' ), 1670(s ), 1688(s+), 1700(-' )
and 2190(-', ) states (all with I= ,'), and -the 1236(ss+),
1670(-,' ), and 1920(-,'+) states (with I= —',), as listed by
Rosenfeld et ajt'. ' These resonances are assigned the
quark quantum numbers and SU(6) representations
listed in Table I.The assignments of the resonant states
agree with those of Dalitz, 4 Greenberg, ' and Moor-
house '

Since for fixed S, there are two ways of forming total
quark spin S= s (from three spin- —', quarks), there are
two linearly independent

~
—s,+s) quark spin functions:

u.= (v's)y(1)n(2)n(3) —n(1)P(2)n(3)] (3)
and

ub= (gs) [ P(1)n(2)n(3) yn(1)P(2)n(3)
—2n (1)n (2)P (3)]

(n denotes spin up and p denotes spin down). Similarly,
there are two analogous mutually perpendicular

~

rs+-', ) quark isosPin functions,

f,= (Q-', )[g(1)n'(2)n'(3) —n'(1)P'(2)n'(3)] (4)
and

f = (V'l)[P(1) '(2).'(3)+.'(1)P'(2)-'(3)
—2n'(1)n'(2)P'(3)]

Thus the 56 spin-isospin function (totally symmetric
in the interchange of any two quarks), for example, is
given by

(Q-', ) (u.f.+us fs), (5)

when ~SS,)= ~s+s) and III,)= ~s+s) for the three-
quark system.

In constructing the spatial wave functions, we sepa-
rate out any c.m. excitation. For a harmonic-oscillator
potential, the conversion from c.m. and relative co-

3 A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Padolsky, L. R.
Price, Paul Soding, C. G. Wohl, Matts Roos, and W. J. Willis,
Rev. Mod. Phys. 39, 1 (1967).' R. H. Dalitz, in Prooeedsrtgs of the Oxford Irttermotiortot Col

ference on Elementary Purticles, 1%5 (Rutherford High-Energy
Laboratory, Berkshire, England, 1966), p. 157.

~ O. W. Greenberg, University of Maryland Report, 1967
(unpublished); O. W. Greenberg and M. ResnikoG, Phys. Rev.
163, 1844 (1967).' R. G. Moorhouse, Phys. Rev. Letters 16, 7'I2 (1966).

TABLE I. Quantum numbers of states used in symmetric quark
model. (L is the total quark orbital angular momentum, 5 is the
total quark spin, and I is the total isospin. )

State J~

940 -', +

1525
1570
1670
1688 -', +

1700
2190
1236 —,'+
1670
1920 —,

'+

J. S I
0 1 1

2 2
1 1
2 2
1 1
2 2

2 12

3 2 2

3

2 4 2

SII (6) representation

56
70
70
70
56
70
70
56
70
56

7 L. I. Schi8, Phys. Rev. 92, 988 (1954); K. Alder, A. Bohr,
A. Huus, B.Mottelson, and A. Winther, Rev. Mod. Phys. 28, 432
(1956).' T. deForest and J. D. Walecka, Advan. Phys. 15, 1 (1966).' J. D. Walecka, in Internutionul School of Physics "Enrico
Fermi, " Ituliun Physical Society Course 38, edited by T. E. O.
Ericson (Academic Press Inc. , ¹wYork, 1967), p. 17,

ordinates (denoted by R and r, 9, respectively) to
individual quark coordinates (denoted by xr, xs, and xs)
in the wave functions is simple and straightforward.

The Hamiltonian of the system can be written as the
sum of three individual quark Hamiltonians or equiv-
alently as the sum of three Hamiltonians associated
with 6ctitious noninteracting "particles, " again each
in a harmonic-oscillator potential (the latter particles
have coordinates R, r, and 9). The absence of c.m.
excitation means that only the ground-state wave
function may be used for the R coordinate. Letting

R= s (xr+xs+xs) q

r = —', (xr+ x,—2xs),

P=xy —X2q

and writing the Hamiltonian in these coordinates, we
see that Kg=3M~, M„= 335~, and M, = ~35,. A bit of
algebra shows that the exponentials in the harmonic-
oscillator wave functions can be written equally well in

(R,r,y) or in (xr,xs,xs) coordinates. Thus the only Pieces
of the wave function requiring any work are the Hermite
polynomials, and the conversion from c.m. and relative
coordinates to individual quark coordinates is rather
simple. We note that an L= 1 resonance cannot have a
purely symmetric spatial wave function (and hence
does not belong to a 56 representation in our model),
since this would correspond to pure c.m. excitation.

One then uses the total wave functions to compute
the form factors ( f, ~' and

~ f~j,'+~ f ~' of Eq. (1);
expressions for these form factors in terms of reduced
multipole matrix elements' have been derived by
deForest and Walecka' and by Walecka. ' The idea is
that the incident electron emits a virtual photon (Fig. 1)
which then excites one of the quarks in the nucleon to a
higher state; the three quark amplitudes are added
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coherently. The explicit formulas are' '

If.Is=2~K
I &~fllM. ""'(q*)ll~'&I'

J~ (6)

If I'+ If-I'=2~2 {IPrllT~" (qe)ll~ ) I'
J=1

where
+ I &~tllT "(q*)ll~'&Is)

M,~o "i(q*)= dsx j,(q*x)I',M(Q.)p(x),

1
Tzsr" (q*)= d—sx[&X jz(q*x)l'zzt~(Q*)]. J(x),

Tzs, "(q*)= d'x j z(q*x)Yzzi~(Q, ) J(x) .

Here YJJi~(Q,) is a vector spherical harmonic, and

p(x) = Z Q(s)~(x—r')

3. RESULTS

Using the formalism of Sec. 2, we have calculated
I f, l' and

I f+ I'+
I f I' [see Eq. (2)] for the reaction

e+p —+ e+1Ve,

where N* is one of the nine resonances listed in Table I.
The results are listed in Tables II—V and are plotted in
Figs. 2—16. This section is devoted to a discussion of our
results.

J(x)= j(x)+ ~Xff(x)

s Q(j)
{S(x r;)V'.).,—+V'

~=1 2i3f,
s Q(s)

XP b(x—r,)rr(i)g, . (8)
'=1 2',

These expressions for p and J are nonrelativistic. We
note that they satisfy current conservation, i.e., matrix
elements of

'f/ )(x)+ r)p(x)/r)t

vanish. Letting trs=gs/2Ms, it is known that tr, =ti~
gPn

The calculation of the form factors is now straight-
forward. %e take our quark-model wave functions for
the initial and 6nal states and use the above expressions
to find

I f, l' and
I f+I'+ I f I'. The resulting "shell-

model" form factors are then multiplied by an appro-
priate factor to eliminate the contribution coming from
the ground-state wave function of the c.m. coordinate
(as described in Ref. 8).

The form factors
I f, I' and

I f+ I'+
I f I' are listed in

Tables II-IV; we note that each of our form factors is
proportional to an exponential. In particular, the
inelastic form factors are proportional to the elastic
ones (trivially so for the electric form factors). We
would expect this behavior from the Gaussian harmonic-
oscillator wave functions, since the Fourier transform
of a Gaussian is just another Gaussian. The variable
appearing in the reduced matrix elements is not unique
when one is not in the static limit. For example, one
couM take it to be q' instead of q*'. q~ is the three-
momentum transfer in the c.m. frame of the N*;

q4r —qs+ (1/4M2) (qs Ms+rrss)2 ~

the choice of q*' seems perhaps the most natural to us.'
The Coulomb terms

I f, I' are listed in Table II and
are plotted in Fig. 2. These terms are obtained by
inserting a charge-density operator p(x) into the appro-
priate integral. The equation for this operator as given
by Eq. (8) is correct to order 1/M, . One can find the
1/M, corrections to p(x) by expanding the relativistic
current operator for a spin--', Dirac particle expressed in
two-component form (see Ref. 8). The result is

3

p(x) =2 Q(i)~(» r~) 1——q*' q* (irX &)

Actually, we do not attach great importance to the

TanLz II. Form factors I/, I' in the symmetric quark model;
p does not include 1/M, corrections. (or, is a factor arising from
center-of-mass elimination; u1 ——1; a2 ——g-', ; a3 ——-', .)

State I
940

1525
1570
1670
1688
1700
2190
1236
1670
1920

Jy =L+-,';
L&0;
S=I=-',

q+2 $2/3

(1/9) (g'f )'e '*'""
(1/tfo (f*b)'s '*'""

0
(1/90) (q*&)'~ '"'""

0
(1/2520) (ft*b)'f, &*'f"/'

0
(1/fg) (q'b)'e '"'""

0
I
os

I

s (1+1) (q*b)r ~e r*'s'~r

3(&+1)!!2J

[The quark g factor g, is set equal to 1; in general, the
1/Mss terms are multiplied by (2g,—1).] Using this
equation for p(x) instead of Eq. (8), we could find the
1/Mes corrections to

I f, l'. The first 1/M, ' term con-
tributes a factor of —qe'/4M, ' times the lowest-order

I f.l' (denoted by I f,s I'), but for the second term the
answer depends on the resonance. Taking as a sample
case the 1525(—,

' ) state, we obtain

t'

I f 152sls —
I f lssslsl

m2 m2b2
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TABLE III. Form factors (If+I'+ I f-I') in the symmetric quark model: (If+I'+I f I') =2s
I (~rllI'~ 'll~') I'+2s I

(~rill'z"'ll~') I'

State I
940

1525
1570
1670
1688
1700 2

2190
1236
1670
1920
Jf=I.+-', ;
1.&0;
S=I=-'

2

(2N„'/bs) (q*b)&e-~*'&'&'

(2p„2/b2) (1/12) (q*b)4e &*2b'/s

0
0

(2p„'/b') (1/135) (q*b) 'e r*' '»
0

(2p '/b') (1/4032) (q*b)'e &*'~'~'

(2& 2/b2) (8/9) (q*b)2e
—a*2 b2/s

0
( ~, / )( 2/»8 5)(q*b)"- *'"'
(2& /sb )2I as I'(1+1)(q*b)' e r*'"~'

3(2J—1) t!

0
(1/2~ 2b2) (4/9) e q+ b /s (1 g q b2/4)2

(1/2ilf 'b') (2/9)e &" 'f'(11g,q*'b'/2)'
0

(1/23q, 'b') (2/15) (Pb)'e &*'"~'(I—g,q"'b'/6)'
0

(1/2M sb') (2/105) (q"b)4e &*' ~~(s1 g,q*'—bs/8)s

0
(1/2M, 2b2) (2/9) e &*'"/s(1—g,q*'b2/6)2

0
I' I'i(l+&j'(q'&j" "'""( r q b )'"'

2Mr'b' 3 2~ '(2J+I)!! 4 2(J+I)

TABLE IV. Differential cross sections in inelastic electron scattering. (do'/dQ is measured in units of cm /sr; four-momenta are in SeV/c. )

State

1525

1688

1920

2.358
2.988
4.874

2.358
2.988
4 874

2.358
2.988
4.874
2.358
2.988
4.874

0.99
1.55
3.62
0
0.79
1.30
3.29
0
0.65
1.14
3.05
0.43
0.87
2.70

1.01
1.30
2.25
0.475
0.91
1.14
1.91
0.58
0.90
1.10
1.78
0.90
1.06
1.64

der/dQa

0.15 X10»
0.004X10 "
0.4 Xio 4'

3.0 X10 "
0.74 Xio "
0.09 X10 "
0.6 X10 ss

1.16 X10 "
0.85 X10 "
0.23 X10-"
0.4 X10 "
0.20 X10 s'
0.08 X10 "
09 X10 '6

der/dQb

4.9 Xio-»
1.2 X10-»
0.13X10 "
0.9 Xio s

1.16X10 '2

0.93X1O-»
0.24X10 "
0.4 X10 ss

0.15 X10 "
0.004X10 "
0.4 X10-42

40 Xio"
0.82 X1Q-»
0.09 Xio»
05 X10 ss

1.7 X10-»
1.O X10-»
0.27 Xio»
04 X10 "
020 X10 "
008 X10 "
09 X10 "

do'/de

4.8 Xio-»
1.2 X1O-»
0.13X10-»
0,9 X10 ss

1.8 X10»
1.2 X10»
0.28X10»
0.4 Xio-se

0.92 X10»
0.312 X10»
O.OO82X 1O-»
2 X j.o-»
0.98 X10 s2

0.36 X10 "
0.0069X10 s'
1.5 X10-»
0 89 X10-s
0.33 X10-»
0.0078X10 "

&0.09 X10 "
&0.04 X10-»
&0 0112X10 "

a Theory; Mq =$mq, 1570, 1670, and 1700 states are omitted.
b Theory; Mq = $mq', 1525+1570 and 1670+1688+1700contributions.
& Theory', M!I = ~, 1570, 1670, and 1700 states are omitted.
d Theory; M!I = ~ ', 1525+1570 and 1670+1688+1700contributions.
& Experimental values (Ref. 19).

1/M, ' corrections in p alone. An expansion in 1/M, '
would give the exact relativistic charge-density opera-
tor, but since our wave functions are nonrelativistic and

TABLE V. Photoproduction amplitudes:
harmonic-oscillator potential.

do not include recoil e8ects, we would still be left with
possible errors of order 1/M, '.

The parameters b' and g,/M, are determined by a fit
of the quark-model predictions to elastic scattering data
(g,/2Ms=ljs ssP„, b'—16—.0)—. The Parameter Ms

1525 —'
1570 g'

1670 —,
'

1688 —,
'

1700 —',

2190 x,

1236 —,
'

1670 s

1920 -',

m;/z;
M1-/E1-
E2 /3f 2+

m;/z;
m;/e, —

m;/z;
E1+/3f 1+

m, -/z, —

gs+/~s+

State I Ratio

9.5
0

0/0
10.3
0/0

—2.65
0
0
0

0
0/0

0/0
—1
0
0
0

Predictions of symmetric
quark model

M~=-', M„Mq= ~ Walker'

0.53+0.2

—0.5 &0.5
0.5 &0.3

—0.04+0.08

0

l525 .
1688

21

io '-

i
o-l0

I
o-!5

io-'O—

i
o-25

i
O-50

Ratios oi I f+ I,'+ I f- I
'

(1570)/$ (1525)
-', -(167o)/-', +(1688)

a see Ref. 12.

1.6
0

0.50
0

0.15~0.2
0.24&0.3

2 3
q" in BeV/c

Fro. 2.
~ f, )' in the symmetric quark model;

p does not include 1/Af~~ corrections.
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Oil
Ip 1236

I570

-5
IO—

IO"-

-I5
IO

«+ -20
lp

ET AL.

ET AL.

-25
Ip

-30

2

q in BeV/c

Fro. 3. (I f+I'+ f I') in the symmetric
quark model; M, = pmproton

which appears in the convection part of the total current
density operator [Eq. (8)j remains undetermined. We
note that j(x) does not contribute to matrix elements
of 1JO 'g. This comes about as follows. ' The relevant
expression is (for one of the quarks)

—2 d'z jJ (q*z)Yzzi'(Q. ) pr*(x) Vil'(x) .

Now YJJ] is proportional to

(1/i) (rX V) Yzo
and

(1/i)(rXV)P'qs Vgi ———VF'gs (1/i)(rXV)f;
= —VF J'0'ill 1 ~

But 1$,=0, since f; is the ground-state wave function,

s
lp0—

1688 ~=
192

IP-5—
1670

I
0-10

lp '3-
I

+
I p-20

10-25

2-)

I p"30

q" ln BeV/c

FIG. 4. Same as Fig. 3, but with diferent states.

+ This proof is due to J. D. Waiecka (private communication).

d'x jz(q*x)Y&mrs(Q. )

'[(Vi f ( ))lI''(x) il'f (x)Vtl' ( )j
Integrating by parts and noting that V jzYzzi must
equal zero, this expression reduces to

having l=0 for each quark. Hence the integral in
question vanishes, and thus TJO 'g receives no con-
tribution from j(x).

Thus the parameter M, can affect only T", in the
approximation of including no 1/M, corrections to
p(x). We have chosen two values of M, : M, = rsris „b,
(then the quarks have no anomalous magnetic mo-
ments) and M, =oo. Table III lists the quantities

(~ f+(s+ ( f ~s), and the results are plotted in Figs. 3
and 4 (with M, =-'set~„b,„)and 5 (with M, = ~).

Our form factors are expected to be less accurate for
large q*. For the sake of easy visualization, however,
we have plotted the results up to ye= 4 IleV/c.

For the resonances with J=l.+ ', and tot-al quark
spin S= ~~, we discover that if one does not separate out
any c.m. motion of the quarks, then (see Tables II and
III) the reduced matrix elements do not depend on
whether the particular resonance belongs to a 56 or to
a 70 representation of SU(6).

%e also note that some of the matrix elements are
zero. Those resonances having S= ~ can only be excited
by y(x), since the initial quark spin is rsand p(x) and

j(x) do not dePend on quark sPin. Hence Mzsro'"' has
zero matrix element for the 1670(-', ), 1700(-,' ),
1236(-',+), and 1920(-,'+) states. The vanishing matrix
elements for f' 'a[1570(-,' ) and 1670(-,' ) states( and
for T ei[9 40(-', +)$ are easily seen to arise, using angular
momentum and parity conservation. The zero results
associated with f' 's and T"[for both the 1670(s ) and
1700(-', ) resonances' will be explained if we can show
that p does not contribute, since we have already seen
that j cannot contribute for S= —', states. (The vanishing
of these matrix elements has been previously noted by
Moorhouse. ') The derivation is as follows.

Now @=y(1)+It(2)+y(3) from Eq. (8). It suflices
to show that p(3) has zero matrix element. The final-
state wave function contains spin-isospin pieces of the
type ~sS.)~f,) and ~sS,)~fb), where f and fb are
defined in (4).The subscripts a and b refer to the isospin

II

IO — l525 2I9p
1688

I6-5
IO

-lp
10

-l5—Ip
I

CV

+ -20

-25
Ip

Ip

2
q in BeV/c

Fro 5. (I f+ I'+ f I') in the symmetric quark model; M, = ~.
The 1236 and 1920 states have the same (I f+I'+ If ') as in-
»gs 3 and 4. (I f+ I'+

I f I') for the 1570 state is rough y g that
of the 1525 state.
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=0

Also,

(since u, has spins 1 and
2 adding to give spin
0, whereas in

I
ebs, )

these spins add to give
spin 1).

of particles one and two (a means I~2——0, and b means
I~2=1). The initial state is a 56, with wave function
given by (5). Thus,

&k5'*I &f. IV(3) I (&.f.+Nbfb)v'2)

= &-,'S,
l (f I tb(3) I

N,f Q2) (this is true because the
isospins Iqm in f, and

fb are perpendicular)

CV

I

cu+
+

CCbl M
CV

0
N
~l c

+
EU

+
CV

e lg
crl cr

-5
IO

IO

-l5

020

-25

I030

0)I

l688, g~
I920

2I90

I

2
q" in BeV/c

700

AL.
AL.

&V 1(fbi e(3) I (~.f.+»fb)V'l )

=&2s&l &fbltb(3)lcbbfbg-', ) (here again, f, and fb
have isospins I~2 which
are J)

e (3)b (x—rb)
l»v'l& I &fblg(3)I fb)j

235q

=0 [since (fbi Q(3) I fb)=0].

Hence p has zero matrix elements for the 1670(-', ) and
1700(-', ) cases; thus these resonances have no magnetic
or electric matrix elements. In an analogous fashion one
can show that T" has zero matrix elements for the
1236(-',+) and 1920(—,'+) states (both of these states have
5=-', and could thus only be excited by p).

For those matrix elements which do not vanish, we
note that the power of q* multiplying the exponential is
just what one must have to give the correct behavior as
g*~0.' The powers of q~ are relatively small, and
hence on a log plot of form factor versus q~, we see that
the dominant behavior is simply a parabola arising from
the exponential. This explains the similar appearance
of the form factors plotted in Figs. 2—5. The exception
to the rule is the 1670(-', ) resonance. As noted above,
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this resonance has no T g matrix elements. Since the
T"matrix element has a zero, we see that

I f+ I'+
I f I'

must also have a zero, and hence ln(l f+ I'+
I f I') has

a singular point for the 1670(z ) case.
The squares of the transition probabilities are plotted

in Figs. 6 and 7 (M, = bm„) and 8 (Mc= bo).u They
exhibit the same general features as the form factors.
The 1525 and 1688 resonance contributions are com-
puted both separately and with the 1570, 1670, and 1700
contributions added, respectively. Adding these con-
tributions (with masses taken at 1525 and 1688 MeV)
increases the theoretical prediction for the differential
cross sections. Table IV shows a comparison of the
theoretical predictions with inelastic electron scattering
data. (This will be discussed in Sec. 4.)

Figures 8—15 give plots of form factors and transition
probabilities, all divided by the common factors

~esbs]3

Figure 16 gives a comparison of the elastic prediction
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"In doing the numerical evaluations for the tables and the
graphs of this paper, the factor M'/m' (which multiplies tan'~8)
in do./do was set equal to 1 for states with JyWL+$.
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ment on inelastic electron scattering is also currently
being performed at SI AC.

The data which lend themselves most readily to a
comparison with our predictions are those of Cone
et al. ,

"since these authors make a it to obtain the total
area under the resonance bumps. In other words, they
give values of do/dQ in addition to d'o/dQdEy. Since the
separation of resonant and nonresonant parts of the
cross section is dificult, the errors introduced in such a
procedure could be from a factor of 1~ to a factor of 4."
In Table IV, we list the values of do/dQ obtained by
Cone et at."compared with the predictions of the sym-
metric quark model. (The experimental points at qs =0
are obtained from photoproduction. s~")The theoretical
values are in general too small when q') 1, but agree for
smaller q'.

In Figs. 3, 5, 6, 7, 10, and 13—15 we plot the experi-
mental points (obtained from Ref. 18) due to Cone
et al. and Lynch et al. The theoretical predictions for

' J. D. Walecka, Phys. Rev. 162, 1462 (1967).
~1 J.D. Walecka, in Proceedings of the 1967 International Sym-

posium on Electron and Photon Interactions at High Energies
(unpublished).

"The experimental points in Figs. 2—14 are obtained from
Refs. 20 and 21.

the form factors and transition are again too small for
large q', but tend to agree when q'&1.

S. RELATED THEORETICAL WORK

Other authors have also investigated inelastic elec-

tron scattering to predict form factors for the nucleon
resonances. The most closely related work is by Fuji-
mura et at. ,

"who also use the quark model. Their basic
wave functions are also those of a harmonic oscillator,
but there are several important differences between the
two approaches. The set of resonances examined over-

laps but is not the same. Fujimura et at. also investigate
the 2360, 2645, and 2825 states (which we do not), but
they do not calculate the 1570(-', ), 1670(ss ), 1700(-', ),
and 1670(-', ) states (included in the present paper).
Different assignments to SU(6) representations are
made; Fujimura et al. place each Se in a 56 representa-

tion, and of the five resonances calculated in both cases,
we place two in a 70 representation. The harmonic-
oscillator parameter b' is determined differently in the
two cases. Fujimura et al. take pion cloud effects into
account (which we do not). We briefly investigate
effects of 1/M, s corrections in the charge-density
operator p (x), and we separate out c.m. motion from the
wave functions. (If one removes c.m. motion, then the
1525 cannot be placed in a 56 representation, as was

done by Fujimura et al.)
Other theoretical studies of inelastic electron scatter-

ing have been made; a summary of Ne(1236) work can
be found in Ref. 17. Predictions for all the states
considered in the present paper have been obtained by
Walecka 2' and Walecka et a) '22 using a model of
oscillations in the meson Beld in the nucleon, "",and a
model employing 1V/D formalism. ""
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APPENDIX

In this Appendix we show in more detail how to
construct wave functions for the resonances. (This
material is not new, but is presented for the sake of
completeness. ) A given resonance has fixed total spin.
Given the quantum number assignments of Table I, we
use Clebsch-Gordan coefficients to write

~

JJ,) in terms

"K.Fujimura, T. Kobayashi, T. Kobayashi, and M. Namiki,
Progr. Theoret. Phys. (Kyoto} 37, 916 (1967);38, 210 (1967).

~ J.D. Walecka and P. A. Zucker, Phys. Rev. 167, 1479 (1968).
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of
~
LL.) ~SS,) states. If the resonance belongs to a 56

representation of SU(6), we then symmetrize ~LL,).
The 56 spin-isospin wave function is next constructed
by taking linear combinations of product states Lsuch
as ts(1)P(2)u(3)P'(1)n'(2)n'(3) j and requiring sym-
metry under exchange of any two quarks. The result
for S=S,=+-', and I=I,=+-, has been given [see
Eq. (5)j.This yields the total wave function for the 56
case.

If the resonance belongs to a 70 representation, then
instead of completely symmetrizing

~
LL,), we form the

analogs of I, and Nq.'

Q, = (Qo)[q4 (1)go(2)obo(3) go(1)4 (2)4o(3)]

and

yb= (gie)t tt. (1)turbo(2)4o(3)+go(1)q4 (2)4o(3)
—24 o(1)do(2)4-(3)j

(g, denotes an excited state. ) These functions are then
multiplied by appropriate 70 spin-isospin functions
When S=S,=I=I,=+-sofor example, the result is

+= (V'-') L4-(N.fo+»f.)+4»(l.f.—»fo)j.
(This function is totally symmetric under interchange
of any two quarks. )

After obtaining the wave functions, we remove any
c.m. motion, as described in the text.
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Momentum Transfer Dispersion Relations for Three-Particle
Potential Scattering Amplitudes*
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The analytic properties in momentum transfer of a class of three-particle scattering amplitudes are
investigated in this paper. The amplitudes considered are those in which there is a two-particle bound
state in both the initial and 6nal state. The following results are obtained: (1) The amplitudes are analytic
inside a Lehmann ellipse in the scattering angle for all real energies. (2} For real energies below the three-
free-particle threshold, the amplitudes are analytic in the momentum transfer plane except for real left- and
right-hand cuts.

I. INTRODUCTION

A KNOWLEDGE of the analytic properties of
multiparticle scattering amplitudes is central to

a complete 5-matrix theory calculation of hadron
parameters and also to the extended phenomenological
analysis of their reaction processes. While no dispersion
relations for relativistic multiparticle scattering ampli-
tudes have been rigorously established, some progress
towards this goal has been made in the laboratory of
potential scattering. In particular, dispersion relations
in the total energy for 6xed directions of the individual
momenta have been proved for nonrelativistic three-
particle scattering amplitudes. '

In this paper, we investigate the analytic properties
in the momentum transfer variable of a class of three-
particle scattering amplitudes. The class of amplitudes
we consider are those which describe the elastic scat-
tering of a single particle from a bound state and those
which describe rearrangement collisions in which two
of the initial and final particles are in a bound state.
We will refer to these as "bound-state amplitudes. "

* Supported in part by the National Science Foundation.' M. H. Rubin, R. L. Sugar, and G. Tiktopoulos, Phys. Rev.
146, 1130 (1966); 159, 1348 (1967); 162, 1555 (1967). These
papers will be referred to as I, II, and III, respectively.

This class of processes is distinguished by having a
single well-defined momentum transfer. The present
study is restricted to the study of spinless, nonrela-
tivistic particles which interact via two-body central
potentials, which can be written as a superposition of
Yukawa potentials.

In Sec. II we extend a result of Immirzi' to show that
the bound-state amplitudes are analytic functions of
the scattering angle inside a Lehmann ellipse for all
real values of the energy E. In Sec. III we study the
analytic properties in the scattering angle of all per-
turbation-theory diagrams. For real energies below the
three-free-particle threshold we 6nd that each of the
perturbation-theory diagrams is analytic in the entire
scattering-angle plane with the exception of cuts along
the positive and negative real axes. In the remaining
sections we show that these analytic properties are
enjoyed by the full amplitude as well. In Sec. IV we
prove this result for the individual terms in the Fred-
holm expansion of the Faddeev equations, and in Sec.
V we show that this expansion converges uniformly in
the domain of analyticity. Thus, the result holds for the
full scattering amplitude. The conclusion of this paper
is that the nonrelativistic scattering amplitudes with a

~ G. Immirzi, Nuovo Cimento 34, 1361 (1964).


