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The acceleration of a massive body in an external Geld for general space-time geometrical gravitational
theories is obtained. The condition on the metric is such that mg/m;= 1 is obtained, and we reobtain the
result that en~/es;=1 in Einstein's theory for massive objects with time-independent internal structure.
But it is shown that a measurement of m, /ta; for astronomical bodies would measure space-time metric
components which have not been measured in other gravitational experiments. In the scalar-tensor gravita-
tional theory due to Brans and Dicke, it is shown that ms~/m; diGers from 1 by a term of the order of the
massive body's gravitational self-energy divided by its total energy.

I. INTRODUCTION
" 'N another paper, ' it was shown that the experi-
~ ~ ments of Eotvos' and Dicke' which measure the
equality of gravitational and inertial masses of bodies to
be within a part of j.o" indicate nothing about whether
the gravitational self-energy of bodies contributes
equally to both the gravitational and inertial masses. If
the ratio of gravitational to inertial mass for a body is
assumed to be

nsg SP$—=1+v— p(*)p(*')
5$'

f
x—x'[

p(x)d'x, (1)

where q is a dimensionless constant of order j., G is the
gravitational constant, c is the velocity of light, and

p(a) is the mass density of the body, then the correction
term in (1) is of order 10 " for the bodies used by
Eotvos' and Dicke' in their experiments.

For astronomical bodies, the correction term in (1)
becomes much larger (10 ' for the planet Jupiter, 10 '
for the Sun). In I, several experiments were proposed
to measure ns, /rn; for astronomical bodies and thereby
measure q.

In this paper, gravitational theories will be examined
with the purpose of determining what a measurement of

y in (1) would reveal about the gravitational theories.
Our consideration mill be restricted to gravitational
theories which can be expressed as geometrical theories,
that is, as curved Riemannian space-time geometries in
which "test particles" move along geodesics of the geom-
etry. The equivalence principle (EP) is therefore im-

mediately valid for "test particles" which follow geo-
desics of the geometry, but this paper is concerned with
the movement of massive bodies and whether ns, /rn;= 1
for them also.

Massive bodies will be placed at rest in a space-time
also containing a distant external mass source 3f,. The
acceleration of the massive bodies, which is propor-

g= —(GM,/E') R, (2)

K. Nordtvedt Jr. preceding paper Phys. Rev. j.69 H)y4
(1968); hereafter referred to as I.

~R. V. Eotvos, Ann. Physik 68, 11 (1922).' P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (¹Y.)
26, 442 (~m).

where R is the vector from the external mass to the mas-
sive body, will be calculated. The ratio of' rn, /ns;
for the massive body will be obtained by making the
identification

dsx//dP = (ns /rn )g (3)

II. GENERAL METRIC EXPANSION
(SINGLE STATIC SOURCE)

To illustrate the approach to the problem which will
be employed in this paper, we review the metric analy-

4V. Fock, The Thoery of Space, T&ne, awing Graeitatiom (The
Macmillan Co., New York, 4964), 2nd ed. , Chap. VI.

~ A. Papapetrou, Proc. Phys. Soc. (London) 64A, 57 g.95j.).
6 C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (196k).

ioj.7

This approach to the problem 6ts the original domain
of application of the KP—weak gravitational 6elds and
slowly moving bodies. Also, by focusing on the New-
tonian 1/E' acceleration, several potential complica-
tions are bypassed.

(a) A massive body is by necessity an extended.
body which can sample higher multipoles of the ex-
ternal gravitational 6eld. However, multipole accel-
eration terms go as R ", e&2, and will not contribute
to (3).

(b) Relativistic gravitational theories are known to
yield accelerations toward external bodies which devi-
ate fl om thc Ncw tonlan 2 acceleration~ but thcsc
deviations go as R ', etc., and also will not contribute
to (3).

In this paper we reobtain the results of Fock4 and
Papapctrou, ~ that in Einstein. 's gravitational theory
ns, /ns;=1 for a stationary, stable massive body How-.
ever, this null result is shown to be due to the exact
cancellation of several nonzero correction terms in (1),
and here we explicitly express our result in terms of the
several nonzero terms. Therefore, an experimental mea-
sure of rf in (1), as proposed in I, would offer an experi-
mental test of metric terms in Einstein's gravitational
theory which have not been measured to date.

Also, it is shown that the Brans-Dicke gravitational
ry6 does not fup ll the Kp glc obtain the result

that rn, /rn;W1 for that theory.



1018 KENNETH NORDTVEOT, jk.

gpp= 1—2a(tn/r)+2P(m/r)'+

gpss= o,

(6a)

(6b)

gp'= —[1+2'(~/r)]4p+ (6c)

Equations (6a)—(6c) are required to approach the
Lorentz metric as r —+ ~, 0 indicates the time coordi-
nate, k=1, 2, 3 are the three spatial coordinates, r is a
radial variable, r = (x'+y'+s')'~P, n, P, y, are dirnen. —

sionless constants of order 1 which are determined by
the assumption of a particular gravitational theory and

by 6eld equations for the g;;. The power series Eqs.
(6a)—(6c) are assumed to be convergent for sufficiently
small )pp/r. With (4) giving the connection between the
source mass M and the parameter m, n —=1 in order to
obtain Newtonian gravitation as a weak-field limit of
the gravitational theory.

An analysis of past and future experimental tests of
relativity in terms of the general metric above yields
their dependence on the parameters n, t3, y,

(a) The frequency shift of spectral lines in a gravita-
tional potential p is'

8) /) = —n(y/c') .

(b) The deflection of light passing at distance d from
a source nz is'

M= 2(m/d) (n+y) .

(c) The angular advance of the perihelion position of
a planetary orbit of semimajor axis u, period T', and
eccentricity e is (per revolution)'

8X'u2
S= [2n(n+p) —P]

f272 1 g2

(d) The change in round-trip radar time between two
planets (in circular orbits of radius ri and rp) when the

~ A. S. Kddington, The Mathematical Theory of Relativity
(Cambridge University Press, New York, 1957), p. 1D5.

H. P. Robertson, in SPace Age Astroriomy, edited by A. J.
Deutsch and W. E. Klemperer (Academic Press Inc., New York,
1962), p. 228.

1'I.. I. Schi6, in Proceedings of the 1965 Summer Seminar on
Relativity and Astrophysics (unpublished).

sis of Kddington, Robertson, ' and Schi6' which we will

follow and extend. Given a spherically symmetric
static source of gravitation of strength

m=—GM/e'

(through most of the rest of the work, we will use units
in which G =c= 1), the most general Reimannian space-
time exterior geometry can be written as

dS = gs~dS dX~p

with the metric components given by a general power-
series expansion in the sole dimensionless constant of
the problem nz/r;

radar path passes close by the Sun at distance d is'

t')t = [2(n+y) ln(4rirp/d') ——p'(y+2P)](m/e) . (10)

[To obtain (10), it is important to state that the
zero-order time must be dehned in terms of measur-
ables, i.e., orbital periods of the two planets, not their
radial distances r1 and r2 which are coordinate-system-
dependent. ]"

(e) The geodetic precession of a gyroscope spin axis
when the gyroscope is in a circular orbit of angular fre-
quency co about a central body m, with the gyroscope
spin axis in the orbital plane, is"

Q = —L(n+ 2y)/2](m/r) p) .

For Einstein's theory of gravitation n= P =y = 1, but the
value of the general analysis above is that it allows a
simple determination of the expected experimental re-
sults for any space-time metric. Also the use of the
coeKcients yields the sensitivity of any experiment on
each of the metric components.

III. GENERAL METRIC EXPANSION
(SEVERAL MOVING SOURCES)

For the purposes of this paper, Eqs. (6a)—(6c) must be
generalized to give the metric for several moving
sources. Only gpp will be needed beyond the linear order
in the source strengths, and gpp will only be needed to
second order.

Immediately, (6c) generalizes to

m1 m2
1+27 + t')p pr+ (12a)

r—r1 r—r2

for two sources, where correction terms due to motion
of the sources are not required to be kept in g» . Equa-
tion (12a) is uniquely determined to this approximation
by imposing the condition that a two-source metric
must become the one-source metric in the limit as
either of the source strengths vanishes.

For moving sources, the mixed space-time compo-
nents of the metric are nonzero and to lowest order in
the velocity of the sources are

~1 d~l m2 d+2
gp) =4& +

/r —r,
~/

rtr /r —r,
~/

dr )
m1 dX1

+4A' — (r—ri) (r—ri)"
~r—r, ~' dt

m2 dX2
+ (r—r,) (r r,)')+, (12b)—

"D.H. Ross and L. I. Schi8, Phys. Rev. 141, 1215 (1966)."L. I. Schift, in Proceedings of International Conferences on
Relativity and Gravitation, Warsaw, 1962 (unpublished).
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where the new dimensionless constants 6 and 6' are in-
troduced. Equation (12b) is the most general expression
which transforms like a spatial vector under spatial ro-
tations, and which is linear in source strength and source
velocity. (Einstein's theory gives 6=1, A'=0, but the
~' term cannot be ruled out in considering all possible
geometries fulfilling our general conditions. )

The g00 metric component to lowest order for two
sources is

m1 m2
goo'" =1—2a +

r—r1 r—r2
(12c)

The next-order general terms which can contribute to
g00 are given by

m2 m1m2 1 1 ) mi dxi ' mo dxs '
gpp'o&=2' + +2&' +

I
p&' +

li|—i
I

I'—'
I

m2m] m1 dX1 m2 dxp)
+X — (r ri—) ai+ (r—ro) ao +i&."' (r ri—). + (r—rp)

i + . , (12d)
dt fr —r

where a=d'x/dto Equat. ion (12c) follows by the super-
position principle for linear terms. Equation (12d) is
unique (up to the magnitude of the dimensionless coeffi-

cients) with the imposition of the following conditions:

(a) gpp becomes (6a) as either mass is set equal to zero
or the position of either mass goes to infinity and the
other mass is at rest.

(b) gpp ~ 1 as one moves far from all sources. Before
the limit 1 is reached, gop

—&1—2(M/E)+2/(M/R)'
Lsee (6a)j, where M=mi+mp to lowest order.

(c) The correction terms in gpp due to motion of the
sources are second order in time derivatives of position.
(This is part of a more general condition that gpk be odd
in time derivatives of source position, while the other
metric components are even in the time derivatives. ")

(d) gpo is symmetric under the interchange of source
labels.

(e) gpp is a scalar under spatial rotations of the co-
ordinate system.

IV. EQUATION OF MOTION

The massive bodies which will be studied are to be
considered an assembly of mass elements, each of which
is assumed to follow geodesics of the geometry produced
by all the other matter in the space, i.e., each mass ele-
ment moves in the geometry produced by any external
masses plus the other mass elements in the massive
body.

The result we possibly expect is that a massive body
m of radius a could have an anomalous acceleration in a
gravitational field g of order

then the internal e6ects in each mass element would be
expected to cause anomalous accelerations for each ele-
ment of order

dt(goo+2gokv +gkk v v ) (16)

with v"=dx"/dt The pr. oper time s is required to be an
extremum for the actual trajectory xk(t). We write

goo=1+hoo'"+hoo"'

g0k h0k y

gkk' (1 has) 4k'
y

(17a)

(17b)

(17c)

and expand (16) to sufhcient approximation to obtain

s= dtLI ——',v' —b'av'+iohppii& —ishoo("'

+phoo"'+hokv"+v'(oh. ,+-,'hop&'&)$. (18)

Under a variation of the trajectory, xk ~ xk+bxk which
vanishes on the end points, and integrating by parts, the
equation of motion for the mass elements is obtained:

tta- (bm/t'&a) g- (1/E'") (m/a) g,

which goes to zero as Ã —& ~. tAte can then be justified
in considering mass elements as following geodesic paths
in the geometry produced by alt other matter.

The equation of motion for a body with its position
g~ given as a function of coordinate time t is desired, so
we write the proper time integral

a (m/a)g. (13) dv 1 d d d8—+——(v'v) ——(Cv)—
If this massive body is divided up into E elements of dt 2 dt d't d't

mass

and size
bm m/iV

tta~a/E'" (14b)

where
A = kp(hopi&&+hopis&) —i(hop(i&)o (20a)

= —&& —~(& v) ——,"pVC, (19)

'~ This time-symmetry property imposed on the metric implies
neglect of gravitational radiation terms. See A. Einstein, L.
Infeld, and B. Hoffmann, Ann. Math. 39, 65 (1938).

~e,y, z h0s, 0y, 0z q

C= h„+-',hopi' &.

(20b)

(20c)
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V. TWO-BODY BOUND SYSTEM
(CIRCULAR ORBIT)

Consider two masses mi and m; in a circular orbit
about each other, and a third distant external mass m, .
This is the simplest massive system that we can con-
struct, using only gravitational forces. We seek. that
part of the acceleration of the two-mass system toward
m, which is proportional to the inverse square of the
distance to m..

Operationally, this acceleration can be measured by
the following procedure. Any local clock being used by
an experimenter is to be calibrated in terms of universal
coordinate time t, i.e., the proper time of a clock which
is at rest at a large distance from all the masses in the
experiment. We place the massive system in a circular
orbit about m, .The radius of the orbit can be calibrated
unambiguously by the round-trip time (to) for light to
travel to the central mass m, and return. The orbital
frequency is measured in terms of t. Then the central
acceleration toward m, can be determined by using
Kepler's third law. In particular, we seek the m, /m;
ratio of massive objects, so

where the acceleration term v has been divided into
a part parallel to a, and a part perpendicular to a, .

(b)
BC—(Cv) =Ca+ v+v VCv.

dt Bt

But from (20c), (12a), and (12c)

me mi
&= —(2m+1) — +

r—r, r—r;
(23)

Using our assumption that m, is at rest, this term gives

me mi—(2&+1) a;.a+ a.
r—r, r—ri

+(v—v,) W v+v; V v
fr-r;/ /r-r.

/

plus totally internal terms, plus terms proportional to
ns, '. Keeping only accelerations linear in m„we have

Ol

mice r=mgm. g'r2 — 1 2

wg/wi 6) r /wey

me mi—(2y+ 1) — g;.,(r)+ g,yvv g, , (24)-r—r r r'
where

with ~ and r measured as described above and m, mea-
sured by the co'r' value of a very small test particle. One
can in principle do the experiment with very large
(r ~ ao) orbits eliminating any order (m./r) corrections
to the above equations.

In. (19), several of the terms contain e' of the test par-
ticle. We will need e' in those terms only to the lowest
Newtonian order, so we can use for circular orbits

v,2= mP/Mr g,

vP =m;2/Mr@,

(21a)

with M=m;+m;, r;;= ~r;—r;~. It is assumed that the
two-body system has acquired no signi6cant velocity
toward m„and it is assumed that m. is at rest. We now
analyze each term in the equation of motion (19):

(a) ——(n'v) = —-', v'a —v av.
2dt

But we divide the particle's acceleration into an internal
(a; t) and external (a,) part with a, being proportional
to m, and directed toward m, . Then this term divides
into

(——',v'a, —v a,v)+(——',v'a;, t,
—v a; ~v).

g.=V(~,/I r—r. l)

g;,(r) = V(m;/(r —r;~).

(25a)

(25b)

(c) 8 = 4S—

(d) This is the usual potential term:

tn; m, ' m,—vs= —v (8——,')~
%fr-rf Jr r,

r
/r--rf

me mime a
+& +

mi
+46' (r—r~) v;(r—r.)I'

fr-r, f'

where we have again used the assumption that m, is at
rest. Keeping only terms proportional to rN„' we have

We are interested only in the external parts of our ac-
celeration terms, so anally we keep

+-',x r—r,' a,+(solely internal terms)
fr—r, [

[g& +&» ga»i&4vx, (22) Again dividing a; into a.+a; ~ and keeping all terms
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above linear in m„we have

( mg m, m, m|,—VA = V —(28—1)I —V + — V — —n'

Ir r—, I Elr—r,
I

Ir-r,
l Ir—r, l

Ir-r,
V-

ri—r, r—ri

Regrouping the terms of interest above, then

mi
a,+-',y (r—r,) a,(r—r~).

r—ri r—ri '

—Vw =g. 1—(28—1+-,'x)
m g mi—g;~i(r) n'+ (28—1) +-',x r—r; g,r—r;. (27)

r—r, r—r, r—ri'

(e)
mi mi

8 v=46 v; v+45' —r—r,'vr —r,"v;.
r—ri

The divergence of 8 v gives totally an internal acceleration.

1~2yc2

yields an external term
(V+s)v'g' (28)

Combining all of the above results —(22), (24), and (26)—(28)—we arrive at the equation of motion for the
particle m, :

mi mi
a, =g. 1+(4h—2P —2y ——,'x) +yves —(2y+2)v„,' +(4A'+-,'y) (r—r) g,(r —r)

r' —r' r a~r.

m,mg—g; ~(r;) (27+2P) +n'-
r;—r, ri—r,

Equation (29) can be further simplified by setting

—(2y+2) v, l,g,v»+ (solely internal accelerations) .. (29)

r,—r;= (r,—r,)„+(r,—r,),

(parallel and perpendicular always refer to the direction of g,). Also a center of mass is defined:

Then

R= (m, r;+m, r,)/cV.

(r;—R) (R—r,)

and

Equation (29) can then be written as

Ir;—r,
I IR—r,

I

Ir,—r.
I IR—r, I

IR—r.I'

(r;—R) .(R—r,)

IR—r, I'
(30b)

m 2(y+P)m, —n'm, m;
a;=g, 1+(4A—2p —27—2x)—+yap —(2y+2)vl /+I 4h'+2x+ r;,„'

r'j

2 (y+P)m; —n'm; m;—(27+2)v»;g.v»+I «'+2x+ r, |llge~jil+(internal accelerations), (31)3f rg'

To obtain the acceleration of the m;, m; two-body system we take the combination

a= (m, a~+m;a, )/M. (32)
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The acceleration a; is obtained from (31) by the appropriate inversion of labels i &-+ j.The internal accelerations
which we have not been interested in have the expected property

So finally
Wag( I) lent+ ~tg( t) 111C (33)

.2 & . .2 .2 1 . .2mme mv; ~my, mptra ~miff &j 'm'
a= g. 1+(86—4P—Q—x) +y —(2y+2) + (86'+x+2y+2P —cx') r;,~,

'
M Mr@'

(rN v„v~);+ (mv„v, ); m'mj—(2y+2)g. + (8h'+X+ 2y+2P —n') g,r;&&r;;& (34. )
llI

We now consider a circular orbit for m; and m; with
the orbit plane normal vector making an angle 8 with
the direction toward m. . This leads to the following time
dependence of the velocity of m; or m; (s is the direction
toward m,):

v, = v singlet cos8,

v„=v cosset,

v, =v since sin8,

(35a)

(35b)

(35c)

with the magnitude of v given by (21a) and (21b). The
interparticle position vector is then

(r; r;),=—r;, cosset cose,

(r; r;)„= r;, s—in&ut, —

(r;—r,),=r;; cosset sin&.

(36R)

(36b)

(36c)

All the terms in (34) can now be evaluated. The ac-
celeration along g, is given by

a,= g.(1+(rrl„m /Mr; )[(86 4P 3y X)— — —
+xv sin28(2P+ X+86'—a' —2))) (37)

when averaged over the rotation period of m; and m;.
There is no average acceleration in the y direction. In
the x direction, however, there is a time-averaged
acceleration

~,=g,(2P+ x+85,' u' 2) (rrl, ,m;/Mr;—;)—
X-',sin9 cos8. (38)

Additional acceleration terms which oscillate as
cos2cot and sin2cot but average to zero over a period of
the orbital motion of m, about m; will be discussed in
Sec. VII.

Equations (37) and (38) can be compared with (1)
to give an expression for q, the EP violation coeKcient,
in terms of the general metric coefficients.

Demanding that g= 0 for arbitrary orientation of the
two-body orbit gives two constraints on the metric ex-

pansion coefficients;

86—4P—3y—X=0
and

(39a)

2P+X+86'—n' —2 =0. (39b)

Equation (39b) also guarantees the vanishing of the
anomalous a, acceleration given by (38).

In Einstein's grativational theory y=P=h=n'=X
=1, while 6'=0 "so both (39a) and (39b) are fulilled.
Note that both (39a) and (39b) contain p, the coefficient
of the nonlinear term in gpp. This result conirms the sug-
gestion of the previous paper (I), in that the motion of
a massive body depends on the gravitational accelera-
tion of gravitational self-energy.

In an appendix to this paper, all of the coefficients
above except e' are calculated in the scalar-tensor gravi-
tational theory of Brans and Dicke. We obtain P= X= 1
(X=1 is necessary for the metric to be properly re-
tarded), y= (1+w)/(2+w), 6= (312w)/(4+2w), and
4'=0. m is a dimensionless parameter of the Srans-
Dicke (BD) theory (as w-+ ~ Einstein's theory is re-
obtained). Equation (39a) is not fu1611ed for the BD
theory; using the above results,

(84—4P—3y—X)an= —1/(2+a)) . (40)

VI. MASSIVE GASEOUS SPHERE

The previous computation of the acceleration of a
two-body system can be altered to give the acceleration
of a massive gas sphere maintained in equilibrium by
kinetic gas pressure. We can then apply the results of
this work to the examination of the m, /m; ratio for
normal stars (like the Sun) in which the equilibrium of
the star is overwhelmingly produced by the balance of
gravitational attraction and particle kinetic pressure.

The two-source metric expansion used previously is
generalized to many sources by replacing in all the
metric terms the single m; contributions by a summa-
tion (g;) over many m;. Then (31) reads

2(V+P)m —o'm ) m
at=g. 1+(4~—2p —27—2X)z +vvt' —(27+2)v-f'+2 4~+ix+

re /r„

2(y+p)m; —n'm, -
—(27+2)v~vg, v»+P 4h+vx+-

i SI
g,rt, , (41)
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Taking a directional average by averaging over the
kinetic motion and position of many particles in the gas
sphere, we have the average quantities

VII. ANOMALOUS ACCELERATION OF
NOÃSTATIONARY SYSTEMS

{'v"iir "g)=0

('v)uvre )=0,
roof12 r, i3 r,

1p2 (42d) a,(osc) = $ sine cose cos2aut,

cg(osc) = —$ slIle sm2tdt )

a,(osc) = f sin'8 cos2&ut,

(4Sa)
Taking the sum

a=+;m;a;/M,

M=gt m;,

(43)

(4Sc)

To obtain the results (37) and (38) for the accelera-

(42a) tion of a two-body orbiting system in an external 6eld,
a time average was performed over a period of the orbit-

(42b) ing motion of the two bodies around each other.
There are additional oscillatory terms in the exact

(42c) expression for the acceleration of the two-body system;
they are

we obtain the acceleration of the sphere With

a=g, 1+L(46—28—2y —-,'x)

mimj
+6 (p+v+4~'+2x —2n') jp

s,j Mrj

mPj.2+ l(v —2)Z (44)
M

»i1 re

Equation (44) can banally be expressed as

(45)

a= g, |1+L-',(86—48—3y —x)

mggj
+g(28+x+86' —n' —2)jg

The eP in (44) are needed only to the classical New-
tonian order, so we can use the usual virial theorem for
a system in equilibrium:

g= g (~ ~ /2ur ){S~'+X+~+2P+2 n')—
The magnitude of a(osc) is

(a(osc)
~

=P sine.

In this section we explore other con6gurations for
massive bodies in order to see if the oscillatory anoma-
lous acceleration found above exists in general.

Next consider a two-body orbit with sin8=0, so that
the above effects (48a)-(48c) vanish. However, let the
orbit be elliptical. Then the conditions (21a) and (21b)
will not be valid at all times during the orbital motion,
only on a time average over the orbital period.

Specializing (34) to sin8=0 gives the simpler expres-
sion

ngP$j
a=g, 1+(86—48—2y —x)

Mr;j

tS VP+BLPg
+7

for the acceleration of a massive gas sphere in an exter-
nal 6eld g,.

The two contributions to rj in (46) are the terms {39a)
and (39b) which have already been shown to vanish in
Einstein's theory. For a massive gaseous sphere we can
now express the parameter which measures the viola-
tion of the EP [q in (1)) in terms of the expansion, co-
eS.cients of the space-time metric:

g =4k—(5/3)P ——,'y+-,'b' —gn' ——,'.
An experimental measurement of g as proposed in I

is therefore seen to be a measurement of a combination
of several terms in the space-time metric which have not
been measured to date. Only y and P have been mea-
sured, while 6 and ~' v6ll be measured in the orbiting-
gyroscope experiment under development at Stanford
University. "

Letting e be the conserved Newtonian energy of the two-
body orbit,

m'nzj
e= —', (m,v;2+ mpP) ——

r'j
Eq. (50) yields

5$gmj 26
a=g, 1+{84—48—2y —x)—+~ . (52)

Mrj M

Using Einstein's theory's value for the coeKcients gives

(53)

The anomalous acceleration term in (53) only vanishes
when averaged over the orbital period. At orbital
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perigee, (53) gives

a =g.(l+ e

while at orbital apogee it gives

In this paper we calculate these coefFicients for the
Brans-Dicke (BD) gravitational theory. ' All of the

needed coefficients except ee' are calculated, and we hope

to obtain a' in a later paper.
The BD Geld equations for the space-time metric ten-

sor and their scalar Geld are'

( elm)a=g, l
1—c (S4b)

and

Sm T
2y-

c4 3+2w
(A1)

with e being the eccentricity of the orbit.
Finally we examine a pulsating gaseous sphere. Our

previous results concerning the acceleration of the
sphere depended on using an equilibrium condition for
the spher- the virial theorem relating mean kinetic
energy to potential energy. Here we assume that the
sphere radially pulsates about equilibrium.

%hen the pulsation is at the extreme condensed state,
the kinetic energy of the gas will exceed the requirement
of the virial theorem, i.e.,

m gamp

P m;o;e= —,
' P +2beg. (55)

But when the pulsation is at the extreme expanded
state, the kinetic energy of the gas is less than required

by the virial theorem;

which reduce to Einstein's Geld equations in the limit

w~ oo. To lowest order, (A1) yields

2 i m1
4 =4o+-

c' 3+2w!r—r, !

(A3)

for a point source.
In the BD paper, the coeKcients y and P are calcu-

lated in order to obtain the advance of planetary peri-

helion. They obtain

and
v= (1+w)/(2+w) (A4)

8s ( 1+w
a;=—

l
&' — &g;~)) e; i's—~s'& l—e'(A2),

ace& 3+2w

m'mj
Pmpg=o 2 —2hee. (56)

(AS)

Using Einstein's theory's value for the metric coeK-
cients and evaluating expression (44) for the cases (55)
and (56), we get, respectively, accelerations of the sphere

8~ t' 1+w) 1 d'
~oo= — —

I &oo goo2'
yoc4& 3+2w) yo dt'

(A6)

To obtain X, we need the Roo equation to linear order

in the source strength:

2 geo
a=I„!1+-—.

3m
(58)

Roo=l'ao)o' —I'oo)~'

+oo=—o+ goo+goo[oo —ogoo[oo.

57
Only the part of Rzo linear in Christoffel symbols is

required:

These anomalous accelerations will also vanish when

time is averaged over the pulsation period.
The common feature of all three systems examined

above which showed oscillating anomalous accelera-
tions was that all systems presented a nonstationary,
oscillating conGguration to the external mass m, .

In a future paper we will study these oscillating ac-
celerations to see if they produce in principle measur-

able eRects or whether they are simply coordinate-
system-dependent anomalies.

APPENDIX

The coeScients which appear in (39a) and. (39b) can
be obtained for Einstein's theory from the EIH paper. "

Equation (A6) then yields the equation

4s 4+2w 1 d'
—

~ V'goo= —— p
Qo 3+2w $o 8P

Using (A3), and'
+ogooioo

—goo[ oo (A9)

2+2w ml
!g~~ = —4r" & (A10)

1
o&"+48,' r—r~ v~(r —r~)o, (A11)

r—r1 1'—1'1
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and6 Therefore we have, using (A12),

8+6w d' nsk

Vkg00 ——8n.P+
2+w dt' lr —r&l

ol
3+2w 6+4w

V g0k g0klks= 160r 20k+
4+2w 2+w—(8&—86') r—rg ag, (A13)

r—ry

L(4+2w)/(3+2w)](I/40) =1 3+2w
V gok goetks 16Ã TpA,

(in units G= c= 1), (A12)

3+2w B0

+ St' gss i Ok+ gks t s0 (A 18)
4+2w BtBx"

which has the solution
X 0P—3 r—rk vg(r —rk)', (A19)

r—ri ' r—rj. '
m& t 4+3wi

goo=1 —2 +I 4~—4~'—
2+w I

which yields
3+2M mk

gok 4 &j.

4+2co fr—ref
(A20)

X
r—ri

Comparing (A14) with (12d) gives

X=46—4d, '—L(4+3w)/(2+w) j.

(A14) Comparing (A20) with (12b) gives

A = (3+2(a)/(4+ 2(o),

s'=0,
which inserted into (A15) gives

A15

(A21a)

(A21h)

In order to obtain 6 and 6', we use the E.o& equation
which to linear order is

x= j. (A22)

Sx 18 8
~oa= ——— &or ——— 4,

goes qh0 Bt Bxk

with the linearized Eo& given by

~0k 0V g0k+sg0sisk 0gssi0k+0gksi0s ~

The evaluation of (39a) with the BD coefficients does
not yield zero:

(A16)
(8h—4P—3y—X)sn ———1/(2+ w), (A23)

indicating that a massive body in the BD theory will
possess an anomalous 1/R' acceleration toward an ex-

(A17) ternal mass.


