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Etlnivalence Principle for Massive Bodies. I. Phenomenology
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The experimentally measured equality of inertial mass (m;) and gravitational mass (mg) of a body
indicates nothing about the mg/m; ratio to the order of gravitational self-energy/total energy of the body.
Experiments are discussed, using astronomical bodies, which measure m~/m; to the order of the gravitational
self-energy of the bodies. The con6guration of the stable three-body problem of Lagrange is shown to be
particularly sensitive to the possible difference 6—=mg/m, —1 of the Sun.
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which is of order 10 "for laboratory-size bodies. The
experiments of Eotvos' and Dicke' indicate nothing,
therefore, about whether the gravitational self-energy
of a body makes a contribution to both the inertial and
gravitational masses of the body and, more important,
whether the gravitational mass is equal to the inertial
mass including contributions of order (1).

Without in any way contradicting the experimental
results of Kotvos' and Dicke, ' the ratio of gravitational
to inertial mass for a general body can be assumed to be

I. INTRODUCTION

~ 'HE equality (in appropriate units) of the gravita-
tional mass to the inertial mass of small labora-

tory-size bodies has been experimentally checked to a
part in 10' by Eotvos' and to a part in 10"by the more
recent work of Dicke. ' This equality of inertial and
gravitational mass leads to all bodies accelerating at the
same rate in an external gravitational 6eld.

The generalization of the above experimental results
into the equivalence principle (EP) was made by
Einstein, ' the EP stating that a uniform gravitational
field is indistinguishable (locally) from an accelerated
coordinate system.

It is important to point out that the laboratory-size
bodies used by Eotvos' and Dicke' contain. an indni-
tesimal fraction of gravitational self-energy. For a body
of mass m, characteristic size u, the ratio of gravitational
self-energy to total energy is

gAO would mean a violation of the Ep which would
become observable only for very massive bodies. The
purpose of this paper is to examine possible experi-
mental measures of the coeKcient g.

It will be shown that Kepler's third law is not fully
sensitive to possible anomalies of the form (2) for the
Sun, a result which has been mentioned before by
Dicke. 4 However, the stable three-body con6guration
of Lagrange is shown to be fully sensitive to a possible
~/0 for the Sun.

ha ——(15/2) g(Gm/c'a), (5)

which yieMs for the Sun 68 1.5&(10 ' when q~1.
Consider the Sun-Jupiter system. If separated by a

distance R, Jupiter will experience an acceleration

IL KEPLER'S THIRD LAW

The correction term 6 in (2) grows with the mass of
a body. It is worthwhile to consider, then, the most mas-
sive bodies for which accurate dynamical knowledge is
availabl- solar-system astronomical bodies. For a uni-
form-density sphere of mass m, radius a,

6=(6/5)g( Gm/c' )a. (3)

With p 1, the planet Jupiter yields 4z 10 ".For
the Sun, the correction term 6 is substantially larger.
The Sun is not a uniform density sphere, rather its mass
is strongly concentrated in its center. A solar density
distribution of

p(x) = poexp( —4x/a), (4)

where u is the solar radius, fits the standard stellar
models well. ' Then

d xd sG
m, /m;= 1+q— p(x)p(x')

c fx—x'/

as = —(Gms/R') (1+~v),
p(x)d'x

(2) while the Sun's acceleration is

(6a)

where g is an unknown coeKcient of order of magnitude
1.p(x) is the mass density of the body, G is the universal
gravitational constant, and c is the velocity of light.

' R, V. Eotvos, Ann. Physik 68, 11 (1922).
P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (N. Y.)

26, 442 (1964).
~ A. Einstein, Ann. Physik 36 (1911).
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as = —(Gmg/R2) (1+6s), (6b)

where (2) has been used for the m, /m; ratio of the bodies.
Equations (6a) and (6b) yield a modified third law of
Kepler,

4n'R'/T'= G(ms+mal+ mqDs+msAq) . (7)

R. H. Dicke, in Gravitation ard, Relativity, edited by H. Chin
and W. Hoffmann (W. A. Benjamin, Inc. , New York, 1964).

~ M. Schwarzschild, Structure and Evolution of the Stars (Prince-
ton University Press, Princeton, N. J., 1958), Chap. VIII.
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With etta/ttts~10 ', both correction terms in (7)
which result from an EP violation are of order 10 8

times the leading rtts term. LNote that because As in

(7) is multiplied by tres, the part in 10' correction term is
quenched. ]

In order to detect the hq and DJ. correction terms,
both E and T must be known to better than a part in
10'. This is presently true for the 7measurements; how-
ever, R measurements in the solar system are presently
accurate to only about a part in 10'. (R measurement
accuracy should improve in the next several years by the
use of radar range experiments between the planets. )
Also in (7) the mass of Jupiter must be known to better
than a part in 10'.

Because the Sun is the "pivot of the solar system, "
so to speak, Kepler's third law corrections are not fully
sensitive to the solar KP violation. This has previously
been pointed out by Dicke. 4

III. STABLE LIBRATION POINTS
OF LAGRANGE

In this section it is shown that the stable three-body
configuration of Lagrange is fully sensitive to 68, the
Sun's EP violation term.

Lagrange showed that a third body of negligible mass
moves in a stable orbit in the presence of two massive
orbiting bodies when placed in an orbital-plane equi-
lateral-triangle con6guration with the two massive
bodies. This arrangement is illustrated in Fig. 1.

For clarity, the circular-orbit case will be analyzed in
this paper. The location of the stable libration point
(SLP) in the case where the EP is not valid for the two
massive bodies will now be obtained.

In Fig. 1, there are two massive bodies of masses M~
and 3I2 revolving about a common center at distances
Ej and E2 with angular velocity co.

Solving the two equations for the orbit,

(1+62)GMg/(Rg+Rs)'= co'Rs (Sa)

FrG. 1.Lagrange's stable three-
body configuration.

and
(sinus)/Rg ——(sin8)/rt

(sinu2)/R, = (sin8)/re.

(13a)

(13b)

Equation (11) then yields

M1R1/rl M2R2/r2

which by the use of (10) gives

Equation (15) indicates that if A~WA&, the SLP is no
longer the third vertex of an equilateral triangle.

The law of cosines gives the relations

and
cosu~-—(r/r ) t(R,/r, ) cos8-

cosu2= (r/r2)+ ( R/sr)scos8.

(16a)

(16b)

Equations (16a), (16b), and (14) inserted into (12) give

(GM&/r&e)+ (GM2/r2') = eo . (17)

Equations (9) and (15) can then be used with (17) to
give explicit solutions for r~ and r2.

center af
rotation

There are no EP-violation terms in (11) and (12), be-
cause it is assumed that the body at the SLP is not
massive, i.e., its d, in (2) is negligible. This condition is
true for manmade satellites and asteroids.

By the law of sines

and

gives
(1+t4)GMs/(Rg+ R2) '= eo'%, (Sb) and

Lr~/(R~+R2) 1'=1/(1+~2)

Lrs/(R~+R, )fs= 1/(1+Ay) .

(18a)

(18b)
(o'(Rg+R2)'= G(M&+Mg+Mths+Ms&y) (9)

M1R1/MsR2 (1++1)/(1+t4) (10)

Let M~ be the Sun and M2 a planet, then d ~&(h~ and
will be neglected. Equation (18b) indicates a movement
of the SLP toward the planet by an amount of

The location of the SLP is obtained by ending the
point given by r& and r& in Fig. 1, where there are no
accelerations tangential to r, and the acceleration along
r is balanced by the centrifugal acceleration. These con-
ditions yield

(GMg/rg ) sinus= (GMs/rs') sinus
and

(GMq/rP) cosuq+(GMe/rs') cosum=to'r (12).
' For a general discussion of the stable libration point including

a proof of the stability of the equilibrium point see J. M. A.
Danby, I~'artdamesttals of Cetesteat 3fectsastecs (The Macmillan
Co., New York, 1962), Chap. 8.

Brs ————ah8(R)+R, ) . (19)

Equation (19) gives an effect fully sensitive to As. This
result suggests two possible experiments:

(1) It is known that several asteroids (the Trojan
asteroids) are captured in the SLP of the Sun-Jupiter
system. ' These asteroids wander in closed orbits about
the SLP of the Sun-Jupiter system. As viewed from
Earth, (19) yields an angular movement of the SLP

'Astronomical Society of the Paciic Leaflet No. 381, 1961
(unpublished).
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toward Jupiter by an amount of approximately

be 8r2/(Ri+R2) = Shs 1—" (2o)
for g~1.

(2) Consider a satellite placed. at the Sun-Earth SLP.
. If a radar signal is used to determine the range to the
SLP from Earth, (19) gives a decrease in round. -trip
radar time of

st = 32as—(R—g+Rm)/c. (21)

For g 1, Eq. (21) represents a change in path length of
1000 miles, or a change in time of 5&(10 ' sec.

Equation (21) can be compared with the proposed
Venus radar range experiment of Shapiro. When the
Earth-Venus line of sight passes close by the Sun,
Shapiro expects (on the basis of Einstein's theory of
relativity) a change in radar round-trip time of

ht 4(GMs/c ) 1n(4rsr v/u') (22)

with r~ and rp the Earth and Venus orbital radii, and
a the Sun's radius. Equation (22) gives a light-path
length change of 35 miles corresponding to a time of
about 0.2&&10 ' sec. Equation (21) is therefore about
30 times larger than (22).

There are several comments appropriate to the ex-
perimental observation of the e6ects in (20) and (21).
No body can be inserted precisely at the SLP with the
precise velocity necessary for the body to remain at rest
relative to the SLP. Bodies in general move in bounded
orbits about the SLP. An actual experiment must con-
sist of tracking a body about the SLP /either angular
tracking for the case of (20) or range, and perhaps range
rate, tracking for the case of (21)j.

By solving the classical equations of motion for a
body's motion about the SLP and by data reduction,
the SLP must be calculated from observational data.

It is also clear that other gravitational bodies in the
solar system will perturb the location of the SLP. These
effects must Grst be calculated, but again this is a classi-
cal correction which can be obtained by straightforward,
though tedious, calculation. The movement of the SLP
given by (20) and (21) represent additional effects pro-
duced by a possble KP violation for massive bodies.

It has been shown in (21) and (22) that the SLP shift
due to corrections to Newtonian gravitation can be two

I. I. Shapiro, Phys. Rev. Letters 13, 789 (1964).

orders of magnitude larger than Shapiro's' expected
shift. However, Shapiro's expected shift has properties
which make it easier to detect experimentally. The
effect represented in Eq. (22) decreases rapidly as the
Earth-Venus line of sight passes the Sun at a greater
distance. When tracking Venus during its approach
toward the Sun, Eq. (22) represents a rapidly changing
shift for the radar round-trip time, which is added onto
a slowly changing Newtonian radar round-trip time.
Therefore the effect (22) is relatively easily extracted
from the data.

Equation (21) represents a constant time shift, and
there is no way to extract (22) from the classical round-

trip time. However, (21) represents a part in 10' cor-
rection to the total radar round-trip time and should
therefore be absolutely detectable above the present
part in 10' uncertainty of solar-system distances.

IV. IMPLICATIONS FOR GRAVITATIONAL
THEORIES

The detection of a violation of the KP for massive
bodies would be interesting in its own right, but an
analysis of the implications of pQO for gravitational
theories would be desirable. In a separate paper, ' gravi-
tational theories will be examined. However, several
comments are pertinent here in this more phenomeno-
logical paper.

First, it is reasonable that the rate at which a massive
body falls in an external gravitational Geld is influenced

by the nonlinear properties of the gravitational theory,
since this question depends on the coupling of the gravi-
tational self-energy of a body to the external gravita-
tional Geld (a gravity-gravity interaction).

Second, even a null experimental result (g= 0) would
have interesting signi6cance for gravitational theories.
Whereas for test particles the ratio m, /m;=1 follows
immediately from the assumption that test particles
follow geodesics of space-time in the geometrical theories
of gravitation, it is nontrivial to guarantee the same for
massive test particles. In other words, an experimental
observation of g=0 would be a new test of gravita-
tional theories.

' Kenneth Nordtvedt, Jr., following paper, Phys. Rev. 169, 1017
(1968).


