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Third-Order Elastic Moduli of Barium Fluoride*
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The complete set of the six third-order elastic moduli for BaF~ was determined from the change in the
sound velocity under hydrostatic and uniaxial pressure. The third-order elastic moduli for BaF&were found to
be nonisotropic, although the second-order moduli are isotropic. The Grueneisen-mode y s and their low- and
high-temperature limit were calculated from the third-order elastic moduli, as well as the isotherm (P V-
curve) over an extended pressure range. The experimental results for the third-order elastic moduli were
compared with theoretically calculated values, and good agreement was found.

I. INTRODUCTION

HERE has been a growing interest over the last
few years in the anharmonic properties of solids,

due, on the one hand, to the increasing amount of ex-
perimental data becoming available, and, on the other
hand, to progress in theoretical interpretation of an-
harmonicity effects in solids. The third-order elastic
(T.O.E.) moduli of several of the alkali halides have
been measured experimentally, and computed theo-
retically. ' 4 All these substances are ionic crystals, pos-
sessing a lattice in which every ion is a center of inver-
sion. Thus, the theoretical calculations, which are based
on a central-force model, will yield a set of T.O.E.
moduli obeying the Cauchy relations. ' The experi-
mental data, where the complete set of the T.O.E.
has been measured, do obey fairly well the Cauchy
relations. '

The Ruorite structure is probably one of the simplest
nonprimitive crystalline lattices. Thus the study of the
T.O.E. moduli of an ionic crystal with such a structure
should be of interest. It might elucidate, perhaps, the
question of the applicability of the central-force model,
and the Cauchy relations to the fluorite structure.

Barium fluoride is an interesting material, being an
isotropic single crystal as far as its second-order elastic
(S.O.E.) moduli are concerned. ' It is of interest, there-
fore, to investigate its T.O.E.moduli in order to examine
whether the latter are isotropic as well, and whether
the Cauchy relations are satisfied. With this in mind, the
present investigation was undertaken. The complete
set of the T.O.E. moduli for BaF2 was determined, and
a comparison with theoretically computed values was
made.

* Work supported in part by the U. S. Atomic Energy Commis-
sion under Contract No. AT(11-1)-1198:Report No. COO-1198-
489.

f Permanent address: Physics Dept. , Tel-Aviv University,
Ramat Aviv, Israel.
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II. EXPERIMENTAL

The samples used in the present work were single
crystals of BaF2, purchased from the Harshaw Chemical
Co. They were in the shape of cubes, edges approxi-
mately 15)(16&&17mm, the cube faces corresponding
to (110), (110), and (001) crystalline planes. The orien-
tations of the faces were checked by means of x-ray
Laue back rejections, and were found to correspond te
the specihed crystalline plane within ~ deg. The crystal&
were hand lapped Qat to a few pin. , and parallel to a
few parts in 10'.

Barium fluoride, being a cubic crystal, has six inde-
pendent T.O.E. moduli, C111, Cygne, C144, C166, Cg23, and
C456. The Thurston-Brugger definitions of the T.O.E.
moduli' are used throughout the present paper. These
moduli were determined from the variation of the sound
velocity under hydrostatic pressure, and uniaxial com-
pression. Fourteen diferent combinations of propaga-
tion modes and stresses could be used. ' These were (a)
the fjIve different propagation modes under hydrostatic
pressure, (b) the six different modes under uniaxial
compression in the L110j direction, and (c) the three
different modes under uniaxial compression in the L001]
direction. These measurements provide 14 equations
for the T.O.E. moduli, from which the latter were com-
puted by means of a least-squares 6t. The sound waves
were generated by means of X and AC cut crystalline
quartz transducers, bonded to the sample with Nonaq
stopcock grease.

In order to avoid cracking the samples, and to elimi-
nate dislocation-lines movement, which might com-
pletely falsify the T.O.E. moduli measurements, ' ' ' the
uniaxial compression had to be kept at a low level; it
had never exceeded 35 kg/cm' in our measurements.
In addition, the crystals were irradiated with a p-ray
dose of about 3000 R, in order to provide additional
pinning centers for the dislocation lines, and thus hinder-
ing their movement. '"

As a result of the low uniaxial compression level, ali
experimental method possessing a very high sensitivity
had to be used. It is essentially a McSkimin frequency

' R. N. Thurston and K. Brugger, Phys. Rev. 133,Al 604 (1964).
8 Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966}.
~ K. Salama and G. A. Alers, Phys. Rev. 161, 673 (1967)."R.Gordon and A. S. Nowick, Acta Met. 4, 514 (1956).
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FIG i. Change in frequency versus hydrostatic pressure for a
longitudinal sound wave propagating in the L001) direction.

modulated pulse-superposition method, "—"using a cw
carrier wave, set up by J. Holder of this laboratory.

The changes in the sound velocity with pressure were
determined by measuring the resonant frequency closest
to the free transducer resonant frequency as a function
of pressure. If the bond does not change with pressure,
then the sound travel time is inversely proportional to
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FzG. 3. Change in frequency versus hydrostatic pressure for a
longitudinal sound wave propagating in the L110j direction.

the frequency. "The temperature of the sample was
monitored carefully at all times, and all measurements
were standardized to the same temperature.

The hydrostatic pressure was generated by tank nitro-
gen gas, and the pressure was measured by means of a
factory calibrated Heise-Bourdon gauge. The uniaxial
compression was generated with a Tinius-Olsen loading
machine, the stress being determined by a calibrated
load cell. Indium metal shims were placed between the
sample and the pressurizing surfaces in order to elimi-
nate shear stresses being applied to the sample faces
under uniaxial compression.

III. RESULTS

All measurements were made at room temperature,
and all results were normalized to 295'K. Figures 1—5
show the change in resonant frequency with hydrostatic
pressure for the five di6erent propagation modes. It is
interesting to note that the changes are negative,
namely, the sound velocity decreases with increasing
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FIG. 2. Change in frequency versus hydrostatic pressure for a
shear sound wave propagating in the $001$ direction, polarized
in the (00i}plane.
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FIG. 4. Change in frequency versus hydrostatic pressure for a
shear sound wave propagating in the l 110$ direct&on, polarized
in the L110$ direction.
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TABLE I. Value of (poW')„0' for the difterent propagation modes. TABLE II. Second-order abiabatic elastic moduli for Sap'
(units are 10"dyn/cm')

Propagation
direction

Displacement
direction

Stress
direction ( 6~')n 6'- C11 C12$ c44

L110]
[110]
[110]
[001]
[001]
[001]
[110]
[110]
[110]
L001]
[001]
[110]
D 10]
[110]

[110]
[tio]
L001]
[001]
[110]
[110]
[110]
[110]
[001]
[001]

(001) plane
[110]
[110]
[001]

[001]
[001]
[001]
[110]
[110]
[110]
[110]
[110]
[110]

hydrostatic
hydrostatic
hydrostatic
hydrostatic
hydrostatic

2.02 +0.14
0.0978+0.0074

—0.599 +0.047
1.55 ~0.11
0.620 &0.030
0.571 +0.023
0.70 +0.15

—0.077 +0.014
0.458 +0.017
4.96 ~0.31
0.711 +0.021
6.02 +0.17—0.315 ~0.017
0.701 +0.025

8.948 3.854 2.495

solving a set of linear equations of the form

ll~llxllcll= II&Il,

where IIA II is a matrix whose elements are either con-
stants, or depend only on the S.O.E. moduli. C is
the column matrix of the T.O.E. moduli, and 8 is
the column matrix whose elements are linear functions
of the various (psW') „=6'. Since the errors in the S.O.E.
moduli are negligible compared to the errors in the
(p6W') „6', the errors in the T.O.E. moduli can be de-
termined from the set of equations

under uniaxial compression. These two sets of data with
their errors are presented in Table III. As can be seen,
the agreement between the two sets of data is within
the limit of error, indicating that no dislocation motion
has occurred during the uniaxial runs.

From the complete set of experimental data, hydro-
static and uniaxial, the six independent T.O.E. moduli
are now determined by means of a least-squares fit, the
results being shown in Table IV.

The estimate of the errors is done as follows. The
errors in the different (psW') „=6' are computed by calcu-
lating the standard deviation from the experimental
data and setting the error as 0.675 times the standard
deviation. In this way the errors shown in Table I were
determined. The T.O.E. moduli are determined by

II~ Ilx Il~cll = IIAa

where IIACII is a column matrix of the errors in the
T.O.E. moduli and IIABII is a column matrix of the
errors in the elements of IIBII determined from the
errors in the (psW')„=6'. ln such a manner, the errors
shown in Tables III and IV were calculated.

IV. DISCUSSION

As has already been mentioned, BaF& is isotropic as
far as the S.O.E. moduli are concerned. ' It is obvious
that the isotropy relations for the T.O.E. moduli~

Cl.ll C133+6C144+8C466,

Cits CI33+2C144,

C166 C144+ 2C466 y

1.6

14

I.o

0.8
LIJ
M
tLI

0.6
C5

0.4

02

I I I are not satisfied. This can be seen from Table V, where
the values of the various ratios of the S.O.E. and T.O.E.
moduli, which should equal unity in an isotropic ma-
ferial, are shown. It therefore seems that BaF2 is not
inherently isotropic, the isotropy of the S.O.E. moduli
being accidental. This is probably caused by the fact
that the form of the strain energy function is such as
to make s(c»m») equal to c44.

The pressure derivatives of the S.O.E. moduli of
CaF2 have recently been measured. "' In Table VI
the values of the room-temperature pressure derivatives

TABLE III. C111+2C113, C144+2C166, and 2C112+C123 as deter-
mined se arately from hydrostatic and uniaxial runs (units are
10"dyn cm2)

-02 I

0 15 30 45 80 60 40 20 0
8

Hydrostatic
Uniaxial

Cl 11+2Cl 12 C144+2C166 2C112+C123

—115.0& 4.4 —32.9+0.12 —82.8&2.5—126.0&12.5 —29.1~1.2 —84,6&7.6

D003 t.IIOj [Illj t:0013

Fag. 8. The three mode y's as a function of the
crystalline direction.

"C.Wong and D. K. Schuele, J. Phys. Chem. Solids 28, 1225
(1967)."P. S. Ho and A. L. RuoB, Phys. Rev. 161, 864 (1967).



168 TH I RD —ORDER ELASTI C MODULI OF BaF2

TsnLE lV. Third-order elastic moduli of BaFs (units are 10u dyn/cms).

C111

—58.4+1.5
C112

—29.9&1.4
C144

—12.1~0.3
C166

—8.89+0.19

C123

—20.6+1.1
C456

—2.71~0.01

of CaF2 and BaF2 are compared. Here CI„C', and C
are pv2, where v is the sound velocity for the longitudinal
and the two shear waves in the L110j direction. As
can be seen, the pattern of the numbers for the two
substances is similar.

From the pressure derivatives, the Grueneisen-mode
y's y, , as well as the low- and high-temperature limit of
the thermodynamic Grueneisen y's yJ. and 7II can be
determined. "Utilizing Schuele's computer program, "
the y s and y~ and yII have been determined from the
pressure derivatives of the S.O.E. moduli for BaF2. The
y s for a few selected directions are shown in Fig. 8.
Here 1 is the slow-shear mode, 2 is the fast-shear mode,
and 3 is the longitudinal mode. As can be seen, y2 be-
comes negative over some directions, namely, for these
directions the frequencies, and hence the velocities of

TABLE V. Isotropy relations for the S.O.E. and T.O.E. moduli
of BaF2 at room temperature.

Elastic
Thermal expansion

0.38+0.03
0.27 (20'K)

0.77&0.05
1.57 (270'K)

action was assumed, consisting of an electrostatic Cou-
lombic and a repulsive contribution. The latter was as-
sumed between 6rst-neighbor metal-halogen and second
neighbor halogen-halogen ions. The values of the T.O.E.
moduli computed theoretically by Srinivasan" based
on the above models are shown in Table VIII. It is

can be evaluated. " In Fig. 9, the room-temperature
isotherm for pressures up to 200 kbar is shown.

R. Srinivasan" "has made a theoretical calculation
of the T.O.K. moduli for the fluorite structure. His
calculations were carried out for two models, a rigid-ion
model, ' and a dipole-shell Inodel. "A central-force inter-

TABLE VII. Comparison of the values of yl, and p~ from elastic
and thermal-expansion data.

2c44

C11 C12 C111 C112 C166

C123+6C144+8C456 C]23+2C144 C144+2C456
TABLE VIII. Values of the theoretically calculated third-order

elastic moudli for BaF~ (units are 10"dyn/cms).

1.03 1.97 1.50 1.97
C111 C112 C114 C166 C123 C456

the fast-shear mode decrease with decreasing volume.
The yl, and yII determined from the elastic data are
compared with the values determined from thermal-
expansion measurements" in Table VII. As can be seen,
the disagreement for yII is much larger than for yl. , the
elastic yII being lower than the thermal-expansion value.
This situation might arise when the contribution of the
optical modes to the y s becomes signi6cant. Such a
case is especially probable with some y, 's going nega-
tive, "as is the case for BaF2. There is the possibility,
although this is not very likely, that the discrepancy for
the pL, 's, is caused by the fact that the elastic value
renders the value of y at O'K, while the thermal value
was computed from 20'K data.

From the pressure derivatives of the bulk modulus,
the isotherm for the material over a wide pressure range

fABLE VI. Comparison of the pressure derivatives of the second-
order elastic moduli for CaF2 and BaF2.

Rigid-ion model —47.0 —32.9 —8.5 —14.2 —32.1 —0.7
Dipole-shell model —47.0 —32.9 —5.3 —12.9 —23.1 —1.7
Experimental results —58.4 —29.9 —12.1 —8.9 —20.6 —2.7

C112 ~166 Clss ~144 +45s

tLf I.OO-
C9
Z
x
O
LLI

&o 090
hJ

UJ

evident that the agreement between the experimental
results and the theoretical calculations is very gratifying.
This indicates that the simple central-force model is
also applicable to the Ruorite structure. The reason for
the Cauchy relations

CaF2(Wong and Schuele)
CaF2(Ho and Ruoff)
BaF2(Present work)

ac,/ap ac'/ap ac/ap

6.49 0.847 1.30
7.68 0.27 1.33
6.40 0 0.685

0.80
0 IOO

PRESSURE ( K BAR)
200

FxG. 9. Room temperature isotherm for BaF2.

' D. E. Schuele and C. S. Smith, J. Phys. Chem. Solids 25, 801
(1964).

~ O. L. Anderson, J. Phys. Chem. Solids 27, 547 (1966).I R. Srinivasan, Bull. Am. Phys. Soc. 12, 305 (1967).
"R.Srinivasan (private communication).
2' J. D. Axe, Phys. Rev. 139, A1215 (1965).
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not being satisfied in the case of BaF2 must therefore be
due to the relative movement of the various sublattices
in the Quorite structure under strain, and not to the
action of many-body forces. Such an internal displace-
ment will cause a deviation from the Cauchy relations
even in a central- force model.
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Lattice Dynamics of Microcrystallites
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We have calculated the allowed frequency modes for simple cubic microcrystallites with free boundaries,
taking the nearest-neighbor interaction The m. ean-square displacement (m. s.d.) and the mean-square
velocities (m. s.v.) in difierent directions, for atoms in different positions on the lattice, have been evaluated.
Two diGerent sets of force constants have been used. We find that for surface atoms, m. s.d. for motion
along the surface is nearly the same as for motion perpendicular to the surface. m.s.d. is maximum for corner
atoms and minimum for atoms in bulk. On the other hand, m.s.v. is maximum for atoms in bulk and mini-
mum for corner atoms. At any fixed site, we find that both m. s.d. and m. s.v. increase with increasing crystal
size, and tend to an asymptotic value. For one set of force constants we have also calculated the specific
heat of microcrystallites at various temperatures, as a function of crystallite size. The effective Debye
temperature is estimated, and its variation, both with crystallite size and sample temperature, is discussed.

INTRODUCTION

KCENTLY, a lot of theoretical and experimental
work have been reported on the surface vibrations

of crystals. ' Most of the theoretical work has been
done on the vibrations of thin slabs of infinite extension
in two dimensions. ' 4 The case of small crystallites has
also been considered, but here most of the work has been
phenomenological. ~' Recently, vibrations of a small
linear chain with free ends have been investigated. '

*Present address: Physics Dept. , Hansraj College, Delhi-7,
India.
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Jones, McKinney, and Webbs have studied. the re-
flection of electrons from the (111) surface of a silver
crystal and have determined the mean-square displace-
ments (m.s.d.)' normal to the crystal surface of atoms
at different depths in the crystal. At the surface the
m.s.d. is 2.0~0.2 times larger than in the bulk, and the
amplitude approaches the bulk value nearly as e—",
where e labels the planes starting from the surface
layer. Measurements of thermal displacements in other
directions indicate that they are nearly isotropic. This
result is in disagreement with the theoretical calcula-
tions of Maradudin and Melngailis, and of Clark,
Herman, and Wallis. ' Maradudin and Melngailis have
shown that in the case of a simple cubic crystal with
nearest- and next-nearest-neighbor central-force inter-
actions between atoms, in the high-temperature limit
(i.e., to lowest order in inverse temperature) for a
surface atom, the m.s.d. perpendicular to the surface is
at most twice its value in bulk, whereas the m.s.d..
parallel to the surface is only about 30'Po larger than
the bulk value. Similar anisotropy in the m.s.d. is
found by Clark, Herman, and tA'allis for surface atoms

"H. B. Rosenstock, J. Chem. Phys. 23, 2415 (1950).' E. W. Montroll, J. Chem. Phys. 18, 183 {1950).» M. Dupuis, R. Mazo, and L. Onsager, J. Chem. Phys. 33,
1452 (1960).


