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The complete set of the six third-order elastic moduli for BaF; was determined from the change in the
sound velocity under hydrostatic and uniaxial pressure. The third-order elastic moduli for BaF, were found to
be nonisotropic, although the second-order moduli are isotropic. The Grueneisen-mode v’s and their low- and
high-temperature limit were calculated from the third-order elastic moduli, as well as the isotherm (P-V
curve) over an extended pressure range. The experimental results for the third-order elastic moduli were
compared with theoretically calculated values, and good agreement was found.

I. INTRODUCTION

HERE has been a growing interest over the last

few years in the anharmonic properties of solids,
due, on the one hand, to the increasing amount of ex-
perimental data becoming available, and, on the other
hand, to progress in theoretical interpretation of an-
harmonicity effects in solids.! The third-order elastic
(T.O.E.) moduli of several of the alkali halides have
been measured experimentally, and computed theo-
retically.2~* All these substances are ionic crystals, pos-
sessing a lattice in which every ion is a center of inver-
sion. Thus, the theoretical calculations, which are based
on a central-force model, will yield a set of T.O.E.
moduli obeying the Cauchy relations.> The experi-
mental data, where the complete set of the T.O.E.
has been measured, do obey fairly well the Cauchy
relations.?

The fluorite structure is probably one of the simplest
nonprimitive crystalline lattices. Thus the study of the
T.O.E. moduli of an ionic crystal with such a structure
should be of interest. It might elucidate, perhaps, the
question of the applicability of the central-force model,
and the Cauchy relations to the fluorite structure.

Barium fluoride is an interesting material, being an
isotropic single crystal as far as its second-order elastic
(S.0.E.) moduli are concerned.® It is of interest, there-
fore, to investigate its T.O.E. moduli in order to examine
whether the latter are isotropic as well, and whether
the Cauchy relations are satisfied. With this in mind, the
present investigation was undertaken. The complete
set of the T.O.E. moduli for BaF; was determined, and
a comparison with theoretically computed values was
made.
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II. EXPERIMENTAL

The samples used in the present work were single
crystals of BaF,, purchased from the Harshaw Chemical
Co. They were in the shape of cubes, edges approxi-
mately 15X 16X 17 mm, the cube faces corresponding
to (110), (110), and (001) crystalline planes. The orien-
tations of the faces were checked by means of x-ray
Laue back reflections, and were found to correspond ta
the specified crystalline plane within  deg. The crystals
were hand lapped flat to a few uin., and parallel to a
few parts in 105.

Barium fluoride, being a cubic crystal, has six inde-
pendent T.O.E. moduli, C111, C112, C144, Cige, Cies, and
Cas6. The Thurston-Brugger definitions of the T.O.E.
moduli” are used throughout the present paper. These
moduli were determined from the variation of the sound
velocity under hydrostatic pressure, and uniaxial com-
pression. Fourteen different combinations of propaga-
tion modes and stresses could be used.” These were (a)
the five different propagation modes under hydrostatic
pressure, (b) the six different modes under uniaxial
compression in the [1107 direction, and (c) the three
different modes under uniaxial compression in the [001]
direction. These measurements provide 14 equations
for the T.O.E. moduli, from which the latter were com-
puted by means of a least-squares fit. The sound waves
were generated by means of X and AC cut crystalline
quartz transducers, bonded to the sample with Nonaq
stopcock grease.

In order to avoid cracking the samples, and to elimi-
nate dislocation-lines movement, which might com-
pletely falsify the T.O.E. moduli measurements,?89 the
uniaxial compression had to be kept at a low level; it
had never exceeded 35 kg/cm? in our measurements.
In addition, the crystals were irradiated with a y-ray
dose of about 3000 R, in order to provide additional
pinning centers for the dislocation lines, and thus hinder-
ing their movement.2:10

As a result of the low uniaxial compression level, an
experimental method possessing a very high sensitivity
had to be used. It is essentially a McSkimin frequency

7 R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604 (1964).
8Y. Hiki and A. V. Granato, Phys. Rev. 144, 411 (1966).
9K. Salama and G. A. Alers, Phys. Rev. 161, 673 (1967).
10 R. Gordon and A. S. Nowick, Acta Met. 4, 514 (1956).
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Fic 1. Change in frequency versus hydrostatic pressure for a
longitudinal sound wave propagating in the [0017] direction.

modulated pulse-superposition method,!*~? using a cw
carrier wave, set up by J. Holder of this laboratory.
The changes in the sound velocity with pressure were
determined by measuring the resonant frequency closest
to the free transducer resonant frequency as a function
of pressure. If the bond does not change with pressure,
then the sound travel time is inversely proportional to
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F16. 2. Change in frequency versus hydrostatic pressure for a
shear sound wave propagating in the [001] direction, polarized
in the (001) plane.
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F1e. 3. Change in frequency versus hydrostatic pressure for a
longitudinal sound wave propagating in the [1107] direction.

the frequency.!? The temperature of the sample was
monitored carefully at all times, and all measurements
were standardized to the same temperature.

The hydrostatic pressure was generated by tank nitro-
gen gas, and the pressure was measured by means of a
factory calibrated Heise-Bourdon gauge. The uniaxial
compression was generated with a Tinius-Olsen loading
machine, the stress being determined by a calibrated
load cell. Indium metal shims were placed between the
sample and the pressurizing surfaces in order to elimi-
nate shear stresses being applied to the sample faces
under uniaxial compression.

III. RESULTS

All measurements were made at room temperature,
and all results were normalized to 295°K. Figures 1-5
show the change in resonant frequency with hydrostatic
pressure for the five different propagation modes. It is
interesting to note that the changes are negative,
namely, the sound velocity decreases with increasing
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F16. 4. Change in frequency versus hydrostatic pressure for a
shear sound wave propagating in the [110] direction, polarized
in the [1107] direction.
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pressure, for the 1(c13—c12) mode. A similar behavior was
found in KF for the ¢4 mode.* In Figs. 6 and 7 the res-
onant frequency changes as a function of the applied
uniaxial compression in the [110] and [001] directions
are shown. As can be seen, in all cases the frequency,
and hence the velocity, changes were linear up to the
highest pressure used, which is a necessary condition
for no dislocation-lines movement to have occurred.
The straight lines in Figs. 1-7 are least-squares fits to
the experimental data. From the slopes of these lines,
the pressure derivatives at zero pressure of po¥?
[(poW?) 0], are determined. Here po is the zero pres-
sure density, W is the natural velocity, defined as
2L/ 7, where Lois the zero-pressure length of the sample
and 7 is the round-trip travel time of the sound through
the sample. The values of the various (po#?) -0’ deter-
mined from the straight lines in Figs. 1-7, with their
associated errors, are shown in Table I.
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F16. 5. Change in frequency versus hydrostatic pressure for a
shear sound wave propagating in the [110] direction, polarized
in the [001] direction.

In order to compute the T.O.E. moduli from the
measured (po¥?),—0¢, the values of the isothermal and
adiabatic S.O.E. moduli are required. The adiabatic
S.0.E. moduli were determined by measuring the sound
velocity in the five different propagation modes, and
computing the S.0.E. moduli by a least-squares fit.
The results are presented in Table II. The isothermal
moduli were computed from the values of the adiabatic
ones, using the room-temperature thermal expansion
and specific-heat data.!4.1%

From the experimentally determined S.O.E. moduli,
and the various (pol2),~¢/, the six T.O.E. moduli can

4 A, C. Bailey and B. Yates, Proc. Phys. Soc. (London) 91,
390 (1967).

16 K. S. Pitzer, W. V. Smith, and W. M. Latimer, J. Am. Chem.
Soc. 60, 1826 (1938). .
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F16. 6. Change in frequency versus uniaxial compression along
the [001] direction for different propagation modes.

now be computed. But, it should first be ascertained
that no dislocation motion has occurred during the uni-
axial compression. This is done by calculating the three
linear combinations of the T.O.E. moduli which are de-
termined from the hydrostatic measurements alone,
namely, Ci11+2Cris, C144+2C1e6, and 2C119+Cias, sepa-
rately from the uniaxial and hydrostatic runs. These
three linear combinations were determined for the uni-
axial runs alone, by solving the set of the appropriate
nine linear equations in the six T.0.E. moduli by a least-
squares fit. From the individual T.O.E. moduli com-
puted, the above three linear combinations were de-
termined. Since no dislocation motion should occur dur-
ing the hydrostatic runs, a comparison of the two sets of
data should show whether such motion has occurred
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Fi1c. 7. Change in frequency versus uniaxial compression along
the [110] direction for different propagation modes.



950

TaBiE I. Value of (poWW?),-0" for the different propagation modes.
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TasiE II. Second-order abiabatic elastic moduli for BaF,
(units are 10" dyn/cm?).

Propagation Displacement Stress

direction direction direction (poW?) pd’ S 128 cu
[110] [110] [001] 202 +0.14 8948  3.854  2.495
[110] [1i0] [001] 0.0978--0.0074
[110] [001] [001]  —0.599 40.047
[001] [oo1] [1i0] L85 =40.11 solving a set of linear equations of the form
[0017 [1i07 [1i0] 0.620 +0.030
[001] [110] [1i0] 0.571 =0.023 l41xlicl=13l,
[110] [110] [1i07 0.70 +0.15
[110] [1i0] [1i0] —0.077 £0.014  where ||4]| is a matrix whose elements are either con-
[110] [0o01] [110] 0.458 £0.017  stants, or depend only on the S.0.E. moduli. ||C| is
[oo1] [001]  hydrostatic ~ 4.96 =0.31 the column matrix of the T.0.E. moduli, and ||B]| is
[001] (001) plane  hydrostatic  0.711 £0.021  the column matrix whose elements are linear functions
Eﬁg% Eﬁg% ﬁ;’gig:ggg #gzgfs igéé of the yarious (p9W2) »=0'. Since the errors in the S.0.E.
[1107 [0017 hydrostatic ~ 0.701 0,025  moduli are negligible compared to the errors in the

under uniaxial compression. These two sets of data with
their errors are presented in Table III. As can be seen,
the agreement between the two sets of data is within
the limit of error, indicating that no dislocation motion
has occurred during the uniaxial runs.

From the complete set of experimental data, hydro-
static and uniaxial, the six independent T.O.E. moduli
are now determined by means of a least-squares fit, the
results being shown in Table IV.

The estimate of the errors is done as follows. The
errors in the different (pol¥?) ,—o" are computed by calcu-
lating the standard deviation from the experimental
data and setting the error as 0.675 times the standard
deviation. In this way the errors shown in Table I were
determined. The T.O.E. moduli are determined by
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F16. 8. The three mode v’s as a function of the
crystalline direction.
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(poW?) p—d, the errors in the T.0.E. moduli can be de-
termined from the set of equations

l4lXxac]= a8,

where ||AC|| is a column matrix of the errors in the
T.O.E. moduli and ||AB|| is a column matrix of the
errors in the elements of ||B|| determined from the
errors in the (po#?)p—o’. In such a manner, the errors
shown in Tables ITI and IV were calculated.

IV. DISCUSSION

As has already been mentioned, BaF, is isotropic as
far as the S.O.E. moduli are concerned.® It is obvious
that the isotropy relations for the T.0.E. moduli’

C111= C123+6C144+8C ss6,
C119= C125+2C144,
Cre6= C144+2Cs,

are not satisfied. This can be seen from Table V, where
the values of the various ratios of the S.O.E. and T.O.E.
moduli, which should equal unity in an isotropic ma-
terial, are shown. It therefore seems that BaF, is not
inherently isotropic, the isotropy of the S.0.E. moduli
being accidental. This is probably caused by the fact
that the form of the strain energy function is such as
to make %(ci1—c12) equal to cys.

The pressure derivatives of the S.0.E. moduli of
CaF; have recently been measured.!6:7 In Table VI
the values of the room-temperature pressure derivatives

TABLE III. Ci11+2Cuis, Craa+2Cies, and 2Ci13+Cros as deter-
mined separately from hydrostatic and uniaxial runs (units are
101 dyn/cm?).

Cin+2Cis2 Craa+2Cig6 2C112+Chas
Hydrostatic ~ —115.04+ 4.4 —32.940.12 —82.84-2.5
Uniaxial —126.04+12.5 —29.1+1.2 —84.647.6

(1;66% Wong and D. E. Schuele, J. Phys. Chem. Solids 28, 1225
P.'S. Ho and A. L. Ruoff, Phys. Rev. 161, 864 (1967).
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TasLE IV. Third-order elastic moduli of BaF, (units are 10 dyn/cm?).

Cin Cue (o™

Cies Ciras Cuse

—58.4+1.5 —29.94+1.4 —12.1+0.3

—8.8940.19 —20.6+1.1 —2.7140.01

of CaF, and BaF, are compared. Here Cyz, C/, and C
are pv?, where v is the sound velocity for the longitudinal
and the two shear waves in the [110] direction. As
can be seen, the pattern of the numbers for the two
substances is similar.

From the pressure derivatives, the Grueneisen-mode
v’s i, as well as the low- and high-temperature limit of
the thermodynamic Grueneisen +4’s vz and vy can be
determined.'® Utilizing Schuele’s computer program,!®
the v;’s and vz and vz have been determined from the
pressure derivatives of the S.0.E. moduli for BaF,. The
v.’s for a few selected directions are shown in Fig. 8.
Here 1 is the slow-shear mode, 2 is the fast-shear mode,
and 3 is the longitudinal mode. As can be seen, 7. be-
comes negative over some directions, namely, for these
directions the frequencies, and hence the velocities of

TasLe V. Isotropy relations for the S.0.E. and T.O.E. moduli
of BaF; at room temperature.

can be evaluated.” In Fig. 9, the room-temperature
isotherm for pressures up to 200 kbar is shown.

R. Srinivasan2®?! has made a theoretical calculation
of the T.0.E. moduli for the fluorite structure. His
calculations were carried out for two models, a rigid-ion
model,® and a dipole-shell model.?? A central-force inter-

TaBLE VII. Comparison of the values of vz and vy from elastic
and thermal-expansion data.

YL vH
Elastic 0.38+0.03 0.77-£0.05
Thermal expansion 0.27(20°K) 1.57(270°K)

action was assumed, consisting of an electrostatic Cou-
lombic and a repulsive contribution. The latter was as-
sumed between first-neighbor metal-halogen and second
neighbor halogen-halogen ions. The values of the T.O.E.
moduli computed theoretically by Srinivasan?' based
on the above models are shown in Table VIIL. It is

2 C 6C. 8C
o wt6Cut8Cu0 Gt Cuut2Cus TaBLE VIII. Values of the theoretically calculated third-order
C11—C12 Cin Cirz Cies elastic moudli for BaF; (units are 10®* dyn/cm?).
103 197 1.50 1.97 Cui Cuz Cis Cis  Cis Cuss
Rigid-ion model —47.0 —329 -85 —142 —32.1 —0.7
. . Dipole-shell model —47.0 =329 —53 —129 —23.1 —1.7
the fast-shear mode decrease with decreasing volume. Experimental results —58.4 —29.9 —12.1 —89 —20.6 —2.7

The v and vz determined from the elastic data are
compared with the values determined from thermal-
expansion measurements!4 in Table VII. As can be seen,
the disagreement for vy is much larger than for vz, the
elastic yx being lower than the thermal-expansion value.
This situation might arise when the contribution of the
optical modes to the v;’s becomes significant. Such a
case is especially probable with some v.’s going nega-
tive,!8 as is the case for BaF,. There is the possibility,
although this is not very likely, that the discrepancy for
the vy1’s, is caused by the fact that the elastic value
renders the value of 4 at 0°K, while the thermal value
was computed from 20°K data.

From the pressure derivatives of the bulk modulus,
the isotherm for the material over a wide pressure range

TasLE VI. Comparison of the pressure derivatives of the second-
order elastic moduli for CaF; and BaF,.

aC/ap aC'/ap aC/ap
CaF2(Wong and Schuele) 6.49 0.847 1.30
CaF2(Ho and Ruoff) 7.68 0.27 1.33
BaF,(Present work) 6.40 0 0.685

18 D, E. Schuele and C. S. Smith, J. Phys. Chem. Solids 25, 801
(1964).

evident that the agreement between the experimental
results and the theoretical calculations is very gratifying.
This indicates that the simple central-force model is
also applicable to the fluorite structure. The reason for
the Cauchy relations

Ci112=C166 C125=C144=Cls6

090
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F16. 9. Room temperature isotherm for BaF.

190, L. Anderson, J. Phys. Chem. Solids 27, 547 (1966).
2 R, Srinivasan, Bull. Am. Phys. Soc. 12, 305 (1967).

21 R, Srinivasan (private communication).

22J, D. Axe, Phys. Rev. 139, A1215 (1965).
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not being satisfied in the case of BaF; must therefore be
due to the relative movement of the various sublattices
in the fluorite structure under strain, and not to the
action of many-body forces. Such an internal displace-
ment will cause a deviation from the Cauchy relations
even in a central- force model.
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We have calculated the allowed frequency modes for simple cubic microcrystallites with free boundaries,
taking the nearest-neighbor interaction. The mean-square displacement (m.s.d.) and the mean-square
velocities (m.s.v.) in different directions, for atoms in different positions on the lattice, have been evaluated.
Two different sets of force constants have been used. We find that for surface atoms, m.s.d. for motion
along the surface is nearly the same as for motion perpendicular to the surface. m.s.d. is maximum for corner
atoms and minimum for atoms in bulk. On the other hand, m.s.v. is maximum for atoms in bulk and mini-
mum for corner atoms. At any fixed site, we find that both m.s.d. and m.s.v. increase with increasing crystal
size, and tend to an asymptotic value. For one set of force constants we have also calculated the specific
heat of microcrystallites at various temperatures, as a function of crystallite size. The effective Debye
temperature is estimated, and its variation, both with crystallite size and sample temperature, is discussed.

INTRODUCTION

ECENTLY, a lot of theoretical and experimental
work have been reported on the surface vibrations
of crystals.’~® Most of the theoretical work has been
done on the vibrations of thin slabs of infinite extension
in two dimensions.'~ The case of small crystallites has
also been considered, but here most of the work has been
phenomenological.*15 Recently, vibrations of a small
linear chain with free ends have been investigated.®

* Present address: Physics Dept., Hansraj College, Delhi-7,
India.
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